搜档网
当前位置:搜档网 › 海量数据处理小结

海量数据处理小结

海量数据处理小结
海量数据处理小结

海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面:

一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。

二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。

三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考:

一、选用优秀的数据库工具现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。

二、编写优良的程序代码处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。

三、对海量数据进行分区操作对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。

四、建立广泛的索引对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

五、建立缓存机制当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。

六、加大虚拟内存如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。

七、分批处理海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。八、使用临时表和中间表数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按

汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。

九、优化查询SQL语句在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。

十、使用文本格式进行处理对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。

十一、定制强大的清洗规则和出错处理机制海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。

十二、建立视图或者物化视图视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。

十三、避免使用32位机子(极端情况)目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。

十四、考虑操作系统问题海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。

十五、使用数据仓库和多维数据库存储数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。

十六、使用采样数据,进行数据挖掘基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误差为千分之五,客户可以接受。还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。

一般来说第7种方案是最常用的,有的主要就是使用第7种方案,选择的余地也非常的大,不只是俺月,日,年,也可以按周等等划分,灵活性较高

而面对大量数据的处理一般都是分批次处理,之前我做一个文本分类器,面对1g多的索引(索引1g多,但是分类时需要的数据就大得多了),40-50分钟就可以跑完所有分类:

一是分批操作。

二是给jvm回收内存的时间,比如每次20w的数据进行分类,完成之后睡眠一段时间,每睡眠一端时间就手动gc一次。

通过这些方式取得了很明显得见效。

海量数据处理专题(一)

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。

下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

本贴从解决这类问题的方法入手,开辟一系列专题来解决海量数据问题。拟包含以下几个方面。

1.Bloom Filter

2.Hash

3.Bit-Map

4.堆(Heap)

5.双层桶划分

6.数据库索引

7.倒排索引(Inverted Index)

8.外排序

9.Trie树

10.MapReduce

在这些解决方案之上,再借助一定的例子来剖析海量数据处理问题的解决方案。欢迎大家关注。

海量数据处理专题(二)

【什么是Bloom Filter】

Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter 不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。这里有一篇关于Bloom Filter的详细介绍,不太懂的博友可以看看。

【适用范围】

可以用来实现数据字典,进行数据的判重,或者集合求交集

【基本原理及要点】

对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

【扩展】

Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF 采用counter中的最小值来近似表示元素的出现频率。

【问题实例】

给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B 文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个 bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

海量数据处理专题(三)

什么是Hash

Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

HASH主要用于信息安全领域中加密算法,它把一些不同长度的信息转化成杂乱的128位的编码,这些编码值叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系。

数组的特点是:寻址容易,插入和删除困难;而链表的特点是:寻址困难,插入和删除容易。那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表,哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法——拉链法,我们可以理解为“链表的数组”,如图:

左边很明显是个数组,数组的每个成员包括一个指针,指向一个链表的头,当然这个链表可能为空,也可能元素很多。我们根据元素的一些特征把元素分配到不同的链表中去,也是根据这些特征,找到正确的链表,再从链表中找出这个元素。

元素特征转变为数组下标的方法就是散列法。散列法当然不止一种,下面列出三种比较常用的。

1,除法散列法

最直观的一种,上图使用的就是这种散列法,公式:

index = value % 16

学过汇编的都知道,求模数其实是通过一个除法运算得到的,所以叫“除法散列法”。

2,平方散列法

求index是非常频繁的操作,而乘法的运算要比除法来得省时(对现在的CPU来说,估计我们感觉不出

来),所以我们考虑把除法换成乘法和一个位移操作。公式:

index = (value * value) >> 28

如果数值分配比较均匀的话这种方法能得到不错的结果,但我上面画的那个图的各个元素的值算出来的index都是0——非常失败。也许你还有个问题,value如果很大,value * value不会溢出吗?答案是会的,但我们这个乘法不关心溢出,因为我们根本不是为了获取相乘结果,而是为了获取index。

