搜档网
当前位置:搜档网 › 活性炭纤维及其在水处理中的应用

活性炭纤维及其在水处理中的应用

活性炭纤维及其在水处理中的应用
活性炭纤维及其在水处理中的应用

活性炭纤维及其在水处理中的应用活性炭纤维(ACF) 是继粉状活性炭( PAC) 和颗粒活性炭( GAC) 之后的第三代活性炭产品,是20世纪70 年代后期发展起来的一种高效活性吸附材料和环保工程材料。ACF 的前驱体是炭纤维,是由有机纤维原料经炭化、活化而成。根据生产中前驱体的不同,目前实现工业化生产的活性炭纤维产品主要分为粘胶基ACF、酚醛基ACF、聚丙烯腈基ACF、沥青基ACF等。由于前驱体的差异,不同的ACF 产品具有不同的功能。实际工作中应根据需要选取相应的ACF。

1、ACF的特点及性能

ACF有丰富的微孔结构和巨大的比表面积,它有多种形式的制成品, 与粉末状和颗粒状吸附材料相比,吸附和脱附速率更快,而且使用更灵活方便。另外, ACF在震动下不产生装填松动和过分密实的现象,克服了在操作过程中形成沟槽和沉降的问题。与AC相比, ACF的优势极其明显。首先, ACF的细孔结构不同于AC, ACF的微孔结构丰富且孔径分布集中(1-2nm), 微孔体积占总孔体积的90%左右, 没有过渡10 %左右; ACF的比表面积较大, 一般都在1000m2/g以上, 甚至可达3000m2 / g , 从而具有更大的吸附容量;ACF的微孔直接分布于纤维的表面,因而吸附质扩散的路径短、时间短,其吸附和再生的速率快,可在较温和条件下再; AC的细孔由大孔(控制扩散速率)、中孔和微孔组成,吸附质扩散要相继经过大孔、中孔和微孔,其扩散路径长、时间长,吸附和再生的速率慢, 因而ACF具有比AC大的吸附动力系数,吸附速

率较AC高2 -3个数量级, 再生容易且再生率高, 可重复使用上千次, 使用寿命达数年之久。其次, ACF的化学组成与AC有差别。不同原料或相同原料但不同方法制得的ACF, 其表面有不同的官能团,如胺基、亚胺基及磺酸基等,它们对某些吸附质具有特殊的吸附能力和氧化还原及催化特性。因为ACF具有电性能, 可利用ACF的导电性,将其作为电极,通过电杀菌作用解决细菌繁殖问题。

2、活性炭纤维在水处理中的应用

1)废水处理

ACF用于水的净化处理具有吸附容量大、吸附速度快、脱附速度快、灰分少、处理量大且使用时间长的优点。将ACF用于环保工程中, 其操作安全, 由于体积密度小和吸脱层薄, 不会造成蓄热和过热现象,也不易发生事故, 且节能和经济, 可用于大型上水、净水处理,不仅净化效率高, 而且处理量大,装置紧凑, 占地面积小, 设备投资小和效益高。ACF适用于各种有机废水的处理。可对含氯废水、制药厂废水、有机染料废水、造纸黑液、苯酚废水、四苯废水、己内酰胺废水、二甲基乙酰胺和异丁醇废水进行处理。其吸附能力比粉状活性炭的吸附能力高得多, 尤其适用于高平衡浓度时, 每克ACF的吸附量约为粉状活性炭的3倍。其吸附能力随温度升高而提高。

用剑麻基ACF 可有效去除水中的各种有机染料, 如亚甲基兰、结晶紫、铬兰黑R等,去除率高达100 %; 沥青基ACF可有效地吸附酸性染料, 如酸性蓝74、酸性橙10等, 也用于直接染料如直接蓝19、直

接黄50及碱性染料的碱性棕1、碱性青紫3等。在对ACF电极法电解处理造纸黑液的应用研究中发现, 在pH值7左右和电解80min的条件下, COD、色度去除率分别达64. 25%和94%。黑液经酸析及聚铝絮凝预处理后进行ACF电极电解,可进一步提高COD及色度去除率。采用“酸化+ 电解(45min) + Fenton 试剂(60min) ”的综合治理方案。上述去除率可分别达94. 2 %和99. 6 % ,出水近乎清澈透明。

对炼油废水的处理结果表明, 采用ACF三级吸附的COD达10000mg / L的废水,净化效率达86%以上。用150-350℃的空气及蒸汽混合脱附,ACF性能不变,静态吸附量大于0.5g/ g ACF ; 对高浓度和成分复杂的页岩油干馏废水的处理后COD可低于2000mg/L; 对十三吗啉农药废水的处理, 采用二级ACF吸附, 出水COD低于150mg/L ,去除率达94 % , 饱和后采用5%浓度的酸性无机脱附剂处理,吸附性能可完全恢复; 对含PCB3废水的处理,经单级ACF吸附过的含PCB3 10- 27μg/ L的废水,出水达到国家排放标准,单柱稳定运行周期70-80天,吸附容量7g/ kg ACF。

2)废水中有用物质回收

ACF的微孔结构与表面特殊的官能团有吸附选择性,可以吸附工业废水中的有机化工原料、金属离子等有用成分。通过脱附回收,可实现环境效益与经济效益双赢。吉林化学工业公司某晒黑T染料厂的生产废水CODcr达3000-4000mg/L, 经ACF处理, 去除率达95%, 出水CODcr低于150mg/ L, 达到工业污水综合排放一级标准。吸附饱和的

ACF经碱脱附剂处理后可以再生,脱附液经酸处理可回收有用物质,

具有一定的经济效益。用ACF处理十三吗啉农药废水, CODcr可由2500mg/L降至150mg/L以下, 去除率达94%。吸附饱和的ACF 用酸性无机脱附剂处理,脱附液再用氢氧化钠溶液中和处理,可回收部分有机物,ACF的使用寿命可达2. 5a 左右。

ACF 对金属离子具有较好的吸附还原性能,可吸附水中的银、铂、汞、铁等多种离子并能够将其还原。研究发现,在碱性条件下, ACF对Pt(Ⅳ)有很好的还原吸附性能,吸附容量达500mg/ g。在剑麻基ACF对Ag + 吸附的研究中发现,剑麻基ACF 对Ag+有较好的还原吸附性能(吸附容量为8315mg/g), 经磷酸活化和热处理, 可使其吸附容量增大近一倍, 达163. 2 mg/ g。用经无机氧化剂改性的ACF吸附Ag + ,发现改性的ACF在碱性条件下对Ag+的还原吸附容量大大提高, 达550mg/ g。大多数情况下, 其还原反应可以大大促进对这些金属离子的吸附。用含有ZnO的ACF对Ag + 的还原吸附研究, 其结果表明: ZnO并不吸附Ag + ,但参与氧化还原反应, 中和ACF氧化还原吸附Ag+所释放的

H+ ,提高了ACF对Ag +的还原能力,还原吸附的Ag可生成大的银片,经加药振荡就可从纤维表面脱离。目前, ACF对金属尤其是贵金属的吸附研究很多。

3)废水深度处理

工业废水经生物处理、物理化学处理后,仍达不到工业废水排放标准时, 可用ACF进行深度处理。吉林化学工业公司某车间废水经混

凝2澄清2过滤处理后, 其CODcr仍高达5000-8000mg/L, 经ACF吸附

处理后, 出水CODcr低于1000mg/L, 达到废水排放标准。抚顺石油二厂二次生化砂滤出水采用ACF净化处理, 对浊度、挥发酚的去除率均达到100% , CODcr的去除率为88.2%、油为98.4%、铁离子为88.6%、硫化物为83.6%,对SiO2、CO2、碱化度、总硬度、总磷酸盐、Mg2+、Ca2+均有一定的净化效果。对失效的ACF 采用过热水蒸汽进行再生,效果很好,吸附容量基本不变。

