搜档网
当前位置:搜档网 › 理论力学教程(第三版)第五章 周衍柏编

理论力学教程(第三版)第五章 周衍柏编

理论力学教程(第三版)第五章   周衍柏编
理论力学教程(第三版)第五章   周衍柏编

《理论力学基本教程》课程大纲

《理论力学基本教程》课程大纲第一部分:课程性质、课程目标与教学要求《理论力学基本教程》作为理论物理学的第一门课程,是高等师范院校物理 专业的一门基础理论课,因此把它设定为物理专业的本科专业必修课程。 《理论力学基本教程》的课程目标是:使学生系统地掌握理论力学的基本概念,基本规律及其中的物理思想和研究方法,具备分析问题和解决问题的能力,并为后继相关课程奠定基础;同时结合本课程特点,培养学生的辩证唯物主义世界观。 《理论力学基本教程》作为后续理论课程的基础课,并与高等数学密切相关,不仅要介绍物体的机械运动规律,还要引导学生如何应用数学去描写和分析物理问题;同时作为科学就必须使用严谨的方法去表达,去描写,去推演,去总结自然规律,因而我们重点放在培养学生正确理解和应用基本概念,基本方法上,在教学过程中注重贯彻少而精的原则,密切联系物理实际问题,注重培养分析问题和解决问题的能力。为此学习者必须先学习大学物理、线性代数、高等数学等课程,同时加强课后练习来帮助加深对该课程教学内容的理解。 第二部分:关于教材与学习参考书的建议 本课程拟采用科学出版社出版的、由管靖等人编写的《理论力学简明教程》作为本课程的主教材。 为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下几本重要的参考书: 1、卢圣治主编:《理论力学基本教程》,北京师范大学出版社,2004年。 2、陈世民主编:《理论力学简明教程》,高等教育出版社,2001年。 3、周衍柏主编:《理论力学教程(第二版)》, 高等教育出版社出版,1986年。 4、金尚年等主编:《理论力学(第二版)》,高等教育出版社,2002年。 5、吴德明主编: 《理论力学基础》,北京大学出版社,1995年。 6、张宏宝主编: 《理论力学教程学习辅导书》,高等教育出版社,2004年。 7、H.戈德斯坦[美]著:《经典力学》(第二版),科学出版社,1996 年。 第三部分:教学内容与考试要求 绪论第一章质点运动学 §1.1质点运动的矢量描述与直角坐标描述 §1.2 质点运动的平面极坐标描述 §1.3质点运动的柱坐标描述 §1.4质点运动的球坐标描述 §1.5质点运动的自然坐标描述 本章要求: 1.掌握在直角坐标系、极坐标系、柱坐标、自然坐标系中描述质点运动的状态(位移、速度、加速度)和在球坐标系中质点速度表示式,并会推导质点的位移、速度、加速度在平面极坐标系、自然坐标系的分量式。(注意矢量要用

理论力学学习心得

篇一:理论力学学习体会 理论力学学习体会 —理论力学所培养的能力 习每一门科目都会给我们带来一种能力的培养,学习数学是去学习思维,学习历史是去学习智慧......那么学习理论力学呢? 很多 人觉得理论力学很枯燥,学起来的时候感觉彻底颠覆了自己的思维,像高中学习的物理什么的 都变成错的了,有时候解下一道题时又感觉上一道的理论是错的,最后都不知道到底该用哪种 方法去理解了。其实,这只是在初学的时候所有的感觉。 理论 力学的学习本身就是一种思维的学习,不过又不仅仅是这样,其中的实际问题的探讨又能帮助 我们提高解决实际问题的能力,看待事物的灵活性等等。 中,一题多解的例子更多,可以用动力学普遍定理求解,也可以用达朗贝尔原理求解,或用动 力学普遍方程求解.我们在学习过程中,相同题型尽量用不同方法求解,做到各种方法融会贯 通.久而久之,就会使我们的思维变得灵活,遇到问题勤于思考、善于思考,广开思路,通过 自己的探索,找出最佳方案. 利用 知识之间的内在联系增强创新意识。 抓住 概念与定理之间的逻辑关系培养逻辑思维能力。 的绝对运动,先将其看作由相对运动、牵连运动组合而成,然后研究三种运动之间的速度关 系、加速度关系,再利用这些关系求解绝对运动的速度、加速度.在学习这些内容时,我们 要善于思考,然后注意分析的过程和解决的办法.一旦理解了这些解决问题的思路,就可以 触类旁通,并灵活应用. 借助 多种形式培养表达能力。受力分析时,需要准确、清晰地画出受力图;运动分析时,需要准 确、清晰地画出速度图、加速度图;计算求解时,需要列出各种方程式。通过这些,可以培养 我们的图像以及数学语言的表达能力。