3,斐波那契(Fibonacci)散列法

平方散列法的缺点是显而易见的,所以我们能不能找出一个理想的乘数,而不是拿value本身当作乘数呢?答案是肯定的。

1,对于16位整数而言,这个乘数是40503

2,对于32位整数而言,这个乘数是2654435769

3,对于64位整数而言,这个乘数是11400714819323198485

这几个“理想乘数”是如何得出来的呢?这跟一个法则有关,叫黄金分割法则,而描述黄金分割法则的最经典表达式无疑就是著名的斐波那契数列,如果你还有兴趣,就到网上查找一下“斐波那契数列”等关键字,我数学水平有限,不知道怎么描述清楚为什么,另外斐波那契数列的值居然和太阳系八大行星的轨道半径的比例出奇吻合,很神奇,对么?

对我们常见的32位整数而言,公式:

i ndex = (value * 2654435769) >> 28

如果用这种斐波那契散列法的话,那我上面的图就变成这样了:

很明显,用斐波那契散列法调整之后要比原来的取摸散列法好很多。

【适用范围】

快速查找,删除的基本数据结构,通常需要总数据量可以放入内存。

【基本原理及要点】

hash函数选择,针对字符串,整数,排列,具体相应的hash方法。

碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

【扩展】

d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing 指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key 比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

【问题实例】

1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

海量数据处理专题(四)

【什么是Bit-map】

所谓的Bit-map就是用一个bit位来标记某个元素对应的Value,而Key即是该元素。由于采用了Bit 为单位来存储数据,因此在存储空间方面,可以大大节省。

如果说了这么多还没明白什么是Bit-map,那么我们来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte 的空间,将这些空间的所有Bit位都置为0(如下图:)

然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作p+(i/8)|(0x01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为一(如下图):

然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下:

然后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。下面的代码给出了一个BitMap的用法:排序。

//定义每个Byte中有8个Bit位

#include <memory.h>

#define BYTESIZE 8

void SetBit(char *p, int posi)

{

for(int i=0; i <(posi/BYTESIZE); i++)

{

p++;

}

*p = *p|(0x01<<(posi%BYTESIZE));//将该Bit位赋值1

return;

}

void BitMapSortDemo()

{

//为了简单起见,我们不考虑负数

int num[] = {3,5,2,10,6,12,8,14,9};

//BufferLen这个值是根据待排序的数据中最大值确定的

//待排序中的最大值是14,因此只需要2个Bytes(16个Bit)

//就可以了。

const int BufferLen = 2;

char *pBuffer = new char[BufferLen];

//要将所有的Bit位置为0,否则结果不可预知。

memset(pBuffer,0,BufferLen);

for(int i=0;i<9;i++)

{

//首先将相应Bit位上置为1

SetBit(pBuffer,num[i]);

}

//输出排序结果

for(int i=0;i<BufferLen;i++)//每次处理一个字节(Byte)

{

for(int j=0;j<BYTESIZE;j++)//处理该字节中的每个Bit位

{

//判断该位上是否是1,进行输出,这里的判断比较笨。

//首先得到该第j位的掩码(0x01<<j),将内存区中的

//位和此掩码作与操作。最后判断掩码是否和处理后的

//结果相同

if((*pBuffer&(0x01<<j)) == (0x01<<j))

{

printf("%d ",i*BYTESIZE + j);

}

}

pBuffer++;

}

}

int _tmain(int argc, _TCHAR* argv[])

{

BitMapSortDemo();

return 0;

}

【适用范围】

可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

【基本原理及要点】

使用bit数组来表示某些元素是否存在,比如8位电话号码

【扩展】

Bloom filter可以看做是对bit-map的扩展

【问题实例】

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。(可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M 左右的内存表示了所有的8位数的电话)

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上,在遍历这些数的时候,如果对应位置的值是0,则将其置为1;如果是1,将其置为2;如果是2,则保持不变。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。