4)水质净化

ACF对水质净化有特殊功能,例如,对水质浑浊有明显的澄清作用,可以除去水中的异臭、异味;对水中含高铁、高锰等无机物净化效果明显;对氰、氯、氟、酚等有机化合物去除率达90 %以上。由于地下水和地表水的污染,水中各种有机物和大肠杆菌严重超标,目前最常用的消毒杀菌方法是用液氯处理,而残氯与水中有机物反应产生消毒副产物,如卤代烃等三致(致癌、致崎、致突变) 物质( THM)。

ACF由于含有丰富的微孔结构和巨大的比表面积,能吸附水中有

害物质。东京大学利用改性ACF (中孔丰富)对地表水源进行处理,对THM 潜在物的去除率达80%, TOC的去除率大于50% ,吸附饱和的ACF可以利用碱性物质再生。

随着人们生活水平的提高,对净化饮用水的要求也日益提高。目前ACF已广泛用于净水器中,特别是载银ACF, 可有效地杀灭水中的微生物,抑制微生物在ACF表面的繁殖, 具有吸附和灭菌的双重功能,

对大肠杆菌去除率高达98%。中山大学陈水挟等研究发现:载银ACF 对大肠杆菌和金黄色葡萄球菌均有很强的杀灭能力,经其处理后,水中的大肠杆菌和金黄色葡萄球菌被完全杀灭。载银磷酸活化剑麻基ACF 效果较其它原料基的ACF 效果更好,具有银用量少、作用时间短、抗菌效率高、抗菌效果持久等优点。

3 存在的主要问题及解决方法

1)存在的问题

影响炭材料吸附的主要因素是孔隙结构和化学结构。孔隙结构是指孔隙容积、孔径分布、表面积和孔的形状。吸附质分子尺寸与ACF 细孔直径的关系决定着对吸附质的吸附效果: 当分子尺寸大于细孔

直径时, 因筛分作用, 吸附质无法进人孔内, 故不能吸附; 当分子尺寸约等于细孔直径时,吸附剂的捕捉力非常强,适用于极低浓度下的吸附; 当分子尺寸远小于细孔直径时, 吸附质容易发生脱附, 脱附速率很快, 在低浓度下的吸附量小。一般认为孔隙半径比吸附质分子大1.7-3倍时, 吸附效果最好, 如果需要再生,则要大3-6倍或更高。因此, ACF在水处理应用中存在的主要问题是:因其细孔直径多集中在微孔段, 水中的大分子物质的吸附量很小。饮用水净化工艺现场对比试验表明: 尽管ACF有巨大的比表面积, 但由于其微孔孔径太小, 水中大部分有机物很难进入它的有效吸附面积。ACF对小分子苯酚的吸附效果较好,但对大分子腐殖质几乎没有吸附效果。

2)解决方法

基于ACF微孔结构不能吸附水中的大分子物质, 可采用中孔ACF 或组成新的联合工艺来解决其在水处理应用中的不足。如a.采用中孔ACF。山西煤炭化学所研究了中孔ACF对VB2的吸附。研究表明:用炭黑改性聚丙烯腈原丝所制的中孔ACF, 对VB2具有较大的吸附容量, 随着ACF中孔含量的增大, 对VB2的吸附量增加。东京大学利用中孔ACF对地表水源进行了处理, 净化效果很好。b.组成联合工艺。

根据ACF的结构特点和物化特性及水处理后的水质要求,可将ACF与其它工艺组合, 以达到更好的去除效果。法国Brasquet等用超滤膜工艺和ACF组合,试验原水先经过超滤膜去除腐殖质, 然后用ACF吸附其中的苯酚,其穿透曲线与用ACF对纯的苯酚溶液吸附时相近。超滤用于去除大于10倍溶剂分子的颗粒, 对水溶液而言,即滤除了分子尺寸大于2.5 nm(水分子为0. 28nm) 的颗粒,与ACF的微孔尺寸分布一致,超滤与ACF 组合能对微量污染物有很好的去除效果。

4 结论与展望

ACF有时须与其它技术复合,才能发挥出极佳的处理效果。例如: ACF与臭氧氧化和生化处理技术复合, 可利用臭氧的卓越氧化能力

将较大分子的污染物降解为小分子的有机物,然后再吸附在ACF上,

最后利用ACF上的微生物彻底降解污染物;活性炭纤维电极电解法则是充分利用了ACF优异的吸附性能和电化学氧化作用; 另外, 在ACF 上负载光催化剂或将吸附和光催化氧化完美的结合起来,也解决了

ACF的再生问题。目前ACF较高的生产成本在一定程度上限制了ACF 在我国的广泛应用。相信随着ACF制造工艺的不断改进,特别是当民用大丝束生产ACF技术的成熟, 必将进一步降低生产成本。这样也会推动ACF更广泛的应用, 使ACF水处理中发挥越来越大的作用。

活性碳纤维的特性

活性碳纤维的特性 1) 吸附量大 活性碳纤维对有机气体及恶臭物质(如正丁基硫醇等)的吸附量比粒状活性炭( GAC )大几倍至十几倍。对无机气体也有较好的吸附能力。对水溶液中的无机物、染料、有机物及贵金属的吸附量比 GAC 高 5 — 6 倍。对微生物及细菌也有很好的吸附能力(如对大肠杆菌的吸附率可达 94 — 99% )。对低浓度吸附质的吸附能力特别优良。如对于吸附质的浓度在几 ppm 级时仍可保持很好的吸附量,而 GAC 等吸附材料往往在几十ppm浓度时才有良好的吸附能力。 2) 吸附速度快 对于从气相中吸附气态污染物的吸附速度非常快,对液体的吸附也可很快达到吸附平衡,其吸附速率比 GAC 高数十倍至数百倍。 3) 再生容易,脱附速度快 在多次吸附和脱附过程中,仍能保持原有的吸附性能。如用 120-150 ℃蒸汽或热空气再生处理 ACF 10-30 分钟即可达到完全脱附。 4) 耐热性好 在惰性气体中可耐高温 1000 ℃以上,在空气中的着火点高达 500 ℃以上。 5) 耐酸、耐碱,具有较好的导电性能和化学稳定性。 6) 灰份少。 7) 成型性好,易加工成毡、丝、布、纸等形态。 活性碳纤维的介绍 一般传统上所使用的活性炭可分为粉末状活性炭(AC)和颗粒状活性炭(GAC),上世纪六十年美、日、俄等国家相继研发出第三种形态的活性炭称为活性碳纤维( Activated Carbon Fibers, /ACF )。国内在七十年代末八十年初, 也研发出活性碳纤维。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料颗粒状活性炭相比,ACF具有以下显著的的特点:(一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近