理论力学第三章习题解析

第三章习题 ( 3.1;3.6;3.7;3.9;3.10;3.12;3.13;3.20;3.21,3.22) 3.1 半径为r 的光滑半球形碗,固定在水平面上。一均质棒斜靠在碗缘,一端 在碗内,一端则在碗外,在碗内的长度为c ,试证棒的全长为 () c r c 2224- 3.1解 如题3.1.1图。 图 题1.3.1 均质棒受到碗的弹力分别为1N ,,2N 棒自身重力为G 。棒与水平方向的夹角为 θ。设棒的长度为l 。 由于棒处于平衡状态,所以棒沿x 轴和y 轴的和外力为零。沿过A 点且与 z 轴平行的合力矩为0。即: 0sin 2cos 2 1 =-=∑θθN N F x ① 0cos 2sin 2 1 =-+=∑G N N F y θθ② 0cos 22=-=∑θl G c N M i ③ 由①②③式得:

()θ θ2 2 cos 1cos 22-=c l ④ 又由于 ,cos 2c r =θ 即 r c 2cos = θ⑤ 将⑤代入④得: ()c r c l 2224-= 3.6 把分子看作相互间距离不变的质点组,试决定以下两种 情况下分子的中心主转动惯量: ()a 二原子分子。它们的质量是1m ,2m ,距离是l 。 ()b 形状为等腰三角形的三原子分子,三角形的高是h ,底 边的长度为a 。底边上两个原子的质量为1m ,顶点上的为2m 。

? C x y h a 1 m 2 m 1 m 第3.6(b)题图 3.6解 (a )取二原子的连线为x 轴,而y 轴与z 轴通过质心。O 为质心,则Ox , Oy ,Oz 轴即为中心惯量主轴。 设1m 、2m 的坐标为()()0,0,,0,0,21l l ,因为O 为质心(如题3.6.2图) 故 02211=+l m l m ① 且 l l l =-12 ② 由①②得 2 1122121,m m l m l m m l m l += +-= 所以中心惯量主轴:

理论力学课程学习心得

理论力学学习心得 当我第一次拿到理论力学这本书,我就有种很强烈亲切感。这倒不是因为书里的内容跟高中物理或大学物理有多少相似,而是我感觉到这是一片适合我思维去发挥的天地。应该说我从很早就喜欢物理,物理那种对称简洁玄妙之美一直牵动着我。 经典力学是已经发展十分完善的一门学科,其基本的理论十分的简单,但其演绎又十分得复杂,深刻。几个屈指可数的基本定理就可以描述我们宏观低速世界所有物体的运动规律。老师上过的一堂复习课也给我留下了十分深刻的印象。整本理论力学,除了下册的分析力学部分,上册就简单分为静力学,运动学,动力学三部分,而每一部分归纳起来就是几个简单的方程。老师最后还开玩笑说整本书复习完了,可一黑板都没有写完。那是我也会心笑了,这是一种简单中的美感。理论力学不像是生物化学,很多知识要靠记忆去扩展,这是一门更多得靠逻辑和推理去构建知识构架的学科。而我就是喜欢这种在少的基本定理中演绎庞大理论体系的学科。我对需要大量记忆的课程并不擅长,但我喜欢在错综复杂的力学体系中用最基本的东西去思考,解决问题,并想出自己真正有个性的办法,我也觉得这样对自己的智力和思维方式才是有帮助的。而理论力学又不同于以前作为基础学科的物理,其分析的问题更加复杂,更加接近实际,对问题的剖析也更加深刻,因此对思维也提出了更多的挑战,激起人的兴趣。 当然在具体学习的过程中,自己还是碰到了很多的困难的。虽然我喜欢这门课的思维方式,可要学好这门课确实是需要付出精力的。正如老师在学期始所说的,理论力学知识并不多,但是很灵活,有时可能一道题目要花半个小时或一个小时来做,在学习过程中,我也确实经历了这样的做题过程。有时觉得会烦躁,但最后静下心来好好把书上的内容系统地过一遍,有时甚至往复地看好多遍,直到自己真正理解,成为让自己接受的知识。这样就好像给自己装好了武器,再去做题往往就会顺利得多。理论力学的难点不在于知识的多,而是真正要学好这门课,对其中没一点知识必须有足够深的理解,然后各种综合性交叉性的题目也便能很自然得想到用书中不同的知识去解决。自己也便能顺利地去推倒自己想要的结论了。 另外这门课最有特色的实践性课题也让我获得了很多。从小到大,我们一直

