搜档网
当前位置:搜档网 › 电力电子技术与电力系统分析matlab仿真培训讲义

电力电子技术与电力系统分析matlab仿真培训讲义

电力电子技术与电力系统分析matlab仿真培训讲义
电力电子技术与电力系统分析matlab仿真培训讲义

电气2013级卓班电力电子技术与电力系统分析

课程实训报告

专业:电气工程及其自动化

班级:

姓名:

学号:

指导教师:

兰州交通大学自动化与电气工程学院

2016年1 月日

1 电力电子技术实训报告

1.1 实训题目

1.1.1电力电子技术实训题目一

一.单相半波整流

参考电力电子技术指导书中实验三负载,建立MATLAB/Simulink环境下三相半波整流电路和三相半波有源逆变电路的仿真模型。仿真参数设置如下:

(1)交流电压源的参数设置和以前实验相关的参数一样。

(2)晶闸管的参数设置如下:

R=0.001Ω,L on=0H,V f=0.8V,R s=500Ω,C s=250e-9F

(3)负载的参数设置

RLC串联环节中的R对应R d,L对应L d,其负载根据类型不同做不同的调整。

(4)完成以下任务:

①仿真绘出电阻性负载(RLC串联负载环节中的R d= Ω,电感L d=0,C=inf,反电动势为0)下α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。

②仿真绘出阻感性负载下(负载R d=Ω,电感L d为,反电动势E=0)α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。

③仿真绘出阻感性反电动势负载下α=90°,120°,150°时整流电压U d,负载电流L d 和晶闸管两端电压U vt1的波形,注意反电动势E的极性。

(5)结合仿真结果回答以下问题:

①该三项半波可控整流电路在β=60°,90°时输出的电压有何差异?

②在MATLAB/Simulink环境下仿真如何设置控制角?

1.1.2 仿真思路分析

1)单相半波整流电路

单相半波整流电路

式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。6 个晶闸管导通的顺序是按VT6 – VT1 →VT1 –VT2 →VT2 – VT3 →VT3 – VT4 →VT4 – VT5 →VT5 – VT6 依此循环,每隔60 °有一个晶闸管换相。为了保证在任何时刻都必须有两个晶闸管导通,采用了双脉冲触发电路,在一个周期内对每个晶闸管连续触发两次,两次脉冲前沿的间隔为60 °。对于三相半波整流电路,在晶闸管和负载参数给定后,主要是脉冲发生器模块的参数设置,由于交流电压源的频率为25Hz,则Pulse模块的脉冲周期为0.04s,脉冲宽度设置为脉宽的50%,脉冲高度为1,脉冲移相角通过“相位角延迟”对话框进行设置。由于三项半波整流电路的移相角α零位定在三相交流电压的自然换流点,所以在计算延迟角时,还必须增加30°相位。且对于电阻性负载α∈(0°,150°),对于阻感性负载α∈(0°,90°),在电源频率为25Hz时,这一角度对应的延迟时间为0.0033s。

另外,Pulse模块依次延迟120°,对应的时间为0.0132s。以下是不同的移相角对应的脉冲触发角:

α=00°时,Pulse1=0.0033s,Pulse2=0.0166s,Pulse3=0.0300s。

α=30°时,Pulse1=0.0066s,Pulse2=0.0200s,Pulse3=0.0333s。

α=60°时,Pulse1=0.0100s,Pulse2=0.0233s,Pulse3=0.0366s。

α=90°时,Pulse1=0.0133s,Pulse2=0.0266s,Pulse3=0.0400s。

α=120°时,Pulse1=0.0166s,Pulse2=0.0300s,Pulse3=0.0433s。

α=150°时,Pulse1=0.0200s,Pulse2=0.0333s,Pulse3=0.0466s。

相对误差设置为0.001v,开始仿真时间为0,停止仿真时间为0.1。

2)三相有源逆变电路

要使整流电路工作于逆变状

3)直流降压斩波电路

要使整流电路工作于逆变状

4)单相交流调压电路

要使整流电路工作于逆变状态,必须有两个条件:

①变流器的输出U d能够改变极性。因为晶闸管的单向导电性,电流Id不能改变方向,为了实现有源逆变,必须去改变U d的电极性。只要使变流器的控制角α>90°即可。

②必须要有外接的直流电源E,并且直流电源E也要可以改变极性,并且|E|>|U d|。上述条件必须同时满足,才能实现有源逆变。

所以,三相有源逆变电路的设置基本和三相半波整流电路相同,只是E设置为120V,且要求晶闸管的控制角α>90°,U d为负值,直流电动势的极性和晶闸管的导通方向一致,其值大于变流器直流侧的平均电压即|E d|>|U d|。

1.1.3 电路原理图及MATLAB/Simulink环境下仿真模型

(1)三相半波整流电路

1) 三相半波整流电路系统原

2)三相半波整流电路系统模型图如图2所示:

图2 三相半波整流电路系统模型图

(2)三相有源逆变电路

1) 三相有源逆变电路系统原理图如图3所示:

EM

图3 三相有源逆变电路系统原理图

2) 三相有源逆变电路系统模型图如图

4所示:

图4 三相有源逆变电路系统模型图

2)运行结果见附录一。

1.1.4 回答以下思考题:

①如何解决主电路和触发电路的同步问题?在本实验中,主电路三相电源的相序可任意设定吗?

答:采用宽脉冲触发或双脉冲触发发式。在本实验中使脉冲宽度大于1/6个周期。在除法某个晶闸管的同时,前一个晶闸管补发脉冲,即用两个窄脉冲替代宽脉冲。

②在本实验的整流及逆变时,对角有什么要求?为什么?

答:在本实验的整流时,移相角度角度为0-90°,这是因为当移相角度α超过90°就会进入逆变状态。

1.1.5 结合仿真结果,回答以下问题

①该三相半波可控逆变电路在β=60°,90°时输出的电压有何差异?

答:因为U d=2.34U2cosβ,所以β为90°时U d为0。而为60°时是有输出电压的。

②在MATLAB/Simulink环境下仿真如何设置控制角?