活性炭纤维

活性炭纤维是一种新型、高效、多功能吸附材料,产品为黑色、毡状织物,具有比表面积大,孔径分布窄,在液相、气相中对有机物和阴、阳离子吸附效率高,吸、脱附速度快,可再生循环使用,同时耐酸、碱,耐高温,适应性强,且可加工成任何形状,该产品在防止环境污染、食品加工、医疗卫生、劳动保护及国防等领域,具有广泛的应用前景,如饮用水净化、工业污水处理、空气净化、脱臭、防毒、液体脱色、溶剂回收等。 二.活性炭纤维毡(布)系列主要指标: 比表面积(m2/g):700-1500 碘吸附(mg/g):700-1500 苯吸附(%):25-50 亚甲蓝脱色(mg/g):100-200 其它数据 原料:聚丙稀晴基,粘胶基,复合型 规格: 长度:0.5-30m 宽度:0.6-1.2m 厚度:1-5mm 包装:10KG/纸箱 体积:1200mm 活性炭纤维毡(ACF FELT) 活性炭纤维毡采用天然纤维或人造纤维无纺毡经炭化、活化等系列工艺制成。性能:极大的比表面积:900-220m2/g,吸附容量大。微孔直径:5-100A。,吸附速度快,是颗粒活性碳的10-100倍。脱附方便,且脱附以后活性炭纤维吸附能力基本不变。良好的导电性,耐酸、碱,成型性好。用途:溶剂回收,空气净化,水净化防毒、防化,医用,除味,除臭,耐高温及保温电极材料。 粘胶基活性炭纤维毡是以粘胶纤维毡为原料制得的活性炭纤维,用途①溶剂回收:对苯类、酮类、酯类、石油类均能吸附回收; ②空气净化:能吸附过滤空气中的恶臭、体臭、烟气、毒气、O3、SO2等。 ③水净化:能去除水中的重金属离子、致癌物质、臭味、霉味、细菌及脱色等;可用于自来水、食品工业用水及工业用纯水等处理;

活性炭在水处理中的特点、性质及应用

活性炭在水处理中的特点、性质及应用 活性碳主要依靠其高吸附能力的特性,有效去除水中的氯、异色、异味、重金属等。带活性碳的水过滤器,是美国销售最广的净水装置。活性碳是以椰子壳为原料,颗粒均匀。表面具有大量微孔,形成巨大的比表面积(1克活性碳能吸附微尘的面积相当于2亩地大小),活性碳主要依靠其高吸附能力的特性,吸附水中的氯、异色、异味等,也有以杏核壳等为原料的果壳碳和以煤为原料的煤质碳,吸附性能较椰壳碳差,价格也便宜很多。 任何表面都有自发降低表面能的倾向,由于固体表面难于收缩,所以只能靠降低界面张力的办法来降低界面张力的方法来降低表面能,这也就是固体表面能产生吸附作用的根本原因。由于活性炭具有发达的孔隙结构和巨大的比表面积,对水中溶解的有机物,如苯类化合物、酚类化合物、石油及石油产品等具有较强的吸附能力,而且对用生物法及其他方法难以去除的有机物,如色度、异臭、表面活性物质、除草剂、合成染料、胺类化合物以及许多人工合成的有机化合物都有较好的去除效果,因此活性炭吸附技术在水处理中已得到广泛应用。 活性炭的特点 活性炭是一种多孔性含炭物质,具有发达的微孔构造合巨大的比表面积。它包括许多种具有吸附能力的碳基物质,能够将许多化学物质吸附在其表面上。活性炭最初用于制糖业,后来广泛用于去除污水中的有机物合某些无机物。 活性炭的性质 活性炭外观为暗黑色,具有良好吸附性能,化学性质稳定,可耐强酸及强碱,能经受水浸、高温,密度比水小,是多孔的疏水性吸附剂。 活性炭的作用 活性炭产生吸附的主要原因是固体表面上的原子力场不饱和,有表面能,因而可以吸附某些分子以降低表面能。固体从溶液中吸附溶质分子后,溶液的浓度将降低,而被吸附的分子将在固体表面上浓聚。活性炭在制造过程中,其挥发性有机物被去除,晶格间生成了空隙,形成许多不同形状、不同大小的细孔。通常活性炭颗粒中的孔隙占颗粒总体积的70%~80%。这些孔隙形状多样,孔径分布范围很广,细孔壁的总表面积即比表面积一般高达500~1700平方米/克。这就是为什么活性炭吸附能力强、吸附容量大的主要原因。 活性炭的吸附特性不仅与细孔构造和分布情况有关,而且还与活性炭的表面化学性质有关。活性炭本身是非极性的,其含量及电荷随原料组成、活化条件不同而异,低温活化(< 500℃)的碳可以生成表面酸性氧化物,水解后可以放出H+。

活性碳纤维试验报告

活性碳纤维用于液体脱色试验报告小试的各方面情况至关重要,请务必准确、清楚地将小试的真实情况体现在本报告中! 试验单位:阜宁县安勤化学有限公司 试验人员:崇恩俊试验日期: 2018 年 11 月 5 日 一、试验原理和目的 脱色是纯化工业料液常见的单元过程,以往多采用粉末活性碳作为脱色吸附剂。 活性碳纤维的特殊结构决定了其比表面积远大于粉末活性碳的比表面积,因此,活性碳纤维对液体中的分子型发色基团和助色基团的吸附速度和吸附量均远大于粉末活性碳;并且由于活性碳纤维具有极快的解吸再生速度,使其能多次重复使用。 我公司研制开发的新型活性碳纤维除具有上述活性碳纤维的普遍特点外,是目前唯一活性碳含量达到99%的活性碳纤维,从而避免了其与液体接触发生溶出而造成液体污染。将其代替粉末活性碳用于液体脱色,能实现经济上和环境上的效益,并改善液体脱色的操作环境。 本试验目的在于对比活性碳纤维与粉末活性碳用于特定料液吸附脱色的实际效果,筛选出用于该特定料液脱色最适宜的活性碳纤维。 二、常规试验方法 1、试验用料液准备 取800ml待脱色料液(原液),分为均等的8份,分放于8个容器中,每份100ml。分别编号为0、1、2、3、4、5、6、7。其中0号原液不进行脱色试验。 2、对照号 将7号容器中的料液,按生产投料配比加入粉末活性碳,模拟生产过程进行脱色试验,然后将脱色后的混合物通过滤纸用布氏漏斗抽滤,滤纸上截留废碳,滤出澄清的料液。 3、试验号 (1)对待脱色料液的预处理 若料液中有不溶物,必须预先过滤除去! (2)对活性碳纤维的预处理 用镊子夹住裁剪好的活性碳纤维,在沸水中晃动20秒,以洗脱保护剂!

锅炉水处理加药

锅炉水处理:锅内加药处理 发布日期:2010-10-26 来源:大禹网 全挥发性处理(AVT)是一种不向锅内添加磷酸盐等药剂,只在给水中添加氨和联氨的处理方法。这种方法可以减少热力系统金属材料的腐蚀,减少给水中携带腐蚀产物,从而减少锅内沉积物,且因不加磷酸盐而不会发生磷酸盐“隐藏”现象。该方法可用于给水纯度高的超高参数汽包锅炉和直流锅炉。 第一节锅内加药处理概述 一、概况 (一) 水汽循环及水质要求 热力系统由锅炉、汽轮机及附属设备构成。热力系统的热交换部件和水、汽流经的设备、管道、一般称为热力设备。经处理的水进入锅炉后,吸收热量变成蒸汽,进入汽轮机,蒸汽的热能转变为机械能,推动汽轮机高速运转,做功后的蒸汽被冷凝成凝结水,凝结水经加热器、除氧器等设备,再进入锅炉,如此反复循环做功。在热力系统中,水和蒸汽是作为循环运行的工质。在循环过程中,水和蒸汽会有各种损失,如热力系统中某些设备的排汽、防水,水箱的溢流,管道阀门的漏水、漏汽等。 补给水的水量及水质,均应根据锅炉参数及水、汽损失来确定。对于凝汽式机组,一般补给水量不应超过机组锅炉蒸发量的2%~4%;对于供热式机组,应根据供汽量及回收量多少来确定,有的供热机组补给水量可达到锅炉蒸发量的50%或更高。补给水的质量要求,应根据机组参数要求,确定采用相应的水处理方式。 送入锅炉的给水,可由汽轮机蒸汽的凝结水。补给水、供热用汽的返回水组成。各部分水量由生产实际情况确定。对于供汽、供热量少的机组,或凝汽式机组,给水以凝结水为主;对于工业锅炉,一般供汽、供热量较大,当返回水少时,给水主要为补给水。 (二) 水汽系统中杂质的来源