理论力学题库第3章

理论力学题库——第三章 一、填空题 1.刚体作定轴转动时有个独立变量,作平面平行运动时有个独立 变量。 2.作用在刚体上的力可沿其作用线移动而(“改变”或“不改变”) 作用效果,故在刚体力学中,力被称为矢量。 3.作用在刚体上的两个力,若大小相等、方向相反,不作用在同一条直线 上,则称为。 4.刚体以一定角速度作平面平行运动时,在任一时刻刚体上恒有一点速度 为零,这点称为。 5.刚体作定点转动时,用于确定转动轴在空间的取向及刚体绕该轴线所转 过的角度的三个独立变化的角度称为,其中?称为角,ψ称为角,θ称为角。 6.描述刚体的转动惯量与回转半径关系的表达式是。 7.刚体作平面平行运动时,任一瞬间速度为零的点称为,它 在刚体上的轨迹称为,在固定平面上的轨迹称 为。 8.平面任意力系向作用面内任意一点简化的结果可以归结为两个 基本物理量,主矢和主矩。 9.用钢楔劈物,接触面间的摩擦角为?f。劈入后欲使楔不滑出,则钢楔两 侧面的夹角θ需满足的条件为θ≦2?f。 10.刚体绕O Z 轴转动,在垂直于转动轴的某平面上有A,B两点, 已知O Z A=2O Z B,某瞬时a A =10m/s2,方向如图所示。则此时B点 加速度的大小为5m/s2;与O z B成60度角。 11.如图,杆AB绕A轴以?=5t(?以rad计,t以s计)的规律转 动,上一小环M将杆AB和半径为R(以m计)的固定大圆环连 在一起,若以O1为原点,逆时针为正向,则用自然法表示的点M 的运动方程为s=πR/2+10Rt 。 12. 两全同的三棱柱,倾角为θ,静止地置于光滑的水平地面上, 将质量相等的圆盘与滑块分别置于两三棱柱斜面上的A处,皆从 静止释放,且圆盘为纯滚动,都由三棱柱的A处运动到B处, 则此两种情况下两个三棱柱的水平位移_相等_(填写相等或不相 等),因为两个系统在水平方向质心位置守恒。 13.二力构件是指其所受两个力大小相等、方向相反,并且作用在一条直线上是最简单的平衡力系。 14. 若刚体在三个力作用下平衡,其中两个力的作用线汇交于一点,则第三个力