海量数据处理专题(五)

【什么是堆】

概念:堆是一种特殊的二叉树,具备以下两种性质

1)每个节点的值都大于(或者都小于,称为最小堆)其子节点的值

2)树是完全平衡的,并且最后一层的树叶都在最左边

这样就定义了一个最大堆。如下图用一个数组来表示堆:

那么下面介绍二叉堆:二叉堆是一种完全二叉树,其任意子树的左右节点(如果有的话)的键值一定比根节点大,上图其实就是一个二叉堆。

你一定发觉了,最小的一个元素就是数组第一个元素,那么二叉堆这种有序队列如何入队呢?看图:

假设要在这个二叉堆里入队一个单元,键值为2,那只需在数组末尾加入这个元素,然后尽可能把这个元素往上挪,直到挪不动,经过了这种复杂度为Ο(logn)的操作,二叉堆还是二叉堆。

那如何出队呢?也不难,看图:

出队一定是出数组的第一个元素,这么来第一个元素以前的位置就成了空位,我们需要把这个空位挪至叶子节点,然后把数组最后一个元素插入这个空位,把这个“空位”尽量往上挪。这种操作的复杂度也是Ο(logn)。

【适用范围】

海量数据前n大,并且n比较小,堆可以放入内存

【基本原理及要点】

最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

【扩展】

双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

【问题实例】

1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

海量数据处理专题(六)

【什么是双层桶】

事实上,与其说双层桶划分是一种数据结构,不如说它是一种算法设计思想。面对一堆大量的数据我们无法处理的时候,我们可以将其分成一个个小的单元,然后根据一定的策略来处理这些小单元,从而达到目的。

【适用范围】

第k大,中位数,不重复或重复的数字

【基本原理及要点】

因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子,分治才是其根本(只是“只分不治”)。

【扩展】

当有时候需要用一个小范围的数据来构造一个大数据,也是可以利用这种思想,相比之下不同的,只是其中的逆过程。

【问题实例】

1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。当然这个题也可以用我们前面讲过的BitMap方法解决,正所谓条条大道通罗马~~~

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

3).现在有一个0-30000的随机数生成器。请根据这个随机数生成器,设计一个抽奖范围是0-350000彩票中奖号码列表,其中要包含20000个中奖号码。

这个题刚好和上面两个思想相反,一个0到3万的随机数生成器要生成一个0到35万的随机数。那么我们完全可以将0-35万的区间分成35/3=12个区间,然后每个区间的长度都小于等于3万,这样我们就可以用题目给的随机数生成器来生成了,然后再加上该区间的基数。那么要每个区间生成多少个随机数呢?计算公式就是:区间长度*随机数密度,在本题目中就是30000*(20000/350000)。最后要注意一点,该题目是有隐含条件的:彩票,这意味着你生成的随机数里面不能有重复,这也是我为什么用双层桶划分思想的另外一个原因。

如何处理数据库中海量数据,以及处理数据库海量数据的经验和技巧

如何处理数据库中海量数据,以及处理数据库海量数据的经验和技巧 疯狂代码 https://www.sodocs.net/doc/2010375108.html,/ ?:http:/https://www.sodocs.net/doc/2010375108.html,/DataBase/Article11068.html 海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。 基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提 高了处理效率和处理的成功率。在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:一、数据量过大,数据中什么情况都可能存在。 ;如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。二、软硬件要求高,系统资源占用过高 对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。三、要求很高的处理方法和技巧。 这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。下面我们来详细介绍一下处理海量数据的经验和技巧:一、选用优秀的数据库工具 现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用 Oracle或者DB2,微软公 司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘,傲博知识库等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。二、编写优良的程序代码 处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。三、对海量数据进行分区操作 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式 ,不过处理机制大体相同。例 如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷, 而且还可以将日志,索引等放于不同的分区下。四、建立广泛的索引 对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复 合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合 操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。五、建立缓存机制 当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。六、加大虚拟内存 如果系统资源有 限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为