答:α=0°时,Pulse1=0.0033s,Pulse2=0.0166s,Pulse3=0.0300s。

α=30°时,Pulse1=0.0066s,Pulse2=0.0200s,Pulse3=0.0333s。

α=60°时,Pulse1=0.0100s,Pulse2=0.0233s,Pulse3=0.0366s。

α=90°时,Pulse1=0.0133s,Pulse2=0.0266s,Pulse3=0.0400s。

α=120°时,Pulse1=0.0166s,Pulse2=0.030s,Pulse3=0.0433s。

α=150°时,Pulse1=0.0200s,Pulse2=0.033s,Pulse3=0.0466s。

2 电力电子技术实训报告

2.1 实训题目

2.1.1电力电子技术实训题目一

题目:单相交流—交流变换电路

1)单相交流调压电路

(1)带电阻性负载的单相交流调压电路仿真

首先绘制单相交流调压电路原理图,并在MATLAB/Simulink环境下建立其仿真模型。

参数设置:

①交流电压源的参数设置

交流电压峰值:100~400V之间;初始相位:0;电源频率:50Hz

②晶闸管的参数设置

R n =0.001Ω,L on =0H,V f =0.8,R s =500Ω,C s=3.0e-7F

③负载的参数设置(RLC串联环节)

R =100~500Ω,L=0H,C=inf

④脉冲发生器模块(Pulse)的参数设置

取α=0°和30°(或45°、60°)分别设置Pulse模块参数(自己考虑)。

⑤仿真时间和误差参数设置

设相误差为1.0e-3~1.0e-4之间;

开始仿真时间:0;

结束仿真时间:0.1~0.2之间(即5~10个电源周期);

⑥完成以下任务:

仿真绘制出不同α值时的负载电压、负载电流、流过某只晶闸管电流、晶闸管端电压以及某只晶闸管上的触发信号的波形。

(2)带阻感性负载的单相交流调压电路仿真

首先绘制单相交流调压电路原理图,并在MATLAB/Simulink环境下建立其仿真模型。

参数设置:

①交流电压源的参数设置

交流电压峰值:100~400V之间;初始相位:0;电源频率:50Hz

②晶闸管的参数设置

R n =0.001Ω,L on =0H,V f =0.8,R s =500Ω,C s=3.0e-7F

③负载的参数设置(RLC串联环节)

R =100~500Ω,L=0.1~0.2H,C=inf

④脉冲发生器模块(Pulse)的参数设置

取α=0°和30°及α=φ(或α=45°、60°)分别设置Pulse模块参数(自己考虑)。

⑤仿真时间和误差参数设置

设相误差为1.0e-3~1.0e-4之间;

开始仿真时间:0;

结束仿真时间:0.1~0.2s之间(即5~10个电源周期);

⑥完成以下任务:

仿真绘制出不同 值时的负载电压、负载电流、流过某只晶闸管电流、晶闸管端电压以及某只晶闸管上的触发信号的波形。

2)单相交流调功电路

(1)带电阻性负载的单相交流调功电路仿真

首先绘制单相交流调功电路原理图,并在MATLAB/Simulink环境下建立其仿真模型。

参数设置:

①交流电压源的参数设置

交流电压峰值:100~400V之间;初始相位:0;电源频率:100Hz

②晶闸管的参数设置

R n=0.001Ω,L on =0H,V f =0.8,R s=500Ω,C s=3.0e-7F

③负载的参数设置(RLC串联环节)

R =100~500Ω,L=0H,C=inf

④脉冲发生器模块(Pulse)的参数设置

取调功电路占空比分别为0.25和0.5,自行设置Pulse模块参数。

⑤仿真时间和误差参数设置

设相误差为1.0e-3~1.0e-4之间;

开始仿真时间:0;

结束仿真时间:0.1~0.2之间(即10~20个电源周期);

⑥完成以下任务:

仿真绘制出不同占空比时的负载电压、流过某只晶闸管电流、晶闸管端电压以

及某只晶闸管上的触发信号的波形。

(2)分析并回答

①交流调压与交流调功的电路结构是否相同,控制方式有何不同?

②两者对脉冲发生器模块(Pulse)的参数设置有何不同?

3)单相斩控式交流调压电路

首先绘制电阻性负载单相交流调压电路原理图,并在MATLAB/Simulink环境下建立其仿真模型。

参数设置:

交流电压源的参数设置

①交流电压峰值:100~400V之间;初始相位:0;电源频率:50Hz

②负载的参数设置(RLC串联环节)

R=100~300Ω,L=0H,C=inf

③脉冲发生器模块(Pulse)的参数设置

取触发信号的脉冲宽度为20%和50%,分别设置Pulse模块参数(自己考虑)。

④仿真时间和误差参数设置

设相误差为1.0e-3~1.0e-4之间;

开始仿真时间:0;

结束仿真时间:0.1~0.2之间(即5~10个电源周期);

⑤完成以下任务:

仿真出触发信号的脉冲宽度为20%和50%时的电源电压、负载电压、负载电流、流过某只IGBT的电流、IGBT端电压以及IGBT上的触发信号的波形。

(2)分析并回答

①比较斩控式交流调压电路与相控交流调压电路的功率因数有何不同?

②两者对脉冲发生器模块(Pulse)的参数设置有何不同?