理论力学学习心得五篇

理论力学学习心得五篇 篇一:理论力学学习体会 学习每一门科目都会给我们带来一种能力的培养,学习数学是去学习思维,学习历史是去学习智慧。。。。。。那么学习理论力学呢? 很多人觉得理论力学很枯燥,学起来的时候感觉彻底颠覆了自己的思维,像高中学习的物理什么的都变成错的了,有时候解下一道题时又感觉上一道的理论是错的,最后都不知道到底该用哪种方法去理解了。其实,这只是在初学的时候所有的感觉。开始对概念的偏解使你无法让现在所学的与以前的思维统一,等真正理解后才发现是多么的神奇。 理论力学的学习本身就是一种思维的学习,不过又不仅仅是这样,其中的实际问题的探讨又能帮助我们提高解决实际问题的能力,看待事物的灵活性等等。下面我就我的学习体会浅谈一下对学习理论力学后我们所能获得的能力。 通过一题多解培养思维的灵活性。力学问题中一题多解比较普遍.静力学中处理物体系的平衡,可以先取整体然后取部分为研究对象进行求解,也可以逐个取物体系的组成部分为研究对象进行求解.运动学中有些问题,可以用点的运动学知识求解;也可以利用复合运动知识或刚体的平面平行运动知识求解.动力

学中,一题多解的例子更多,可以用动力学普遍定理求解,也可以用达朗贝尔原理求解,或用动力学普遍方程求解.我们在学习过程中,相同题型尽量用不同方法求解,做到各种方法融会贯通.久而久之,就会使我们的思维变得灵活,遇到问题勤于思考、善于思考,广开思路,通过自己的探索,找出最佳方案. 利用知识之间的内在联系增强创新意识。达朗贝尔原理和虚位移原理是创造性思维的具体体现.用动力学普遍定理分析时比较繁琐,于是就另辟思路,提出惯性力,将动力学问题变为静力学问题来处理;对一些复杂结构,用静力学平衡方程求解过程较长而复杂,为此,提出“虚位移”和“虚功”的概念,将静力学问题转为动力学问题来处理,简化计算。 抓住概念与定理之间的逻辑关系培养逻辑思维能力。由力的概念到力系的平衡条件;由牵连运动、绝对运动、相对运动的概念到速度、加速度合成定理;由动量的概念到动量定理及动量守恒定理等等,每个概念的提出,每一个定理的推导和应用,一环扣一环,层层递进,形成一个严密的逻辑链.透过这些知识的学习和联系,可以培养我们严密的逻辑思维能力。因此,多掌握一些重要定理的推导过程,并做相关的练习.经过严格的训练,对培养逻辑思维能力大有好处.

理论力学学习方法

理论力学学习方法 通过本课程学习,应达到下列要求: 1、具有把简单的实际问题抽象为理论力学模型的初步能力。 2、能根据问题的具体条件从简单的物体系中恰当地选取分离体,正确地画出受力图。 3、能熟练地计算力在轴上的投影,熟练地计算平面力对点的矩、力对轴的矩,对力和力偶的性质有正确的理解。 4、能熟练应用平衡方程求解一般平面物体系的平衡问题,(包括考虑摩擦的临界平衡问题)。能求解简单的空间平衡问题。 5、能够建立点的运动方程和确定点的运动轨迹,并熟练计算点的速度和加速度。 6、掌握刚体平动、定轴转动和平面运动特征。能熟练地计算定轴转动刚体的角速度和角加速度以及定轴转动刚体内各点的速度和加速度。能熟练计算平面运动刚体的角速度和刚体内各点的速度。会用基点法计算平面运动刚体内各点的加速度。 7、对运动的相对性有清晰的概念。掌握运动合成和分解的方法,能在具体问题中恰当地选取动点和动参考系。能正确分析三种运动和三种速度、三种加速度,并能运用速度合成定理和加速度合成定理求解未知量。 8、能正确地列出质点的运动微分方程,能求解质点动力学的两类问题。 9、能熟练地计算动量、动量矩(定轴转动刚体对转轴)、动能、力的冲量、力的功以及刚体平动、定轴转动和平面运动时惯性力系的主矢和主矩。 10、能正确列出刚体定轴转动微分方程,能用此方程正确求解两类问题,能运用动量定理、质心运动守恒和动量矩定理、动量矩守恒(对轴)计算简单的动力学问题。 11、能正确选择并运用动能定理和动静法求解工程中简单的动力学问题。 12.能熟练运用虚位移原理求解一般的平衡问题。 13、初步获得与本课程有关的工程概念,以及培养相应的数学计算、绘图等方面的能力。 64学时《理论力学》课程基本要求: 通过本课程学习,应达到下列要求: 1.有把简单的实际问题抽象为理论力学模型的初步能力。 2. 能根据问题的具体条件从简单的物体系中恰当地选取分离体,正确地画出受力图。 3. 能熟练地计算力的投影和平面上力对点的矩。对力和力偶的性质有正确的理解。能计算空间力对轴之矩。