基于海量数据传输方式及融合研究

基于海量数据传输方式及融合研究 摘要本文简要的论述了海量数据传输方式及融合技术,将电力大数据通过高效、快速、安全的进行传输,以分布式消息机制进行数据交互和传输,从而达到数据快速交付及应用,满足不同业务层级人员的数据需求。基于以上的目标本文主要对数据传输技术和融合技术进行论述。 关键词电力;微服务;海量数据;技术难点;数据接口服务;文件传输接口;数据交互技术 Research on mass data transmission and fusion zhangxinyang,chenda The Information Centre of Yunnan power grid limited liability company,Kunming 650217 Abstract This paper briefly discusses the massive data transmission and fusion technology,the power of big data in an efficient,fast and secure transmission of data to the micro application services,so as to achieve rapid delivery of data and application,to meet the different levels of staff business data needs. Based on the above objectives,this paper mainly discusses the data transmission technology and fusion technology. Key words Electric power;Micro service;Massive data;Technical difficulties;Data interface service;File interface service;Data delivery technology 1 概述 电力行业在海量数据采集方面,目前着重单一领域的数据采集,电网及设备的状态运行数据、管理类数据、在线监测数据以及用户用电计量数据都未能进行数据统一规划,另外,针对外部的气象信息、宏观经济、用电舆情等数据也未纳入统一。 存在单一系统主数据完整性不足,各系统间数据单独采集、分散存储、独立应用等问题。 数据存储技术落后。目前面向结构化数据存储的关系型数据库已经不能满足相互电力大数据快速访问、大规模数据分析的需求,较难支撑电力业务的更专业应用需求。针对海量状态监测、用电计量等准实时数据,基于原有存储技术的落后都不能实现永久存储,电网中大量的历史数据都只能被定期转存并逐步清理,没有发挥出更多的价值[1]。

海量数据处理面试题

1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。 s 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为)中。这样每个小文件的大约为300M。 s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为)。这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。 s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。 方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。 2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 方案1: s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为 )中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

海量数据处理笔试面试题4

海量数据处理专题(一)——开篇 2010-10-08 13:03 转载自08到北京 最终编辑08到北京 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 本贴从解决这类问题的方法入手,开辟一系列专题来解决海量数据问题。拟包含以下几个方面。 1.Bloom Filter 2.Hash 3.】 4.Bit-Map 5.堆(Heap) 6.双层桶划分 7.数据库索引 8.倒排索引(Inverted Index) 9.外排序 10.Trie树 11.MapReduce 海量数据处理专题(二)——Bloom Filter 2010-10-08 13:04 【 转载自08到北京 最终编辑08到北京 【什么是Bloom Filter】 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。这里有一篇关于Bloom Filter的详细介绍,不太懂的博友可以看看。 【适用范围】

海量数据处理小结

海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面: 一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。 二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。 三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考: 一、选用优秀的数据库工具现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。 二、编写优良的程序代码处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。 三、对海量数据进行分区操作对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。 四、建立广泛的索引对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。 五、建立缓存机制当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。 六、加大虚拟内存如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。 七、分批处理海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。八、使用临时表和中间表数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按

(重点学习)海量数据处理方法总结

海量数据处理方法总结 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu,google,腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1 Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集。 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit 数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为

数据分析师常见的7道笔试题目及答案

数据分析师常见的7道笔试题目及答案 导读:探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧 重于已有假设的证实或证伪。以下是由小编J.L为您整理推荐的实用的应聘笔试题目和经验,欢迎参考阅读。 1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把 整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用 hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000 个最大的IP中,找出那个频率最大的IP,即为所求。 或者如下阐述: 算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理; 2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日 志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址; 4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP; 2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也 就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。 典型的Top K算法,还是在这篇文章里头有所阐述, 文中,给出的最终算法是: 第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27); 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N…logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一 个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N?*O(logK),(N为1000万,N?为300万)。ok,更多,详情,请参考原文。 或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10 个元素的最小推来对出现频率进行排序。 3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000 个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。 如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到 分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树 /hash_map等),并取出出现频率最大的100个词(可以用含100 个结点的最小堆),并把