2.1.2 仿真思路分析

1)单相交流调压电路

所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周期内

通过控制晶闸管的开通相位,可以方便的调节输出电压的有效值。当为电阻负载时,电路图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。在交流电源U1的正半周和负半周,分别对VT1和VT2的触发延迟角进行控制就可以调节输出电压。换言之,在仿真过程中设置晶闸管脉冲频率与电源频率相同,通过控制晶闸管脉冲的相位滞后角即可改变触发角α的大小从而调节输出电压。当为阻感负载时,由于电感的作用,使得其输出电压不仅与晶闸管的触发脉冲有关还与负载的阻抗角有关,但其控制方式与电阻负载时相同。

2)单相交流调功电路

交流调功电路和交流调压电路的电路形式完全相同,只是控制方式不同。交流调功电路不是在每个交流电源周期都通过触发延迟角α对输出电压波形进行控制,而是将负载与交流电源接通几个整周波,再断开几个整周波,通过改变接通周波数与断开周波数的比值来调节负载所消耗的平均功率。因此,在仿真过程中,需要设置晶闸管触发脉冲的周期为电源周期的N倍,通过调节脉冲宽度来改变负载与交流电源接通和断开的周波数。

3)单相斩控式交流调压电路

一般采用全控型器件作为开关器件,其基本原理和直流斩波电路类似,只是直流斩波电路的输入是直流电压,而斩控式交流调压电路输入的是正弦交流电压。在交流电源的正半周,用V1进行斩波控制,用V3给负载电流提供续流通道;在负半周,用V2进行斩波控制,用V4给负载电流提供续流通道。设斩波器件V1、V2的导通时间为t on,开关周期为T,则导通比为α=t on/T,和直流斩波电路一样,通过改变α来调节输出电压U0。因此,在仿真过程中,需要设置晶闸管触发脉冲的周期为电源周期的1/N倍,然后根据题目要求设置脉冲宽度即可得出题目所需波形。

2.1.3 电路原理图及MATLAB/Simulink环境下仿真模型

1)单相交流调压电路原理图及仿真模型

(1)带电阻性负载的单相交流调压电路原理图如图5所示,仿真模型如图6所示。

图5 带电阻性负载的单相交流调压电路原理图

图6 带电阻性负载的单相交流调压电路仿真模型

(2)带阻感性负载的单相交流调压电路原理图如图7所示,仿真模型如图8所示。

载图7带阻感性负载的单相交流调压电路原理图

图8 带阻感性负载的单相交流调压电路仿真模型

2)单相交流调功电路原理图及仿真模型

单相交流调功电路原理图如图9所示,仿真模型如图10所示。

图9 单相交流调功电路原理图

图10 单相交流调功电路仿真模型

3)单相斩控式交流调压电路原理图及仿真模型

单相斩控式交流调压电路原理图如图11所示,仿真模型如图12所示。

VT1

R

U0图11 单相斩控式交流调压电路原理图

图12 单相斩控式交流调压电路仿真模型

2)运行结果见附录二。

2.1.4 回答以下思考题:

①交流调压与交流调功的电路结构是否相同,控制方式有何不同?

答:交流调功电路和交流调压电路的电路结构完全相同,只是控制方式不同。交流调压电路中,在交流电源u1的正半周和负半周,分别对VT1和VT2的触发延迟角进行控制就可以调节输出电压。而交流调功电路不是在每个交流电源周期都通过触发延迟角α对输出电压波形进行控制,而是将负载与交流电源接通几个整周波,再断开几个整周波,通过改变接通周波数与断开周波数的比值来调节负载所消耗的平均功率。

②两者对脉冲发生器模块(Pulse)的参数设置有何不同?

答:交流调压电路应设置晶闸管脉冲周期与电源周期相同,通过控制晶闸管触发脉冲的相位滞后角来改变触发角α的大小从而调节输出电压。交流调功电路应根据需要设置晶闸管触发脉冲的周期为电源周期的N倍,通过调节触发脉冲宽度来改变占空比以调节负载与交流电源接通和断开的周波数。

③比较斩控式交流调压电路与相控式交流调压电路的功率因数有何不同?

答:在斩控式交流调压电路中,电源电流的基波分量是和电源电压同相位的,

即位移因数为1,电源电流中不含低次谐波,只含和开关周期T有关的高次谐波,这些高次谐波用很小的滤波器即可滤除,这时电路的功率因数接近1。

在相控式交流调压电路中,相控作用使电流发生滞后,并且波形也发生畸变,所以即使纯电阻负载功率因数也不为1。而且控制角越大,功率因数越小,这是相控电路普遍存在的一个缺点。

④两者对脉冲发生器模块(Pulse)的参数设置有何不同?

答:斩控式交流调压电路应设置晶闸管触发脉冲的周期为电源周期的1/N倍,然后根据题目要求设置触发脉冲的宽度即可调节输出电压。相控式交流调压电路

应设置晶闸管触发脉冲的周期与电源周期相同,通过控制晶闸管触发脉冲的相位滞后角来改变触发角α的大小从而调节输出电压。

3 电力系统分析实训报告

3.1 题目一 3.1.1 题目

题目:同步发电机突然三相短路暂态过程的仿真

假设一台有阻尼绕组的同步发电机,P N =200MW ,U N =13.8kV ,f N =50Hz ,x d =1.0,

x q =0.6,30.0'=d x ,21.0'

'=d x ,31.0'

'=q x ,r =0.005,x σf =0.18,x αD =0.1,x σQ =0.25,

s 5'0=d T ,T D =2s ,s 4.1'

0=q T 。若发电机空载,端电压为额定电压,端子突然发生三相短路,且α0=0,利用MATLAB/Simulink (或ETAP)建立仿真模型,并根据已知参数对各模块进行参数设置。

1)合理选择仿真算法和故障模块中的短路类型,仿真结束时间取为1s ,试完成同步发电机端发生突然三相短路故障的暂态过程仿真,并绘制:

①给出各个元件模块参数设置的窗口图; ②短路发生后的三相定子电流波形;

③短路发生后的定子电流的d 轴和q 轴分量i d 、i q 以及励磁电流i f 的波形; 2)改变故障模块中的短路类型,合理选择仿真算法,仿真结束时间取为1s ,试完成同步发电机端突然发生BC 两相短路故障的暂态过程仿真,并绘制:

①给出各个元件模块参数设置的窗口图; ②短路发生后的三相定子电流波形;

③短路发生后不同的三相定子电流的d 轴和q 轴分量i d 、i q 的波形; 3)分析并回答

①对应α0=0,故障模块中的短路发生时间该如何设置? ②需要进行哪些潮流计算?