理论力学(机械工业出版社)第三章空间力系习题解答.

习 题 3-1 在边长为a 的正六面体上作用有三个力,如图3-26所示,已知:F 1=6kN ,F 2=2kN ,F 3=4kN 。试求各力在三个坐标轴上的投影。 图3-26 kN 60 1111====F F F F z y x 0kN 245cos kN 245cos 2222== ?=-=?-=z y x F F F F F kN 3 3 433kN 3 3 433kN 3 34333 33 33 3==-=-===F F F F F F z y x 3-2 如图3-27所示,已知六面体尺寸为400 mm ×300 mm ×300mm ,正面有力F 1=100N ,中间有力F 2=200N ,顶面有力偶M =20N ·m 作用。试求各力及力偶对z 轴之矩的和。 图3-27 203.034 44.045cos 2 1-?+??-=∑F F M z m N 125.72034 240220?-=-+ -= 3-3如图3-28所示,水平轮上A 点作用一力F =1kN ,方向与轮面成a=60°的角,且在过A 点与轮缘相切的铅垂面内,而点A 与轮心O '的连线与通过O '点平行于y 轴的直线成b=45°角, h =r=1m 。试求力F 在三个坐标轴上的投影和对三个坐标轴之矩。 图3-28 N 354N 225045sin 60cos 1000sin cos ==????==βαF F x N 354N 225045sin 60cos 1000cos cos -=-=????-=-=βαF F y

N 866350060sin 1000sin -=-=??-=-=αF F z m N 25845cos 18661354cos ||||)(?-=???-?=?-?=βr F h F M z y x F m N 96645sin 18661354sin ||||)(?=???+?=?+?=βr F h F M z x y F m N 500160cos 1000cos )(?-=???-=?-=r F M z αF 3-4 曲拐手柄如图3-29所示,已知作用于手柄上的力 F =100N ,AB =100mm ,BC =400mm ,CD =200mm ,a=30°。试求力F 对 x 、y 、z 轴之矩。 图3-29 N 2530sin 100sin sin 2=??==ααF F x N 3.43N 32530cos 30sin 100cos sin -=-=????-=-=ααF F y N 6.8635030cos 10030cos -=-=??-=?-=F F z 3 .03504.0325)(||||)(?-?-=+?-?-=CD AB F BC F M z y x F m N 3.43325?-=-= m N 104.025||)(?-=?-=?-=BC F M x y F m N 5.73.025)(||)(?-=?-=+?-=CD AB F M x z F 3-5 长方体的顶角A 和B 分别作用力F 1和F 2,如图3-30所示,已知:F 1=500N ,F 2=700N 。试求该力系向O 点简化的主矢和主矩。 图3-30 N 4.82114100520014 25 221R -=--=? -?-='F F F x N 2.561141501432R -=-=?-='F F y N 7.4101450510014 15 1 21R =+=? +?='F F F z N 3.10767.410)2.561()4.821(222R =+-+-='F

周衍柏理论力学教学总结

周衍柏理论力学教学总结 篇一:理论力学总结 理论力学总结 姓名:黄亚敏班级0911物理学学号:20XX110102指导老师:夏清华前言:学习一门课程很重要的一个环节就是总结,这样才能知道自己学到了什么,还有那些不了解,还有哪些地方需要再进一步的学习,同时还可以总结出一些好的学习方法和学习习惯,这样皆可以运用到其他方面上。 初看周衍柏《理论力学》一书,只觉得满书全是数学公式,比如第一章质点力学中的极坐标系中的速度、加速度的分量表达式,对我来说就是一个大困难,怎么就弄不明白为什么 ?didt??did?d?dt ????j , ? djdt ? ?djd?d?dt ?????i?,即曲线上的某点p的沿位矢方向的坐标i对 时间t求导之后为另一方向单位矢量,自己看的时候很不能理解,后