常用 大数据量、海量数据处理 方法 算法总结

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。 问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

【精品】海量数据处理分析

海量数据处理分析 北京迈思奇科技有限公司戴子良 笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面: 一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。 二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。 三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。 那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考: 一、选用优秀的数据库工具 现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。 二、编写优良的程序代码 处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。 三、对海量数据进行分区操作 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。 四、建立广泛的索引 对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

大数据处理技术参考架构

大数据处理技术参考架构 二〇一五年十二月

目录 1.背景 (1) 2.技术目标 (3) 3.技术要求 (3) 4.大数据处理业务场景 (4) 5.大数据处理技术对比 (6) 5.1. MPP与H ADOOP&S PARK技术对比 (6) 5.2. H ADOOP&S PARK技术优势 (9) 5.3. H ADOOP框架对比 (10) 5.4. H ADOOP使用情况 (11) 5.5. H ADOOP血缘关系 (12) 5.6. 行业大数据应用场景对比分析 (17) 6.大数据处理参考架构 (19) 6.1. 参考架构 (19) 6.2. 与J AVA EE体系对比 (21)

6.3. 参考架构运行状态 (21) 7.总结与思考 (22) 附录:名词解释 (25)

1.背景 随着大数据时代的到来,数据由海量拓展为多样,在注重计算速度的同时更加关注挖掘有价值的数据。以IOE体系为核心的数据计算和存储方式越来越不能满足目前大数据处理在性能和成本上的综合要求。为适应对大数据处理的要求,众多的分布式计算平台随之兴起,在对众多分布式计算平台进行权衡的同时,增强自主创新能力,以满足人民银行对信息技术安全可控的要求。 在核心应用自主研发、核心知识自主掌控的氛围下,保障大数据技术达到灵活可用的目标,确保数据和信息的有效、及时,确保信息系统的可靠、灵活。同时,充分的利用开源产品透明公开的关键信息,做到对技术细节的掌控和验证,开源产品的特点也更能够激发开发者的热情并推进技术的快速变革。 在“互联网+”的战略布局下,当利用信息通信技术把互联网和包括金融行业在内的相关行业结合起来时,能够更加合理和充分的利用大数据技术促进互联网金融的健康发展。当前互联网金融的格局中,由传统金融机构和非金融机构组成。传统金融机构的发展方向主要为传统金融业务的互联网创新以及电商化创新、手机APP服务等;非金融机构的发展方向则主要是指利用互联网技术进行金融运作的电子商务企业、P2P模式的网络借贷平台,众筹模式的网络投资平台或掌上理财服务,以及第三方支付平台等。在金融行业新兴业态下,为促进互联网金融的健康发展,为全面提升互联网金融服务能力和普惠水平,为有效防范互联网金融风险及其外溢效应而提供技术支撑。 在金融领域,新生业态层出不穷,金融机构日益多样化,金融资产的流动性

基于一种海量数据处理分析系统设计文档

中科基于一种海量数据处理分析 系统的设计文档 一、海量数据处理的背景分析 在当前这个信息量飞速增长的时代,业的成功已经越来越多地与其海量数据处理能力相关联。高效、迅速地从海量数据中挖掘出潜在价值并转化为决策依据的能力,将成为企业的核心竞争力。数据的重要性毋庸置疑,但随着数据的产生速度越来越快,数据量越来越大,数据处理技术的挑战自然也越来越大。如何从海量数据中挖掘出价值所在,分析出深层含义,进而转化为可操作的信息,已经成为各互联网企业不得不研究的课题。数据量的增长,以及分析需求的越来越复杂,将会对互联网公司的数据处理能力提出越来越高的要求、越来越大的挑战。但每一个场景都有其特点与功能,充分分析其数据特性,将合适的软件用在合适的场景下,才能更好地解决实际问题。 二、海量数据处理分析的特点 (一)、数据量大,情况多变 现在的数据量比以前任何时期更多,生成的速度更快,以前如果说有10条数据,繁琐的操作时每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,情况多变,手工操作是完不成任务的。例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序将会终止。海量数据处理系统的诞生是输入层每个神经元的输入是同一个向量的一个分量,产生的输出作