热力设备水汽循环中,作为工质的水和蒸汽中会有一定的杂质混入,这些杂志随水、汽进入锅炉、汽轮机等热力设备,沿水、气流程随压力、温度的变化,其物理、化学性能也发生变化:水受热由液相水变为气相蒸汽。水中杂质在不同温度、压力下,发生一些物理、化学反应,有的析出成固体,或附着于受热表面,或悬浮、沉积在水中,有的随蒸汽进入汽轮机。给水带入锅内的杂质,在锅内发生物理、化学变化是引起热力设备结构、结盐和腐蚀的根源。这些杂志的主要来源有以下五个方面。 1. 补给水带入的杂质 经过滤、软化或离子交换除盐处理的补给水,除去了大部分悬浮杂质、硬度和盐类。不同处理系统出水水质控制指标不同。在水处理设备正常运行的情况下,出水仍残留着一定的杂质;当水处理设备有缺陷或运行操作不当时,处理水中的杂质还会增加。这些杂志随补给水进入热力系统。 2. 凝结水带入的杂质 做功后的蒸汽,在凝汽其中被冷却水冷凝成凝结水。当凝汽器中存在不严密处时,冷却水就会泄露进凝结水中。冷却水一般为不处理或部分处理的原水,水中各种杂质含量较高。凝汽器正常运行时,其渗漏率为0.01%~0.05%或更低。凝汽器的不严密处,一般在管子与管板的连接部位,当管子出现破裂、穿孔、断损时,冷却水会较多地漏入凝结水中。。由于冷却水含盐量较大,即使有少量泄漏,凝结水的含盐量也会迅速增加。例如,冷却水含盐量为500mg/L,泄漏率为0.2%时,凝结水中的含盐量就会增加1mg/L,使凝结水和给水的水质明显恶化。冷却水泄露对凝结水的污染,是杂质进入热力系统的主要途径之一。 3. 金属腐蚀产物被水流带入锅内 锅炉、管道、水箱、热交换器等热力设备,在机组运行、启动、停运中,都会产生一些腐蚀,其腐蚀产物多为铁和铜的氧化物,这些腐蚀产物是进入锅内的又一类杂质来源。

活性炭纤维研究与应用进展_程祥珍

第21卷 第2期V ol 121 N o 12 材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第82期Apr.2003 文章编号:10042793X (2003)022******* 收稿日期:2002208211;修订日期:2002210223 作者简介:程祥珍(1977-),女,国防科技大学航天与材料工程学院博士生,现从事高性能S iC 纤维研究. 活性炭纤维研究与应用进展 程祥珍,肖加余,谢征芳,宋永才 (国防科技大学航天与材料工程学院CFC 重点实验室,湖南长沙 410073) 【摘 要】 活性炭纤维(ACF )是由有机纤维先驱体制得的一种理想的高效吸附材料。ACF 以其特殊的表面 化学结构和物理吸附特性广泛应用于环境保护、电子工业、化工、医疗卫生、低成本S iC 纤维制备等领域。本文就ACF 的结构与吸附特性、制备与应用等做了较系统的综述,并对其发展趋势做出了展望。 【关键词】 活性炭纤维;制备;结构;吸附特性;应用中图分类号:T Q342+174 文献标识码:A R esearch and Application Progress of Activated C arbon Fiber CHENG Xiang 2zhen ,XIAO Jia 2yu ,XIE Zheng 2fang ,SONG Yong 2cai (College of Aerosp ace &Materials E ngineering ,N ational U niversity of Defense T echnology ,Ch angsh a 410073,China) 【Abstract 】 As high effective ideal ads orbents ,activated carbon fibers (ACF )are prepared from the precurs ors of s ome organic fibers.Due to the special sur face structure and ads orption properties ,ACF are widely used in the fields such as environmental protection ,electronic industry ,medical treatment ,chemical engineering ,and low 2cost S iC fiber.The microstructures ,ads orption properties ,preparation methods ,and applications of activated carbon fibers are briefly reviewed.Meanwhile ,the next research objective is prospected. 【K ey w ords 】 activated carbon fiber ;preparation ;structure ;ads orption properties ;application 1 前 言 活性炭纤维(Activated Carbon Fiber ,ACF )作为一种理想的高效吸附材料,是在碳纤维技术和活性炭技术相结合的基础上发展起来的,是继粉状和粒状活性炭(G ranular Activated Carbon ,G AC )之后的第三代活性炭产品[1~4] ,并以 其特殊的表面化学结构和物理吸附特性广泛应用于环保、电子、医用卫生、化工等领域。 1962年,美国专利首次涉及到ACF 技术,Abbott 以粘胶 纤维为原料,进行炭化和活化等处理后成功地制成了ACF ;同年,日本进藤以特种聚丙烯腈为原料,制得PAN 基ACF ; 1972年,Arons 和Macnair 以酚醛为原料制得ACF ;1975年, 东洋纺织公司制成高性能粘胶基ACF 和再生ACF ;1983年,日本炭素公司和尤尼吉卡公司开发生产沥青基ACF ; 1977年,商品粘胶(纤维素)基ACF 问世,其后聚丙烯腈 (PAN )基、酚醛基、沥青基相继实现工业化生产;日本、美 国、俄罗斯、英国,特别日本是研究和使用ACF 的大国,年产量近千吨[4,5]。 20世纪80年代,我国上海纺织科学研究院、中国纺织 大学、中山大学和中国科学院山西煤炭化学研究所、复旦大 学、天津工业大学、天津大学、吉林工学院等单位也开展了 ACF 的研究工作。90年代以来,我国在ACF 的研究和生产 方面也取得了很大进步,ACF 的生产能力已达数百吨[4~6]。如1995年鞍山东亚碳纤维有限公司建成年产45吨的沥青基Carboflex ACF 生产线[5]。此外,秦皇岛紫川炭纤维有限公司是国内生产粘胶基ACF 及其制品的规模较大的专业化企业之一。 2 ACF 的制备 作为ACF 先驱体的有机纤维主要有粘胶基、聚丙烯腈 (PAN )基、酚醛基、沥青基、聚乙烯醇(PVA )基、苯乙烯Π烯烃共聚基和木质素纤维等,其中前四种均已实现工业化[1~6]。不同原料生产的ACF 的主要优缺点如表1所示[1,2]。 以PAN 基ACF 及其制品为例,其制备工艺如图1所示[2~4]。 预处理主要有盐浸渍和预氧化两种方式[2,4]。盐浸渍是将原料纤维充分浸渍在盐(磷酸盐、碳酸盐、硫酸盐等)溶液中,然后使其干燥。该法用在粘胶基ACF 生产中,与直