来经过推导之后发现确实是这样的,后来自己又推导一遍,发现是正确的,是数学上的微分运算 ?? 因为我开始的错误理解是:i与时间没有关系,因为在直角坐标系中,并没有对i求??? 导,但是不同的是,在直角坐标系中,单位矢量i,j,k是不变的,但在极坐标中,?? 单位矢量i,j的量值虽然为1,但方向一直随着位矢的方向的变化而变化,所以这????? ?里的单位矢量i,j是一个变量。求得的速度加速度表达式为v??ri??rj,??? 2??????)ja?(??r?r?)i?(r??2r ,还可以用自然坐标算出加速度,表达式简单一些,但前 ??ds? v?vi?i dt 提是要清楚曲线的曲率半径?,才会简化加速度表达式,为 ?? 2?2?dvdsdsdidv?v? a??i??i?j2 dtdtdtdtdt? ,

周衍柏《理论力学》教案分析力学

第五章分析力学 本章要求(1)掌握分析力学中的一些基本概念;(2)掌握虚功原理;(3)掌握拉格朗日方程;(4)掌握哈密顿正则方程. 第一节约束和广义坐标 一、约束的概念和分类 加于力学体系的限制条件叫约束. 按不同的标准有不同的分类: 按约束是否与时间有关分类:稳定约束、不稳定约束; 按质点能否脱离约束分类:可解约束、不可解约束; 按约束限制范围分类:几何约束(完整约束)、运动约束(不完整约束). 本章只讨论几何约束(完整约束),这种约束下的体系叫完整体系. 二、广义坐标 1、自由度 描述一个力学体系所需要的独立坐标的个数叫体系的自由度. 设体系有n个粒子,一个粒子需要3个坐标(如x、y、z)描述,而体系受有K个约束条件,则体系的自由度为(3n-K) 2、广义坐标 描述力学体系的独立坐标叫广义坐标.例如:作圆周运动的质点只

须角度用θ描述,广义坐标为θ,自由度为1,球面上运动的质点, 由极角θ和描述,自由度为2. 第二节虚功原理 本节重点要求:①掌握虚位移、虚功、理想约束等概念;②掌握虚功原理. 一、实位移与虚位移 质点由于运动实际上所发生的位移叫实位 移;在某一时刻,在约束允许的情况下,质点可 能发生的位移叫虚位移. 如果约束为固定约束,则实位移是虚位移中 一的个;若约束不固定,实位移与虚位移无共同之处.例如图 5.2.1 中的质点在曲面上运动,而曲面也在移动,显然实位移与虚位移 不一致. 二、理想约束 设质点系受主动力和约束力的作用,它们在任意虚位移中作的功叫虚功. 若约束反力在任意虚位移中对质点系所作虚功之和为零,则这种约束叫理想约束.光滑面、光滑线、刚性杆、不可伸长的绳等都是理想约束. 三、虚功原理 1、文字叙述和数学表示: 受理想约束的力学体系,平衡的充要条件是:作用于力学体系的

理论力学周衍柏第三版第二章习题答案

第二章习题解答 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。 题2.1.1图 有质心公式 ??= dm xdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS , dr rd dS dm θρρ== 又因为 θcos r x = 所以 θ θθρθρsin 32a dr rd dr rd x dm xdm x c ===?????? 对于半圆片的质心,即2 πθ=代入,有 πππ θθa a a x c 342 2sin 32sin 32=? == 解 建立如图图所示的球坐标系