3.1.2 仿真思路分析

在分析同步发电机突然三相短路暂态过程时,可以利用叠加定理,这样同步发电机机端突然短路相当于在发电机端口处突然加上了与电机短路前的端电压大小相等但方向相反的三相电压。在定子绕组上突然加以对称的相电压后,为了保持其无源电路的磁链不变,在其定子绕组中将要引起相应的瞬变电流,而且这些瞬变电流还要按照一定的时间常数逐步衰减至稳态值。

当发电机突然短路时,定子各绕组电流将包含基频分量、倍频分量和直流分量。到达稳态后,定子电流起始值中的直流分量和倍频分量将由其起始值以时间常数a T 按指数规律衰减到零,而基频分量则由其起始值以时间常数''d T 、''q T 、'd T 按指数规律衰减为相应的稳态值。同样,在转子绕组中也包含直流分量和同频率交流分量。

3.1.3 同步发电机突然三相短路暂态过程的数值计算

利用MATLAB 对突然三相短路后的定子电流进行计算的基本步骤如下: ①首先计算各衰减时间常数。查阅资料可得

s T a 16.0=,s T d 72.0''=,s T q 34.0''=,s T d 64.1'=。

由于空载时,1''')0()0()0()0(====U E E E q q q ,0'')0(=d E ,00=α,其中)0(q E 、)

0(U 为短路前瞬间的空载电势、机端电压,所以可得a 相定子电流表达式为

)

2cos(77.0)cos(4)cos(34.2)cos(43.1)cos(03.603.60608.0097.20αωααωαωαω++-++-+-+-=---t e

e

t e t e t i t

t

t t a

②利用MATLAB 对上式进行数值计算并绘图的m 文件程序清单见附录3。 运行程序得到发电机端突然发生三相短路时的a 相定子电流,以及基频分量I a 、倍频分量I a1和非周期分量I a2的波形见附录三,如图3-1所示 ,并且短路后的冲击电流标幺值为9.1927。

3.1.4 同步发电机突然三相短路暂态过程的仿真

1)同步发电机端突然发生三相短路故障的暂态过程仿真 (1)同步发电机突然三相短路暂态过程的仿真模型如图13所示。 (2)各个元件模块参数设置的窗口图。

同步发电机模块的参数设置如图14所示,升压变压器模块的参数设置如图15

所示,利用Powergui模块的潮流计算和电机初始化窗口计算初始参数如图16所示。

图13 同步发电机突然三相短路暂态过程的仿真模型

图14 同步发电机模块的参数设置

电力电子技术与电力系统分析matlab仿真

电气2013级卓班电力电子技术与电力系统分析 课程实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

兰州交通大学自动化与电气工程学院 2016 年 1 月日

电力电子技术与电力系统分析课程实训报告 1 电力电子技术实训报告 1.1 实训题目 1.1.1电力电子技术实训题目一 一.单相半波整流 参考电力电子技术指导书中实验三负载,建立MATLAB/Simulink环境下三相半波整流电路和三相半波有源逆变电路的仿真模型。仿真参数设置如下: (1)交流电压源的参数设置和以前实验相关的参数一样。 (2)晶闸管的参数设置如下: R=0.001Ω,L =0H,V f=0.8V,R s=500Ω,C s=250e-9F on (3)负载的参数设置 RLC串联环节中的R对应R d,L对应L d,其负载根据类型不同做不同的调整。 (4)完成以下任务: ①仿真绘出电阻性负载(RLC串联负载环节中的R d= Ω,电感L d=0,C=inf,反电动势为0)下α=30°,60°,90°,120°,150°时整流电压U d,负载电流L 和晶闸管两端电压U vt1的波形。 d ②仿真绘出阻感性负载下(负载R d=Ω,电感L d为,反电动势E=0)α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。 ③仿真绘出阻感性反电动势负载下α=90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形,注意反电动势E的极性。 (5)结合仿真结果回答以下问题: ①该三项半波可控整流电路在β=60°,90°时输出的电压有何差异?

用Matlab计算潮流计算电力系统分析

《电力系统潮流上机》课程设计报告 院系:电气工程学院 班级:电088班 学号: 0812002221 学生姓名:刘东昇 指导教师:张新松 设计周数:两周 日期:2010年 12 月 25 日

一、课程设计的目的与要求 目的:培养学生的电力系统潮流计算机编程能力,掌握计算机潮流计算的相关知识 要求:基本要求: 1.编写潮流计算程序; 2.在计算机上调试通过; 3.运行程序并计算出正确结果; 4.写出课程设计报告 二、设计步骤: 1.根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 三、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为

额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。 3.MATLAB编程应用 Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 四、设计内容

《电力电子技术仿真实验》指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图1、1所示。点击新建一个仿真平台。点击左边的器件分类,找到Simulink与SimPowerSystems,分别在她们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图1、1 实验一的具体过程: 第一步:打开仿真环 境新建一个仿真平台,根 据表中的路径找到我们 所需的器件跟连接器。 元件名称提取路径 触发脉冲Simulink/Sources/Pulse Generator 电源Sim Power Systems/Electrical Sources/ DC Voltage Source 接地端子Simulink/Sinks/Scope 示波器Sim Power Systems/Elements/Ground 信号分解器Simulink/Signal Routing/Demux 电压表Sim Power Systems/Measurements/ Voltage Measurement 电流表Sim Power Systems/Measurements/Current Measurement 负载RLC Sim Power Systems/Elements/ Series RLC Branch

GTO器件Sim Power Systems/Power Electronics/Gto 图1、2 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法就是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标与Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其她地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法就是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到您所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时您会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 与Rotate block两条命令,前者改变水平方向,后者做90度旋转,也可以用Ctrl+R来做90度旋转。同时双击模块旁的文字可以改变模块名。然后单击菜单栏中的Edit/Signal Properties命令来刷新模型。模块的颜色也可以在激活模块后,点击右键,在background color中选择自己喜欢的颜色。 连接好的电路图如图1、3所示。 图1、3 第四步,模块的参数设置。设者模型参数就是保证仿真准确与顺利的重要一步,有些参数就是由仿真任务规定的,如本例仿真中的电源电压与电阻值等,有些参数就是需要通过仿真来