活性炭纤维及其在水处理中的应用

活性炭纤维及其在水处理中的应用活性炭纤维(ACF) 是继粉状活性炭( PAC) 和颗粒活性炭( GAC) 之后的第三代活性炭产品,是20世纪70 年代后期发展起来的一种高效活性吸附材料和环保工程材料。ACF 的前驱体是炭纤维,是由有机纤维原料经炭化、活化而成。根据生产中前驱体的不同,目前实现工业化生产的活性炭纤维产品主要分为粘胶基ACF、酚醛基ACF、聚丙烯腈基ACF、沥青基ACF等。由于前驱体的差异,不同的ACF 产品具有不同的功能。实际工作中应根据需要选取相应的ACF。 1、ACF的特点及性能 ACF有丰富的微孔结构和巨大的比表面积,它有多种形式的制成品, 与粉末状和颗粒状吸附材料相比,吸附和脱附速率更快,而且使用更灵活方便。另外, ACF在震动下不产生装填松动和过分密实的现象,克服了在操作过程中形成沟槽和沉降的问题。与AC相比, ACF的优势极其明显。首先, ACF的细孔结构不同于AC, ACF的微孔结构丰富且孔径分布集中(1-2nm), 微孔体积占总孔体积的90%左右, 没有过渡10 %左右; ACF的比表面积较大, 一般都在1000m2/g以上, 甚至可达3000m2 / g , 从而具有更大的吸附容量;ACF的微孔直接分布于纤维的表面,因而吸附质扩散的路径短、时间短,其吸附和再生的速率快,可在较温和条件下再; AC的细孔由大孔(控制扩散速率)、中孔和微孔组成,吸附质扩散要相继经过大孔、中孔和微孔,其扩散路径长、时间长,吸附和再生的速率慢, 因而ACF具有比AC大的吸附动力系数,吸附速

率较AC高2 -3个数量级, 再生容易且再生率高, 可重复使用上千次, 使用寿命达数年之久。其次, ACF的化学组成与AC有差别。不同原料或相同原料但不同方法制得的ACF, 其表面有不同的官能团,如胺基、亚胺基及磺酸基等,它们对某些吸附质具有特殊的吸附能力和氧化还原及催化特性。因为ACF具有电性能, 可利用ACF的导电性,将其作为电极,通过电杀菌作用解决细菌繁殖问题。 2、活性炭纤维在水处理中的应用 1)废水处理 ACF用于水的净化处理具有吸附容量大、吸附速度快、脱附速度快、灰分少、处理量大且使用时间长的优点。将ACF用于环保工程中, 其操作安全, 由于体积密度小和吸脱层薄, 不会造成蓄热和过热现象,也不易发生事故, 且节能和经济, 可用于大型上水、净水处理,不仅净化效率高, 而且处理量大,装置紧凑, 占地面积小, 设备投资小和效益高。ACF适用于各种有机废水的处理。可对含氯废水、制药厂废水、有机染料废水、造纸黑液、苯酚废水、四苯废水、己内酰胺废水、二甲基乙酰胺和异丁醇废水进行处理。其吸附能力比粉状活性炭的吸附能力高得多, 尤其适用于高平衡浓度时, 每克ACF的吸附量约为粉状活性炭的3倍。其吸附能力随温度升高而提高。 用剑麻基ACF 可有效去除水中的各种有机染料, 如亚甲基兰、结晶紫、铬兰黑R等,去除率高达100 %; 沥青基ACF可有效地吸附酸性染料, 如酸性蓝74、酸性橙10等, 也用于直接染料如直接蓝19、直

利用活性碳纤维治理有机废气

利用活性碳纤维治理有机废气 1 背景 有机废气就是气态污染物的一部分,来自各个行业所排放的化工废气、含氟废气、气态碳氢化合物、恶臭气体等。机废气的治理方法有三种:第一种是催化燃烧法,它利用某种催化剂来分解或使有机废气燃烧后变成无害气体,不能回收;第二种是吸收法,以特定的某种化学液体来吸收有机废气,然后再进行分离,运行成本较高,回收效果不好,局限性比较大;第三种就是吸附法,它以活性炭物理吸附为主,应用范围最广,具有运行成本低及可回收物料的特点。 吸附法的关键是吸附剂和吸附工艺设备配置。该方法是将有机气体吸附到吸附剂上,然后再将其从吸附剂上脱离下来成为液体,收集并处理后即可重新回用于生产或出售。 2 材料 长期以来,人们一直以活性碳颗粒作为吸附剂来吸附这些化学有机物废气,但是由于活性碳颗粒的表面积较小,所以为了增大活性碳接触面积,就须大量填充,使得吸附装置体积庞大,而且时间一长,碳颗粒会变成粉末,影响吸附量,更有甚者,它需要经常更换,在更换时黑尘四起,严重污染工作场所。黑尘还会进入操作者呼吸道,危害人类健康。 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料—颗粒状活性炭相比,ACF具有以下显著的的特点: (一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近百倍,所以需要填充的活性碳纤维的重量非常小,然而吸附效率却非常高,根据所处理废气的有机气体含量和其它物理特性的不同,吸附效率在85%至98%之间,多级吸附工艺可以达到99.99%,远远高于活性碳颗粒吸附法的最高吸附率88%,而且体积及总重量也都很小。 (二)、吸附﹑脱附行程短,速度快;脱附﹑再生耗能低。ACF对有机气体吸附量比颗粒状活性炭(GAC)大几倍至几十倍,对无机气体也有很好的吸附能力,并能保持较高的吸附脱附速度和较长的使用寿命。如用水蒸气加热6-10分钟,即可完全脱附,耐热性能好,在惰性气体中耐高温1000℃以上,在空气中着火点达500℃以上。 (三)、形状可变,使用方便。由于活性碳纤维可以做成毡式,所以更换起来非常方便,不

活性炭纤维的制备及在核生化防护服中的应用

国防技术基础 2008年5月 第5期 活性炭纤维的制备及在核生化防护服中的应用  摘 要:介绍了活性炭纤维的孔隙分布、特性、制备方法及活性炭纤维在核生化防护服上的应用;介绍了国内核生化防护服用活性炭纤维复合织物的研究进展。 关键词:活性炭纤维 核生化 防护服 复合织物 刘恩文 (总装备部防化军事代表局驻宜昌地区军事代表室) 活性炭纤维(Activated Carbon Fiber,ACF)是指炭纤维(Carbon Fiber,CF)及可炭化纤维(Carbonizable Fiber)经过物理活化、化学活化或两者兼有的活化反应所制得的具有丰富和发达孔隙结构的功能性炭纤维。基于ACF比一般活性炭(ActivatedCarbon,AC)有着更为优越的孔隙结构和形态,可用作功能材料,在国防、环境保护、化工、卫生、电子、电化学等领域得以广泛应用。 1.活性炭纤维的孔隙结构、分布及其特性活性炭和活性炭纤维均属多孔碳材料,活性炭纤维与粒状活性炭(GAC)的孔隙结构和细孔直径分布见图1,从图中可以看出,ACF的孔型开口在其表面,孔形为狭缝形,其细孔直径为单峰型分布;GAC的孔型为树枝状,有大孔、中孔和微孔,分布较宽,细孔直径为多峰型分布。两者结构不同,使其在吸、脱附速度及吸附量有很大差异;与活性炭比较具有以下特点[1] : (1)单丝直径细,约8~20μm,活性炭为1~3mm,表面积大,约比粒状活性炭大两位数,吸附面积大; (2)有效吸附孔分布窄,属于单分散型,活性炭属于多分散型孔分布; (3)没有或很少有大孔,且为径向开孔扩散阻力小,吸附、脱附的行程短,吸、脱附速度快 (约为活性炭的10~100倍) ; (4)外表面积(0.2~2.0m2/g),较活性炭(0.001m2/g)大得多,吸附位多,吸附容量大; (5)体密度小,漏损小,处理速度快,可实现设备小型化、高效化和自动化; (6)杂质少,纯度高,不会污染吸附的气体或液体; (7)强度高,粉尘少,不会造成二次污染;(8)形态多,后加工性好,适应性强,有纤维、布、毡、纸以及蜂窝状、波纹状和各种定型制品; (9)易再生,失活少,使用寿命长;(10)导电,导热,蓄热量小,操作、维修方便,使用安全。 图 1 活性炭纤维与粒状活性炭的细孔直径分布