题2.2.1图 把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为ρ。 则 )(222z a dz y dv dm -===ρπρπρ 由对称性可知,此球帽的质心一定在z 轴上。 代入质心计算公式,即 ) 2()(432 b a b a dm zdm z c ++- ==?? 解 建立如题图所示的直角坐标,原来人W 与共同作一个斜抛运动。 y O 题2.3.1图 当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1s

t a v s ?=cos 01 ① gt v =αsin 0 ② ααcos sin 20 1g v s = ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 )(cos )(0u v w Wv v w W x x -+=+α 可知道 u w W w a v v x ++ =cos 0 水平距离 αααsin )(cos sin 0202uv g W w w g v t v s x ++== 跳的距离增加了 12s s s -=?= αsin )(0uv g w W w + 2.4 解 建立如图图所示的水平坐标。 题2.4.1图 θ题2.4.2图 以1m ,2m 为系统研究,水平方向上系统不受外力,动量守恒,有 2211=+x m x m && ① 对1m 分析;因为 相对绝a a a += ② 1m 在劈2m 上下滑,以2m 为参照物,则1m 受到一个惯性力21x m F &&-=惯(方向与2m 加速度方向相反)。如图图所示。所以1m 相对2m 下滑。由牛顿第二定律有 θ θcos sin 21111x m g m a m &&+=' ②

理论力学第三版(周衍柏)习题答案

理论力学第三版(周衍柏)习题答案

第一章 质点力学 第一章习题解答 1.1 由题可知示意图如题1.1.1图: { { S S t t 题1.1.1图 设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a . 则有: ()()??? ??? ? +-+=-=2 21210211021221t t a t t v s at t v s 由以上两式得 1102 1 at t s v += 再由此式得 ()() 2121122t t t t t t s a +-= 证明完毕. 1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题1. 2.1图. 题1.2.1图 设A 船经过0t 小时向东经过灯塔,则向北行驶的B 船经过??? ? ?+2110t 小时经过灯塔任意时刻A 船的坐标

()t t x A 15150--=,0=A y B 船坐标0=B x , ?? ????-??? ??+-=t t y B 15211150 则AB 船间距离的平方 ()()2 22B A B A y y x x d -+-= 即 () 2 02 1515t t d -=2 01521115?? ????-??? ??++t t ()2 02 002211225225675900450??? ? ?++++-=t t t t t 2d 对时间t 求导 () ()67590090002 +-=t t dt d d AB 船相距最近,即() 02=dt d d ,所以 h t t 4 30= - 即午后45分钟时两船相距最近最近距离 2 2 min 231543154315??? ???-?+??? ? ? ?=s km 1.3 解 ()1如题1.3.2图 x y C a B A ψ ? r O a 第1.3题图

理论力学(周衍柏第三版)思考题习题答案

第一章思考题解答 1.1答:平均速度是运动质点在某一时间间隔t t t ?+→内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿t ?对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。在0→?t 的极限情况,二者一致,在匀速直线运动中二者也一致的。 1.2答:质点运动时,径向速度r V 和横向速度θV 的大小、方向都改变,而r a 中的r 只反映了r V 本身大小的改变,θa 中的θθ r r +只是θV 本身大小的改变。事实上,横向速度θV 方向的改变会引起径向速度r V 大小大改变,2θ r -就是反映这种改变的加速度分量;经向速度r V 的方向改变也引起θV 的大小改变,另一个θ r 即为反映这种改变的加速度分量,故2θ r r a r -=,.2θθθ r r a +=。这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况 1.3答:内禀方程中,n a 是由于速度方向的改变产生的,在空间曲线中,由于a 恒位于密切面内,速度v 总是沿轨迹的切线方向,而n a 垂直于v 指向曲线凹陷一方,故n a 总是沿助法线方向。质点沿空间曲线运动时,0,0≠=b b F a z 何与牛顿运动定律不矛盾。因质点除受作用力F ,还受到被动的约反作用力R ,二者在副法线方向的分量成平衡力0=+b b R F ,故0=b a 符合牛顿运动率。有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。有人也许还会问:某时刻若 b b R F 与大小不等,b a 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同, 质点的位置也在改变,副法线在空间中方位也不再是原来b a 所在的方位,又有了新的副法线,在新的副法线上仍满足00==+b b b a R F 即。这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。 1.4答:质点在直线运动中只有n a a 而无τ,质点的匀速曲线运动中只有τa a n 而无;质点作变速运动时即有n t a a 又有。 1.5答:dt d r 即反应位矢r 大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量, 而 dt dr 只表示r 大小的改变。如在极坐标系中,j i r θ r r dt d +=而r dt dr =。在直线运动中,规定了直线的正方向后, dt d dt dr r = 。且dt dr 的正负可表示dt d r 的指向,二者都可表示质点的运