电力系统分析理论(第二版-刘天琪-邱晓燕)课后思考题标准答案(不包括计算)

第一章 1、电力系统的额定电压是如何定义的?电力系统中各元件的额定电压是如何确定的? 答:电力系统的额定电压:能保证电气设备的正常运行,且具有最佳技术指标和经济指标的电压。 电力系统各元件的额定电压:a.用电设备的额定电压应与电网的额定电压相同。 b.发电机的额定电压比所连接线路的额定电压高5%,用于补偿线路上的电压损失。 c.变压器的一次绕组额定电压等于电网额定电压,二次绕组的额定电压一般比同级电网的额定电压高10%。 2、电力线路的额定电压与输电能力有何关系? 答:相同的电力线路,额定电压越高,输电能力就越大。在输送功率一定的情况下,输电电压高,线路损耗少,线路压降就小,就可以带动更大容量的电气设备。 3、什么是最大负荷利用小时数? 答:是一个假想的时间,在此时间内,电力负荷按年最大负荷持续运行所消耗的电能,恰好等于该电力负荷全年消耗的电能。 第二章 1、分裂导线的作用是什么?分裂导线为多少合适?为啥? 答:在输电线路中,分裂导线输电线路的等值电感和等值电抗都比单导线线路小,分裂的根数越多,电抗下降也越多,但是分裂数超过4时,电抗的下降逐渐趋缓。所以最好为4分裂。 2、什么叫变压器的空载试验和短路试验?这两个试验可以得到变压器的哪些参数? 答:变压器的空载试验:将变压器低压侧加电压,高压侧开路。此实验可以测得变压器的空载损耗和空载电流 变压器的短路试验:将变压器高压侧加电压,低压侧短路,使短路绕组的电流达到额定值。此实验可以测得变压器的短路损耗和短路电压。 3、对于升压变压器和降压变压器,如果给出的其他原始数据都相同,它们的参数相同吗?为啥? 答:理论上只要两台变压器参数一致(包含给定的空载损耗,变比,短路损耗,短路电压),那么这两台变压器的性能就是一致的,也就是说可以互换使用,但是实际上不可能存在这样的变压器,我们知道出于散热和电磁耦等因数的考虑,一般高压绕组在底层(小电流),低压绕组在上层(大电流,外层便于散热)。绕组分布可以导致一二次绕组的漏磁和铜损差别较大,故此无法做到升压变压器和降压变压器参数完全一致。 4、标幺值及其特点是什么?电力系统进行计算式,如何选取基准值? 答:标幺值是相对于某一基准值而言的,同一有名值,当基准值选取不同时,其标幺值也不同。它们的关系如下:标幺值=有名值/基准值。其特点是结果清晰,计算简便,没有单位,是相对值。电力系统基准值的原则是:a.全系统只能有一套基准值b.一般取额定值为基准值c.电压、电流、阻抗和功率的基准值必须满足电磁基本关系。 5、什么叫电力线路的平均额定电压?我国电力线路的平均额定电压有哪些?答:线路额定平均电压是指输电线路首末段电压的平均值。我国的电力线路平均

吉大20年9月课程考试《电力系统分析》离线大作业考核100分

吉林大学网络教育学院 2019-2020学年第二学期期末考试《电力系统分析》大作业 学生姓名专业 层次年级学号 学习中心成绩 年月日

作业要求:大作业要求学生手写完成,提供手写文档的清晰扫描图片,并将图片添加到word文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word文档格式),如有雷同、抄袭成绩按不及格处理。 一计算题 (共9题,总分值90分 ) 1. 有一台型10kv网络供电的降压变压器,铭牌给出的试验数据为:。 试求(1)计算折算到一次(二次)侧的变压器参数,并作其Г型Π型等值电路 变压器不含励磁之路时的Π型等值电路。(10 分)

2. 降压变压器及等效电路示于图5-7a、b。折算至一次侧的阻抗为Ω。已知在最大负荷和最小负荷时通过变压器的功率分别为,一次侧的电压分别为=110KV和113KV。要求二次侧母线的变化不超过6.0—6.6KV的范围,试选择分接头。 图5-19 习题5-8a 5-8b (10 分)

3. 简单电力系统如图7-52习题7-7所示,已知元件参数如下:发电机:,=0.16, =0.19;变压器:,=10。5,k点分别发生单相接地、两相短路、两相接地和三相短路时,试计算短路点短路电流的有名值,并进行比较分析。 图7-52 习题7-7(10 分)

4.已知一200km长的输电线,R=0.1Ω/km,L=2.0mH/km,C=0.01μF/km,系统频率为50Hz。使用(1)短线路,(2)中程线路,(3)长线路模型求其π形等效电路。(10 分) 解: (1)短线路一字型等值电路参数: (2)中程线路∏形等值电路参数(不需修正): (3)长线路:

电力系统分析实验报告

五邑大学 电力系统分析理论 实验报告 院系 专业 学号 学生姓名 指导教师

实验一仿真软件的初步认识 一、实验目的: 通过使用PowerWorld电力系统仿真软件,掌握电力系统的结构组成,了解电力系统的主要参数,并且学会了建立一个简单的电力系统模型。学会单线图的快捷菜单、文件菜单、编辑菜单、插入菜单、格式菜单、窗口菜单、仿真控制等菜单的使用。 二、实验内容: (一)熟悉PowerWorld电力系统仿真软件的基本操作 (二)用仿真器建立一个简单的电力系统模型: 1、画一条母线,一台发电机; 2、画一条带负荷的母线,添加负荷; 3、画一条输电线,放置断路器; 4、写上标题和母线、线路注释; 5、样程存盘; 6、对样程进行设定、求解; 7、加入一个新的地区。 三、电力系统模型: 按照实验指导书,利用PowerWorld软件进行建模,模型如下: 四、心得体会: 这一次试验是我第一次接触PWS这个软件,刚开始面对一个完全陌生的软件,我只能听着老师讲解,照着试验说明书,按试验要求,在完成试验的过程中一点一点地了解熟悉这个软件。在这个过程中也遇到了不少问题,比如输电线的画法、断路器的设置、仿真时出现错误的解决办法等等,在试验的最后,通过请教老师同学解决了这些问题,也对这个仿真软件有了一个初步的了解,为以后的学习打了基础。在以后的学习中,我要多点操作才能更好地熟悉这个软件。