活性碳纤维的制备及性能研究

第23卷 第4期2000年8月 鞍山钢铁学院学报 Journal of Anshan Institute of I.&S.Technology Vol.23No.4 Aug.2000活性碳纤维的制备及性能研究 高首山1,孙家军1,刘文川2 (1.鞍山钢铁学院数理系,辽宁鞍山 114002;2.中国科学院金属研究所,辽宁沈阳 110015) 摘 要:系统地研究了活性碳纤维的KOH活化法与水蒸气活化法,比较了两种活化方法的 活化条件,测量了比表面积,用碘值、苯值测定了活性碳纤维的吸附性能、脱附性能,用循环吸 附、脱附方法研究了活性碳纤维的再生能力,并与颗粒状活性碳进行了比较.结果显示KOH 活化的活性碳纤维无论从比表面积、微孔结构,还是在吸附、脱附性能上,都优于水蒸汽活化 的活性碳纤维. 关键词:活性碳纤维;活化;吸附;脱附;再生 中图分类号:TQ342 86 文献标识码:A 文章编号:1000 1654(2000)04 0249 05 吸附与分离技术是环境保护工程中的一项有效措施,应用各种吸附剂,把各种工业废水和废气中的有毒物质吸收出来(可以重新利用),使排放的气体和液体符合环保的标准.吸附与分离技术的关键在于吸附剂,常用的吸附剂有活性炭、硅胶、酸性白土和沸石分子筛等.但是,这些材料不仅吸附能力低,而且操作性能和再生能力差.因此,寻找更为优良的吸附材料,一直成为各国专家学者们关注的课题[1]. 活性碳纤维(Activated Carbon Fiber,AC F)是多孔碳家族中具有独特性能的一员,具有比表面积大,微孔丰富,孔径分布窄,吸附、脱附速度快,重量轻,容易再生等优点[2]. 活性碳纤维的前躯体为碳纤维或各类预氧化纤维,其主要成分为碳材料.常用的活性碳纤维制备即活化方法按活化剂的不同,分为气体活化法和化学试剂活化法两种.气体活化法以水蒸汽、二氧化碳或微量空气为氧化介质,使碳材料中无序碳部分氧化刻蚀成孔,这种方法使用的比较多,研究的也较为清楚[3];化学试剂活化法用化学药剂浸泡碳材料,在加热活化过程中,使其中的碳元素以一氧化碳、二氧化碳等小分子形式逸出,常用的化学药剂有ZnCl2,KOH等,由于这种方法产生的活性碳纤维性能不稳定[2],所以较少使用.本文对化学试剂活化法进行了系统的研究,用这种方法制出了性能优异的活性碳纤维,与气体活化制备的样品进行了比较. 1 活化工艺与样品制备 传统的化学试剂活化法是用KOH水溶液浸泡前躯体纤维,捞出烘干后,置于活化炉中,在氮气保护下升温加热,由于纤维中含有氢、氧等成分,反应激烈,不易控制,所以制得的样品性能不稳定. 本文采用的方法为先把前躯体聚丙烯晴基(PAN)纤维放入加热炉中隔绝空气加热碳化,使其中的氢、氧、氮等成分脱离逸出,制成碳纤维,然后把制得的碳纤维置于10%-40%的KOH水溶液中浸泡12 h,取出后,烘干称重,置于活化炉恒温区内,以5-20 /min的升温速度在氮气保护下升温至预定温度(700-850 ),恒温一定时间(20-60min)后,在氮气保护下降温取出后称重,反复水洗烘干,再称重,计算纤维收率,测量比表面积. 同时,用水蒸汽活化制得一定量的活性碳纤维样品,以便于比较.具体操作方法为:把PAN基碳纤 收稿日期:1999-11-14. 作者简介:高首山(1968-),男,辽宁朝阳人,讲师.

工业锅炉水处理技术10

只要测出Cl-的含量就可直接指导锅炉的排污。 3.电导率(DD) 衡量水中含盐量的大小,最方便和快捷的方法是测定水中的电导率。电导率为电阻率的倒数,是表示水的导电能力的一项指标,可用电导仪测定,单位为西[门子]/厘米(S/cm)或微西[门子]/厘米(μS/cm)。因为水中溶解的盐类大都是强电介质,它们在水中几乎都电离成了能够导电的离子,离子浓度越高,电导率越大,所以水的电导率可反映出含盐量的多少。 电导率的大小除了与水中离子量有关外,还和离子的种类有关。因为不同的离子其导电能力不同,其中H+的导电能力最大,OH-次之,其它离子的导电能力与其离子半径及所带电荷数等因素有关。例如,有三个含盐量相等的溶液,它们分别呈酸性、碱性和中性,则酸性溶液的电导率最大,碱性溶液的次之,中性溶液的电导率则要小得多。如果用碱将酸性溶液中和至中性,则溶液的含盐量增加而电导率反而会降低,因此单凭电导率不能计算水中含盐量。但当水中各种离子的相对含量一定时,则电导率随着离子总浓度的增加而增大。所以,在水中杂质离子的组成比相对稳定的情况下,可根据试验求得这种水的电导率与含盐量的关系,将测得的电导率换算成含盐量。 另外,电导率的测定不但方便、快捷,有利于自动化控制,而且测定范围广,尤其可适用于微量离子的测定。因此,电站锅炉水汽质量分析中常以电导率来衡量水、汽的纯净程度。 (三)硬度(YD) 硬度是表示水中高价金属离子的总浓度。在天然水中,形成硬度的物质主要是钙、镁离子,其它高价金属离子很少,所以通常硬度就是指水中钙、镁离子(Ca2+、Mg2+)的含量,它是衡量锅炉给水水质好坏的一项重要技术指标。 总硬度包括钙盐和镁盐两大部分。钙盐即钙硬度,包括:碳酸氢钙、碳酸钙、硫酸钙、氯化钙等;镁盐也即镁硬度,包括:碳酸氢镁、碳酸镁、硫酸镁、氯化镁等。硬度还可按所组成的阴离子种类分为碳酸盐硬度和非碳酸盐硬度两大类。 1.碳酸盐硬度(YDT) 是指水中钙、镁的碳酸氢盐和碳酸盐的含量。天然水中碳酸根(CO32-)很少,故天然水的碳酸盐硬度主要是指钙、镁的碳酸氢盐含量。由于碳酸盐硬度在高温水中会发生下列分解反应而析出沉淀,所以碳酸盐硬度也称为暂时硬度。 2.非碳酸盐硬度(YDF) 是指水中钙、镁的硫酸盐、氯化物、硝酸盐等含量。由于这类硬度即使是在水沸腾时也不会因分解析出沉淀,所以对应地被称为永久硬度。 另外,当天然水中钙镁总含量大于碳酸氢根(HCO3-)时,水的硬度由碳酸盐硬度和非碳酸盐硬度组成;当天然水中钙镁总含量小于HCO3-时,水中将只含碳酸盐硬度,不含非碳酸盐