为隐藏层的输入,输出层每一个神经元都会产生一个标量结果,所以整个输出层所有神经元的输出构成一个向量,向量的维数等于输出层神经元的数目在人工神经网络模型中,各个神经元通过获取输入和反馈,相对独立地进行训练和参数计算。其拓扑结构的重要特点便是每一层内部的神经元之间相互独立,各个层次间的神经元相互依赖。 由于各个层次内部神经元相互独立,使得各个层次内部的神经元的训练可以并行化。但由于不同层之间的神经元具有相互依赖关系,因此各个层次之间仍然是串行处理的。可以将划分出的每一层内部的不同神经元通过map操作分布到不同的计算机上。各个神经元在不同的计算终端上进行训练,在统一的调度和精度控制下进行多个层次的神经元的训练,这样神经网络算法的训练就可以实现并行化。训练结束后,同样可以通过每层内节点的并行化处理快速地得到输出结果。在神经网络算法中,每层内的节点都可以进行并行化处理,并行化程度非常高。 (二)、软硬件要求高,系统资源占用率高 各种应用对存储系统提出了更多的需求,数据访问需要更高的带宽,不仅要保证数据的高可用性,还要保证服务的高可用性;可扩展性:应用在不断变化,系统规模也在不断变化,这就要求系统提供很好的扩展性,并在容量、性能、管理等方面都能适应应用的变化;对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,对电脑的内存、显卡、硬盘及网络都要求相对较高!其中对网络要求高的原因是因为其引入目前最前沿的“云端计算”好多东西都要从网络上调用;对硬盘要求是最高的,用SATA6.0的固态硬盘,对整机性能限制比较大的就是高速系统总线对低速硬盘传输,32位的系统,最大只能认到3.5G内存,就是说,不论你装几根内存条,装多大容量的内存条,你装8G的,它也只能用到3.5G,64位的系统就可以突破了这个限制。如果你的电脑配置不是特别高的话,XP是比较好的选择。32位的XP是最低要求。基于23G互操作测试生成23G互操作测试报告测试起始点时间、测试终止点时间、 3G网络驻留时间(秒)、2G网络驻留时间(秒)、3G覆盖总采样点、3G覆盖总采样点不同区间数量统计、3G覆盖总采样点不同门限范围内数量统计、2G覆盖总采样点、2G覆盖总采样点不同区间数量统计、2G覆盖总采样点不同门限范围内数量统计、3G到2G重选成功次数、2G到3G重选成功次数、3G到2G切换尝试次数、3G到2G切换成功次数、切换掉话次数和其它掉话次数。

2016年数据分析面试常见问题

1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。 或者如下阐述: 算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理; 2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址; 4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP; 2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。 典型的Top K算法,还是在这篇文章里头有所阐述, 文中,给出的最终算法是:

第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27); 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N)+ N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。 或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。 如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map 等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。 4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个

大数据量,海量数据 处理方法总结

大数据量,海量数据处理方法总结 从目前大公司用的比较多的数据处理系统角度,你可以去看看关于Hadoop,Hbase,Hive的书,纯粹讲海量数据处理的没见过, https://www.sodocs.net/doc/2010375108.html,/~ullman/mmds.html,这个是关于海量数据挖掘的 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter 数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m 至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集