实验二电力系统潮流分析入门 一、实验目的 通过对具体样程的分析和计算,掌握电力系统潮流计算的方法;在此基础上对系统的运行方式、运行状态、运行参数进行分析;对偶发性故障进行简单的分析和处理。 二、实验内容 本次实验主要在运行模式下,对样程进行合理的设置并进行电力系统潮流分析。 选择主菜单的Case Information Case Summary项,了解当前样程的概况。包括统计样程中全部的负荷、发电机、并联支路补偿以及损耗;松弛节点的总数。进入运行模式。从主菜单上选择Simulation Control,Start/Restart开始模拟运行。运行时会以动画方式显示潮流的大小和方向,要想对动画显示进行设定,先转换到编辑模式,在主菜单上选择Options,One-Line Display Options,然后在打开的对话框中选中Animated Flows Option选项卡,将Show Animated Flows复选框选中,这样运行时就会有动画显示。也可以在运行模式下,先暂停运行,然后右击要改变的模型的参数即可。 三、电力系统模型

电力电子课程设计matlab仿真实验

一.课程设计目的 (1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理; (2)掌握焊接的技能,对照原理图,了解工作原理; (3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力; 二.课程设计内容 第一部分:simulink电力电子仿真/版本matlab7.0 (1)DC-DC电路仿真(升降压(Buck-Boost)变换器) 仿真电路参数:直流电压20V、开关管为MOSFET(内阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(内阻为0.001欧)、占空比40%。仿真时间0.3s,仿真算法为ode23tb。 图1-1

占空比为40%的,降压后为12.12V。触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。 图1-2 占空比为60%的,升压后为28.25V。触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-3 ? 图1-4 升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源 工作原理: ①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。 ②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L 经D向C和RL反向放电,使输出电压的极性与输入电压 在ton期间电感电流的增加量等于toff期间的减少量,得: 由的关系,求出输出电压的平均值为:

(完整版)电力系统分析大作业matlab三机九节点潮流计算报告

电力系统分析大作业

一、设计题目 本次设计题目选自课本第五章例5-8,美国西部联合电网WSCC系统的简化三机九节点系统,例题中已经给出了潮流结果,计算结果可以与之对照。取ε=0.00001 。

二、计算步骤 第一步,为了方便编程,修改节点的序号,将平衡节点放在最后。如下图: 第二步,这样得出的系统参数如下表所示: 第三步,形成节点导纳矩阵。 9 2 1 3 2 7 4 5 6 8 3

第四步,设定初值: ο 01)0(6)0(5)0(4)0(3)0(2)0(1∠======??????U U U U U U ; 0)0(8)0(7==Q Q ,0)0(8)0(7==θθ。 第五步,计算失配功率 )0(1P ?=0,)0(2P ?=-1.25,)0(3P ?=-0.9,) 0(4P ?=0,)0(5P ?=-1,)0(6P ?=0,)0(7P ?=1.63, )0(8P ?=0.85; )0(1Q ?=0.8614,)0(2Q ?=-0.2590,)0(3Q ?=-0.0420,) 0(4Q ?=0.6275,)0(5Q ?=-0.1710, )0(6Q ?=0.7101。 显然,5108614.0|},max {|-=>=??εi i Q P 。 第六步,形成雅克比矩阵(阶数为14×14) 第七步,解修正方程,得到: =?)0(1θ-0.0371,=?)0(2θ-0.0668,=?)0(3θ-0.0628,=?)0(4θ0.0732,=?)0(5θ0.0191,=?)0(6θ0.0422,=?)0(7θ0.1726,=?)0(8θ0.0908; =?)0(1U 0.0334,=?)0(2U 0.0084,=?)0(3U 0.0223,=?)0(4U 0.0372,=?)0(5U 0.0266,

基于Matlab计算程序的电力系统运行分析课程设计

课程设计 课程名称:电力系统分析 设计题目:基于Matlab计算程序地电力系统运行分析学院:电力工程学院 专业:电气工程自动化 年级: 学生姓名: 指导教师: 日期: 教务处制

目录 前言 (1) 第一章参数计算 (2) 一、目标电网接线图 (2) 二、电网模型地建立 (3) 第二章潮流计算 (6) 一.系统参数地设置 (6) 二.程序地调试 (7) 三、对运行结果地分析 (13) 第三章短路故障地分析计算 (15) 一、三相短路 (15) 二、不对称短路 (16) 三、由上面表对运行结果地分析及在短路中地一些问题 (21) 心得体会 (26) 参考文献 (27)

前言 电力系统潮流计算是电力系统分析中地一种最基本地计算,是对复杂电力系统正常和故障条件下稳态运行状态地计算.潮流计算地目标是求取电力系统在给定运行状态地计算.即节点电压和功率分布,用以检查系统各元件是否过负荷.各点电压是否满足要求,功率地分布和分配是否合理以及功率损耗等.对现有电力系统地运行和扩建,对新地电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础.潮流计算结果可用如电力系统稳态研究,安全估计或最优潮流等对潮流计算地模型和方法有直接影响. 在电力系统中可能发生地各种故障中,危害最大且发生概率较高地首推短路故障.产生短路故障地主要原因是电力设备绝缘损坏.短路故障分为三相短路、两相短路、单相接地短路及两相接地短路.其中三相短路时三相电流仍然对称,其余三类短路统成为不对称短路.短路故障大多数发生在架空输电线路.电力系统设计与运行时,要采取适当地措施降低短路故障地发生概率.短路计算可以为设备地选择提供原始数据.