工业锅炉水处理技术探讨

工业锅炉水处理技术探讨 p这里把几种针对锅炉水处理比较经济、简单、实用的几种方法予以介绍。 2.1 含悬浮和胶体颗粒的水处理 要除去水中的悬浮物和胶体物质通常采用混凝、沉淀、过滤工艺进行水的预处理。水中胶体状态颗粒,其颗粒一般为10-6~10-4mm。由于颗粒太小,又受到分子运动的冲击,作无规则的高速运动,使这些微小颗粒能均匀地扩散在水中,长期下沉。混凝是通过向水中投加混凝剂使水中胶体微粒结成大颗粒的过程。常用的混凝剂有铝盐和铁盐两大类。如混凝速度低还得加适量的助凝剂,混凝后经沉淀池沉淀,再经机械过滤器,这样清理悬浮物和胶体工作就完成了。 2.2 含铁锅炉水的预处理 用空气中的氧气对地下水中Fe2+进行氧化处理是最比较经济的方法。此法是将水充分与空气接触,空气中的氧气便迅速溶于水中,这个过程成为水曝气。装置为莲蓬头曝气,这种装置是使水通过莲蓬头上的许多小孔向下喷洒,把水分散细小的水流,在其下落过程中实现曝气。莲蓬头的直径为150~300mm,莲蓬头的孔眼直径为3~6mm,莲蓬头距水面高度视水中含铁量而定,原水含铁量越大,其高度越高。Fe(OH)3在形成过程中可与水中的悬浮杂质发生附架桥使其脱稳,即同时起到混凝作用。曝气后的水经过凝处理即可将铁和悬浮物除去。 2.3 含氯水的预处理 水厂为了消除水中的细菌等微生物,防止疾病传播而进行加氯消毒,故自来水与天然水不同之点就是含有游离性氯(常以次氯酸HClO形式存在)。向自来水中投加的氯量一般有需氯量和余氯量两部分,余氯量是为了抵制水中残存细菌的再度繁殖避免水质二次污染,一般要求自来水管网中尚需维持少量剩余氯。通常规定管网末端余氯量不能低于0.05mg/L,出厂水余氯控制在0.5~10mg/L,如锅炉的给水中余氯量较大,而进入离子交换器,则会破坏离子交换树脂的结构,使其强度变差,颗粒容易破碎。通常采用的除氯方法有化学还原法和活性炭脱氯法。这里只介绍化学还原法。化学还原法是向有余氯的水中投加一定量的还原剂,使之发生脱氯反应。通常还原剂有二氧化硫和亚硫酸钠。 2.4 高硬度或高碱度的预处理 对于高硬度或高碱度的水在送入锅炉或进行离子交换软化前,宜采用化学方法进行预处理。通常有4种方法,第1种方法是石灰处理的化学方法,是将生石灰(CaO)由石灰石经过燃烧制成。通过加水消化后制成Ca(OH)2,其反应式为:CaO+H2O =Ca(OH)2配制成一定浓度石灰乳溶液投加在水中,但其生石灰的量应根据化学分析及计算得到。这种方法处理后可除硬度,但碱度不变;第2种方法是石灰—苏打处理法。当原水硬度高而碱度较低时,除了采用石灰处

活性碳纤维的特性

活性碳纤维的特性 1)吸附量大 活性碳纤维对有机气体及恶臭物质(如正丁基硫醇等)的吸附量比粒状活性炭(GAC )大几倍至十几倍。对无机气体也有较好的吸附能力。对水溶液中的无机物、染料、有机物及贵金属的吸附量比GAC 高5—6倍。对微生物及细菌也有很好的吸附能力(如对大肠杆菌的吸附率可达94—99%)。对低浓度吸附质的吸附能力特别优良。如对于吸附质的浓度在几ppm 级时仍可保持很好的吸附量,而GAC 等吸附材料往往在几十ppm浓度时才有良好的吸附能力。 2)吸附速度快 对于从气相中吸附气态污染物的吸附速度非常快,对液体的吸附也可很快达到吸附平衡,其吸附速率比GAC 高数十倍至数百倍。 3)再生容易,脱附速度快 在多次吸附和脱附过程中,仍能保持原有的吸附性能。如用120-150℃蒸汽或热空气再生处理ACF 10-30分钟即可达到完全脱附。 4)耐热性好 在惰性气体中可耐高温1000℃以上,在空气中的着火点高达500℃以上。 5)耐酸、耐碱,具有较好的导电性能和化学稳定性。 6)灰份少。 7)成型性好,易加工成毡、丝、布、纸等形态。 活性碳纤维的介绍 一般传统上所使用的活性炭可分为粉末状活性炭(AC)和颗粒状活性炭(GAC),上世纪六十年美、日、俄等国家相继研发出第三种形态的活性炭称为活性碳纤维(Activated Carbon Fibers,/ACF)。国内在七十年代末八十年初,也研发出活性碳纤维。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不

同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料颗粒状活性炭相比,ACF具有以下显著的的特点: (一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近百倍,所以需要填充的活性碳纤维的重量非常小,然而吸附效率却非常高,根据所处理废气的有机气体含量和其它物理特性的不同,吸附效率在85%至98%之间,多级吸附工艺可以达到99.99%,远远高于活性碳颗粒吸附法的最高吸附率88%,而且体积及总重量也都很小。 (二)、吸附﹑脱附行程短,速度快;脱附﹑再生耗能低。ACF对有机气体吸附量比颗粒状活性炭(GAC)大几倍至几十倍,对无机气体也有很好的吸附能力,并能保持较高的吸附脱附速度和较长的使用寿命。如用水蒸气加热6-10分钟,即可完全脱附,耐热性能好,在惰性气体中耐高温1000℃以上,在空气中着火点达500℃以上。 (三)、对低浓度吸附质的吸附能力特别优良,对ppm数量级吸附质仍保持很高的吸附量 (四)、形状可变,使用方便;强度好,不会造成二次污染。 活性碳纤维的应用 有机溶剂的回收 用于从气相分离回收有机溶剂,如对苯类、酮类、酯类、石油类的蒸汽均能从气相吸附回收,特别是有腐蚀性的氯化物、很容易起反映的溶剂、很容易分解的溶剂,使用ACF 做溶剂回收设备吸附脱附速度快、处理量大、回收溶剂质量高,而且回收效率可达97%以上。 空气净化