大数据处理技术的总结与分析

数据分析处理需求分类 1 事务型处理 在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。这类系统数据处理特点包括以下几点: 一是事务处理型操作都是细粒度操作,每次事务处理涉及数据量都很小。 二是计算相对简单,一般只有少数几步操作组成,比如修改某行的某列; 三是事务型处理操作涉及数据的增、删、改、查,对事务完整性和数据一致性要求非常高。 四是事务性操作都是实时交互式操作,至少能在几秒内执行完成; 五是基于以上特点,索引是支撑事务型处理一个非常重要的技术。 在数据量和并发交易量不大情况下,一般依托单机版关系型数据库,例如ORACLE、MYSQL、SQLSERVER,再加数据复制(DataGurad、RMAN、MySQL 数据复制等)等高可用措施即可满足业务需求。 在数据量和并发交易量增加情况下,一般可以采用ORALCE RAC集群方式或者是通过硬件升级(采用小型机、大型机等,如银行系统、运营商计费系统、证卷系统)来支撑。 事务型操作在淘宝、12306等互联网企业中,由于数据量大、访问并发量高,必然采用分布式技术来应对,这样就带来了分布式事务处理问题,而分布式事务处理很难做到高效,因此一般采用根据业务应用特点来开发专用的系统来解决本问题。

2 数据统计分析 数据统计主要是被各类企业通过分析自己的销售记录等企业日常的运营数据,以辅助企业管理层来进行运营决策。典型的使用场景有:周报表、月报表等固定时间提供给领导的各类统计报表;市场营销部门,通过各种维度组合进行统计分析,以制定相应的营销策略等。 数据统计分析特点包括以下几点: 一是数据统计一般涉及大量数据的聚合运算,每次统计涉及数据量会比较大。二是数据统计分析计算相对复杂,例如会涉及大量goupby、子查询、嵌套查询、窗口函数、聚合函数、排序等;有些复杂统计可能需要编写SQL脚本才能实现。 三是数据统计分析实时性相对没有事务型操作要求高。但除固定报表外,目前越来越多的用户希望能做做到交互式实时统计; 传统的数据统计分析主要采用基于MPP并行数据库的数据仓库技术。主要采用维度模型,通过预计算等方法,把数据整理成适合统计分析的结构来实现高性能的数据统计分析,以支持可以通过下钻和上卷操作,实现各种维度组合以及各种粒度的统计分析。 另外目前在数据统计分析领域,为了满足交互式统计分析需求,基于内存计算的数据库仓库系统也成为一个发展趋势,例如SAP的HANA平台。 3 数据挖掘 数据挖掘主要是根据商业目标,采用数据挖掘算法自动从海量数据中发现隐含在海量数据中的规律和知识。

基于海量数据的数据分析方案设计

基于海量数据的数据分析方案设计 data analysis program design based on mass data 摘要:随着互联网,移动互联网和物联网的发展,谁也无法否认,我们来到了一个海量数据的时代。随着数据积累的越来越多,现在许多行业大多面临基于海量数据的分析问题,该文从基于海量数据挖掘的分析方法出发,利用河南省2005到2009年交通事故的数据,设计了一个数据分析方案。 关键词:海量数据,数据挖掘,回归模型,方案 Abstract: with the development of Internet, mobile Internet and development of Internet of things, nobody can deny that we come to a massive data era. As data accumulate more and more, many industries are facing problems based on large amounts of data analysis . This paper ibased on the analysis of mass data mining method of Henan province from 2005 to 2009, using the data of traffic accidents, designes a data analysis program. Key words: mass data, data mining, regression model, scheme 一、引言 随着信息技术的发展,人们积累的数据越来越多。事实上,数据本身是没有意义的,只有用以进行分析处理才真正起到作用。因此,可以说激增的数据背后更重要的是隐含的信息,人们希望能够对这些数据进行更高层次的分析,以便更好地利用这些数据。 海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。 在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:数据量过大,数据中什么情况都可能存在;软硬件要求高,系统资源占用过高;要求很高的处理方法和技巧。 基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处

相关主题