电力电子技术仿真研究

电力电子技术仿真实训 2009年 仿真实训1——桥式整流电路仿真研究 (2) 仿真实训2——直流降压变换器仿真研究 (9) 仿真实训3——单相逆变器仿真研究 (12) 仿真实训4——单相交流调压器仿真研究 (15)

仿真实训1——桥式整流电路仿真研究 一、准备工作 1、预习Matlab/simulink 仿真软件; 2、预习整流电路的几种形式和原理,重点预习单相桥式全控整流电路。有能力的同学也可以预习其他各种形式的整流电路。 二、操作方法 1、带电阻性负载的仿真实验 启动MATLAB7.0(或6.5), 进入SIMULINK后建新文档,绘制单相全波可控整流器结构模型图,如图1所示。双击各模块,在出现的对话框内设置相应的参数。 图1带电阻负载单相桥式全控整流电路模型 (1)晶闸管元件参数设置 双击晶闸管模块,本例元件参数对话框如图2所示。 a)晶闸管元件内电阻R on,单位为Ω。 b)晶闸管元件内电阻L on,单位为H。注意,电感不能设置为0。

图2 可关断晶闸管元件的参数设置对话框 c)晶闸管元件的正向管压降V f,单位为V。 d)电流下降到10%的时间t f,单位为秒(s)。 e)电流拖尾时间T q,单位为秒(s)。 f)初始电流I C,单位为A,与晶闸管元件初始电流的设置相同。通常将I C 设置为0。 g)缓冲电阻R s,单位为Ω,为了在模型中消除缓冲电路,可将缓冲电阻R s 设置为inf。 h)缓冲电容C s,单位为F,为了在模型中消除缓冲电路,可将缓冲电容C s 设置为0。为了得到纯电阻R s,可将电容C s参数设置为inf。 (2)单个电阻、电容、电感元件的参数设置。 双击RLC模块,整个电阻、电容、电感元件的参数设置对话框如图3所示。

用Matlab计算潮流计算电力系统分析

《电力系统潮流上机》课程设计报告院系:电气工程学院 班级:电088班 学号: 学生姓名:刘东昇 指导教师:张新松 设计周数:两周 日期:2010年 12 月 25 日

一、课程设计的目的与要求 目的:培养学生的电力系统潮流计算机编程能力,掌握计算机潮流计算的相关知识 要求:基本要求: 1.编写潮流计算程序; 2.在计算机上调试通过; 3.运行程序并计算出正确结果; 4.写出课程设计报告 二、设计步骤: 1.根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 三、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法

解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也

PSCAD的电力系统仿真大作业

电力系统分析课程报告姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。 图3 同步发电机模型参数Ta对应位置

1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=(标幺制,下同)时,仿真波形如图10所示 图10 Xd=时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。 i.Xd`=时A相短路电流的波形如图14所示: 图14 Xd`=时A相短路电流波形 ii.Xd`=1时A相短路电流的波形如图15所示: 图15 Xd``=1时A相短路电流波形 3)Xd``的影响 这里次暂态电抗Xd``与暂态电抗Xd`相似,Xd``影响的是短路后的次暂态过程。

电力系统分析潮流计算课程序设计及其MATLAB程序设计

电力系统分析潮流计算程序设计报告题目:13节点配电网潮流计算 学院电气工程学院 专业班级 学生姓名 学号 班内序号 指导教师房大中 提交日期 2015年05月04日

目录 一、程序设计目的 (1) 二、程序设计要求 (3) 三、13节点配网潮流计算 (3) 3.1主要流程................................................................................................... 错误!未定义书签。 3.1.1第一步的前推公式如下(1-1)-(1-5): ....................................... 错误!未定义书签。 3.1.2第二步的回代公式如下(1-6)—(1-9): ..................................... 错误!未定义书签。 3.2配网前推后代潮流计算的原理 (6) 3.3配网前推后代潮流计算迭代过程 (7) 3.3计算原理 (8) 四、计算框图流程 (9) 五、确定前推回代支路次序.......................................................................................... 错误!未定义书签。 六、前推回代计算输入文件 (10) 主程序: (10) 输入文件清单: (11) 计算结果: (12) 数据分析: (12) 七、配电网潮流计算的要点 (13) 八、自我总结 (13) 九、参考文献 (14) 附录一 MATLAB的简介 (14)

电力系统分析潮流计算大作业

电力系统分析潮流计算大作业(源程序及实验报告)

源程序如下: 采用直角坐标系的牛顿-拉夫逊迭代 function chaoliujisuan() m=3; %m=PQ节点个数 v=1;%v=PV节点个数 P=[-0.8055 -0.18 0]; %P=PQ节点的P值 Q=[-0.5320 -0.12 0]; %Q=PQ节点的Q值 PP=[0.5];%PP=PV节点的P值 V=[1.0];%V=PV节点的U值 E=[1 1 1 1.0 1.0]'; %E=PQ,PV,Vθ节点e的初值 F=[0 0 0 0 0]'; %F=PQ,PV,Vθ节点f的初值 G=[ 6.3110 -3.5587 -2.7523 0 0; -3.5587 8.5587 -5 0 0; -2.7523 -5 7.7523 0 0; 0 0 0 0 0; 0 0 0 0 0 ]; B=[ -20.4022 11.3879 9.1743 0 0; 11.3879 -31.00937 15 4.9889 0; 9.1743 15 -28.7757 0 4.9889; 0 4.9889 0 5.2493 0; 0 0 4.9889 0 -5.2493 ]; Y=G+j*B; X=[]; %X=△X n=m+v+1;%总的节点数 FX=ones(2*n-2,1);%F(x)矩阵 F1=zeros(n-1,n-1);%F(x)导数矩阵 a=0;%记录迭代次数 EF=zeros(n-1,n-1);%最后的节点电压矩阵 while max(FX)>=10^(-5) for i=1:m %PQ节点 FX(i)=P(i);%△P FX(n+i-1)=Q(i);%△Q for w=1:n FX(i)= FX(i)-E(i)*G(i,w)*E(w)+E(i)*B(i,w)*F(w)-F(i)*G(i,w)*F(w)-F(i)*B(i,w)*E(w); %△P FX(n+i-1)=FX(n+i-1)-F(i)*G(i,w)*E(w)+F(i)*B(i,w)*F(w)+E(i)*G(i,w)*F(w)+E(i)*B(i ,w)*E(w); %△Q end