活性炭吸附技术在水处理中的应用

活性炭吸附技术在水处理中的应用  顾斌 (南京林业大学,南京江苏 210037) 摘 要:本文将着重讲述活性炭的特性以及活性炭吸附技术在水处理中的应用情况。  关键字:活性炭,活性炭纤维,水处理  1. 引用 活性炭作为一种比较特殊的碳质材料,以其发达的孔隙结构、巨大的比表面积、良好的稳定性质、很强的吸附能力以及优异的再生能力,被广泛应用于环保等各个领域,文章将着重介绍活性炭吸附技术在水处理中的应用。 2. 活性炭的物理化学特性 2.1 活性炭(AC)活性炭是常用的一种非极性吸附剂,性能稳定,抗腐蚀,故应用广泛。它是一种具有吸附性能的炭基物质的总称。把含碳的有机物质加热炭化,去除全部挥发物,在经药品(如ZnCl2等)或水蒸汽活化,制成多孔性炭素结构吸附剂。活性炭有粉状和粒状两种,工业上多采用粒状活性炭。由于原料和制法的不同,其孔径分布不同,一般分为:碳分子筛,孔径在10×10-10m以下;活性焦炭,孔径20×10-10以下;活性炭,孔径在50×10-10m以下[1]。  2.2 活性炭纤维(ACF)活性炭纤维是一种新型吸附功能材料,它以木质素、纤维素、酚醛纤维、聚丙烯纤维、沥青纤维等为原料,经炭化和活化制的。与活性炭相比较特有的微孔结构,更高的外表面和比表面积以及多种官能团,平均细孔直径也更小,通过物理吸附以及物理化学吸附等方式在废水、废气处理、水净化领域得到了广泛应用。纤维状活性炭微孔体积占总孔体积90%左右,其微孔孔径大部分在1nm左右,没有过度孔和大孔。比表面积一般为600~1200m2/g,甚至可达3000m2/g。活性炭纤维脱附再生速率快,时间短,且其性能不变,这一点优于活性炭。与活性炭一样,活性炭纤维吸附时无选择性,主要用于吸附有机污染物,一般用于炼油厂综合废水处理[2]。  3. 活性炭的吸附作用与吸附形式 3.1 活性炭处理活性炭处理指利用活性炭作为吸附剂和催化剂载体的有关过程[3]。主要应用于生活饮用水深度净化,城市污水处理,工业废水的处理。  3.2 吸附作用与吸附形式[4] 将溶质聚集在固体表面的作用称为吸附作用。活性炭表面具有吸附作用。吸附可以看成是一种表面现象,所以吸附与活性炭的表面特性有密切关系。活性炭有巨大的内部表面和 - 1 -

活性碳纤维

活 性 炭 材 料 方 面 的 发 展 活性碳纤维[1] 1.概述 活性碳纤维(activated carbon fiber, ACF)是继粉状活性炭和颗粒活性炭之后发展起来的第三代活性炭材料。人们最初将传统的粉状或细粒状活性炭吸附

在有机纤维上或灌倒空心有机纤维里制成纤维状活性炭(fiberous AC, FAC)但所得到产品性能不够理想[2]。于是,知道20世纪60年代初期,在碳纤维(carbon fiber,CF )工业得以发展的基础上,人们将CF进行活化处理,才获得这种新型的吸附性能有一的ACF。 2.发展过程 最早报道ACF研制成功的事W.F.Abbott ,他于1962年研制成功黏胶基ACF[3]。1972年,G.N.Arons和R.N.Macnair等研制成功酚醛基和黏胶基AC[4]。1973年、1977年,R.Y.Lin和J.Economy报道了关于酚醛基ACF的研究成果[5]。后来建立了一个ACF商业化设备工艺程序[1]。Bailey和Maggs用路易斯酸来处理黏胶纤维制得ACF[1],并获专利。随后人们尝试了各种原料来直奔ACF,包括黏胶、酚醛纤维、聚丙烯腈、沥青、聚酰亚胺纤维、异型截面纤维等。 在诸多国家中,日本是开发和应用ACF较多的国家之一[6、7]。日本东洋纺织公司最早开发了人造丝基ACF,并与1975年工业化,目前产量达到100t∕a;1976年东邦人造丝开发出PAN基ACF;1988年,日本大阪气化公司与尤尼吉卡共同开发出沥青基ACF。 国内从事ACF的开发与研究科研单位及大专院校有许多,在ACF的制备、性能与结构表征、活化机理及应用取得长足进步。中山大学材料系增汉民教授及其合作者就不同原料ACF的制备、性能测定、反应机理、功能化研究等方面发飙了数十篇论文[8~10]。1987年中科院山西煤化所沈曾民研究员及其合作者系统开发了通用沥青基ACF,并在其随后的研究工作中,进一步优化和考察了以预氧化纤维为原料的“碳化∕活化”工艺(又称作“一步法”)与传统的“碳化再活化”工艺(有称作“二步法”)的各自优劣,并探讨了不

双椰壳活性炭-KDF水处理技术在大型公共建筑中的应用

106 研究与探索Research and Exploration ·工艺与技术 中国设备工程 2017.06 (上) 1?工艺特点 市政自来水通过管路进入水处理主机部分,即双罐复合材料压力容器,在复合材料压力容器内经过活性炭和KDF55双层滤料净化后,再流经紫外消毒器进行杀菌,最后通过管道输送到室外供水系统,再经二次紫外线杀菌消毒后,通过台盆水嘴供用户饮用。其中,椰壳活性炭是非极性的多孔吸附剂,其净化机理是物理吸附及部分截留作用,可以吸附水中大部分的溶解性有机污染物,有效的降低浊度。KDF55是高纯度的铜锌合金颗粒,它通过微电化学氧化还原反应净化水,可以清除水中高达99%的氯和溶解性的铅、汞、镍、铬等金属离子和化合物。系统采用先进的滤料能量再生控制技术,对过滤材料进行周期性的清洗,保证对饮水的过滤处于稳定有效的状态。连续处理水量可达32m 3以上。 在主机内安装有水温、水压监测及漏水保护装置,并对滤料的再生周期设定控制;在室内主机出水管路上安装了pH、电导率和浊度的实时在线水质监测设备,确保整机运行稳定,出水水质安全。 2?工艺流程 工艺流程见图1、2。 该工艺主要包括四大系统组成:(1)直饮水净化系统,包括活性炭吸附、KDF 处理及紫外杀菌1。(2) 室外终端供水系统,包括紫外杀菌2、台盆及水嘴。 (3)在线水质监测系统,包括流量、压力、浊度、pH、TDS 在线监控。(4)在线控制,主要用于控制净化主机中滤料的再生周期设定及漏水监测保护。2.1?直饮水净化系统 在直饮水净化系统中,分别设置了两组椰壳活性炭-KDF 滤料水处理及一组紫外线杀菌装置,及一次水处理系统。该系统不仅能有效的去除饮用水中的微量的可溶性铬、铜及铅等重金属离子,有效的降低饮用水浊度,去除饮水水源的微生物细菌,同时系统设置的两组椰壳活性炭-KDF 滤料过滤装置,在通过控制程序的多路控制阀,实现双罐共同出水,进水反冲专有技术,及在反冲洗阶段实现用一罐进化水反冲洗另一罐,同时供水不受反冲洗影响而连续正常供水。 双椰壳活性炭-KDF 水处理技术 在大型公共建筑中的应用 肖江融,胡景新,彭志发,曾候辉 (中国建筑第八工程局有限公司,上海 200000) 摘要:目前,我国城市自来水厂多采用混凝—沉淀—砂滤—投氯消毒的传统工艺,该工艺虽对浊度、色度有良好的去除效果,但不能完全去除有机污染物及细菌,且容易产生氯化消毒副产物。对于直饮水来说,不仅要保证水体内有害物质的复合标准,同时也要考虑对人体有益的一些微量元素,这是进一步衡量饮用水质量的标准。而在大型公共建筑中直饮水的水质直接影响着人体健康。 关键词:活性炭;水处理技术;公共建筑 中图分类号:TU991.2 文献标识码:A 文章编号:1671-0711(2017)06(上)-0106-02 (下转109 页) 图2? 设备运行原理图 图1

相关主题