电力电子仿真仿真实验报告

目录 实验一:常用电力电子器件特性测试 (3) (一)实验目的: (3) 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3) 掌握各器件的参数设置方法,以及对触发信号的要求。 (3) (二)实验原理 (3) (三)实验内容 (3) (四)实验过程与结果分析 (3) 1.仿真系统 (3) 2.仿真参数 (4) 3.仿真波形与分析 (4) 4.结论 (10) 实验二:可控整流电路 (11) (一)实验目的 (11) (二)实验原理 (11) (三)实验内容 (11) (四)实验过程与结果分析 (12) 1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例 (12) 2.仿真参数 (12) 3.仿真波形与分析 (14) 实验三:交流-交流变换电路 (19) (一)实验目的 (19) (三)实验过程与结果分析 (19) 1)晶闸管单相交流调压电路 (19) 实验四:逆变电路 (26) (一)实验目的 (26)

(二)实验内容 (26) 实验五:单相有源功率校正电路 (38) (一)实验目的 (38) (二)实验内容 (38) 个性化作业: (40) (一)实验目的: (40) (二)实验原理: (40) (三)实验内容 (40) (四)结果分析: (44) (五)实验总结: (45)

实验一:常用电力电子器件特性测试 (一)实验目的: 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; 掌握各器件的参数设置方法,以及对触发信号的要求。(二)实验原理 将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 ?在MATLAB/Simulink中构建仿真电路,设置相关参数。 ?改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 以GTO为例,搭建仿真系统如下:

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

电力电子系统的计算机仿真

《电力电子系统的计算机仿真》题目:方波逆变电路的计算机仿真

电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用性很强的课程。由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和困难,一般常用波形分析的方法来研究。仿真技术为电力电子电路的分析提供了崭新的方法。 我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的作用。掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并且可以调动学生的积极性。实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的,也受到学时的限制。而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。仿真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。 【关键字】电力电子,MATLAB,仿真。

第一章电力电子与MATLAB软件的介绍 一、电力电子概况 二、MATLAB软件介绍 第二章电力电子器件介绍 一、电力二极管特性介绍 二、晶闸管特性介绍 三、IGBT特性介绍 第三章主电路工作原理 一、单相桥式逆变电路 二、三相桥式逆变电路 三、PWM控制基本原理 第四章仿真模型的建立 一、单极性SPWM触发脉冲波形的产生 二、双极性SPWM触发脉冲波形的产生 三、单极性SPWM方式下的单相桥式逆变电路 四、双极性SPWM方式下的单相桥式逆变电路第五章仿真结果分析 第六章心得体会 第七章参考文献

第一章电力电子与MATLAB软件的 介绍 一、电力电子概况 电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。 电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。 一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出的第一个晶闸管为标志的,电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。此前就已经有用于电力变换的电子技术,所以晶闸管出现前的时期可称为电力电子技术的史前或黎明时期。70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(Power-MOSFET)为代表的全控型器件全速发展(全控型器件的特点是通过对门极既栅极或基极的控制既可以使其开通又可以使其关断),使电力电子技术的面貌焕然一新进入了新的发展阶段。80年代后期,以绝缘栅极双极型晶体管(IGBT 可看作MOSFET和BJT的复合)为代表的复合型器件集驱动功率小,开关速度快,通态压降小,在流能力大于一身,性能优越使之成为现代电力电子技术的主导器件。为了使电力电子装置的结构紧凑,体积减小,常常把若干个电力电子器件及必要的辅助器件做成模块的形式,后来又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC)。目前PIC的功率都还较小但这代表了电力电子技术发展的一个重要方向 利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要

matlab在电路分析中的应用

《MATLAB语言》课程论文 MATLAB 在电路分析中的应用 姓名:李娜 学号: 专业:2010级通信工程 班级:(1)班 指导老师:汤全武 学院:物理电气信息学院 完成日期: MATLAB 在电路分析中的应用

(李娜2010级通信1班) [ 摘要] 本文将Matlab软件的模拟功能用于电路分析研究,以基本电路理论中典型的直流电阻电路和含有复数运算的正弦稳态电路的计算为例,详述了如何分别运用MATLAB语言编程的方法来对电路进行仿真分析和计算。结论表明,应用这两种方法可以是复杂电路的分析和计算变得非常快捷·方便,从而为电路分析提供了一个有效的辅助工具。 [ 关键词]MATLAB; 电路分析;模拟;正弦稳态;向量图 一、问题的提出 MATLAB 语言结构紧凑·语句精炼,指令表达式和数字表达式非常接近,仅需几条简单的语句,就可以完成一大串其他高级语言才能完成的任务,可大大节省编程时间,提高计算效率。 基本电路是电类专业非常重要的专业基本课,不仅为后继课程提供了深厚的理论基础,也为电路的分析计算提供了各种方法。其中,在电路分析理论中一般将关于时间的微分方程转化为复数方程求解,在一些电路比较复杂的 方程数量 · 多的情况下,都可以运用MATLAB程序来解决。运用该程序不仅可以节约时间, 电压和功率波形。还可以非常方便的调试电路参数,直观的观察电路中的电流 · 二、应用 1 典型直流电阻电路的分析计算 图1所示为典型的直流电阻电路,含有电压控制的受控电流源VCCS,其中,R1=1Ω,R2=2Ω,R3=3Ω,Us=10v,Is=15A,VCCS=,现需分析计算电流i1和电压u2

相关主题