理论力学(周衍柏)习题答案,第四章

第四章习题解答 4.1解如题4.1.1图所示. 坐标系的原点位于转动的固定点,轴沿轴与角速度的方向一致,即设点沿运动的相对速度为则有题意得: 故在点时的绝对速度 设与轴的夹角为,则故与边的夹角为,且指向左上方。 点时绝对速度

设的夹角为,则,故与边的夹角 为,且指向左下方。 4.2解如题4.2.1图所示, 以转动的方向为极角方向建立坐标系。轴垂直纸面向外,设点相 对速度 ① 设绝对速度的量值为常数,则: ② 对②式两边同时球时间导数得: 依题意故解得通解 当时,,将其带入①式游客的知: 时, 即 最后有 4.3解如题4.3.1图所示,

直角坐标的原点位于圆锥顶点轴过圆锥的对称轴.点在轴上对应的一点,且有,所以点的绝对加速度: 最后有 4.4解如题4.4.1图所示, 题4.4.1图 坐标系是以轴转动的坐标系.图中画出的是曲线的一段,在任意一点处,假设某质点在此处静止,则该质点除了受重力、钢丝的约束力之外,还会受惯性离心力的作用,,方向沿轴正向,在作用下,致信处于平衡状态,则有

① ② 有①得 ③ 又因为过原点.对上式积分得抛物线 有③得 将代入②的反作用力 4.5以直管为参照系,方向沿管,沿竖直轴建立坐标系,则小球受力为: 故沿方向运动的微分方程为: ① 有初始条件:可得①式解为 故当邱刚离开管口时,即时.则

得 所以此时: 故当球刚要离开管口时的相对速度为,绝对速度为,小球从开始运动到离开管口所需时间为 4.6解以光滑细管为参考系,沿管,沿水平轴建立坐标系,如题4.6.1图所示, 则小球受力为: 故沿方向运动的微分方程为: ① 方程的通解

理论力学教程第三版(周衍柏著)课后答案下载

理论力学教程第三版(周衍柏著)课后答案下载 理论力学教程第三版可作为高等学校物理类专业教材,其他相关专业视需要也可选为理论力学教材或参考书。以下是由关于理论力学教程第三版(周衍柏著)课后答案下载地址,希望大家喜欢! 点击进入:理论力学教程第三版(周衍柏著)课后答案下载地址本书是在第二版的基础上修订而成的,适用于高等学校物理类专业的理论力学课程。本书与第二版相比内容保持不变,仅将科学名词、物理量符号等按照国家标准和规范作了更新。本书内容包括质点力学、质点组力学、刚体力学、转动参考系及分析力学等,每章附有小结、补充例题、思考题及习题。 绪论 第一章质点力学 §1.1运动的描述方法 §1.2速度、加速度的分量表示式 §1.3平动参考系 §1.4质点运动定律 §1.5质点运动微分方程 §1.6非惯性系动力学(一) §1.7功与能 §1.8质点动力学的基本定理与基本守恒定律 §1.9有心力 小结

补充例题 思考题 习题 第二章质点组力学 §2.1质点组 §2.2动量定理与动量守恒定律 §2.3动量矩定理与动量矩守恒定律§2.4动能定理与机械能守恒定律§2.5两体问题 §2.6质心坐标系与实验室坐标系§2.7变质量物体的运动 §2.8位力定理 小结 补充例题 思考题 习题 第三章刚体力学 §3.1刚体运动的分析 §3.2角速度矢量 §3.3欧拉角 §3.4刚体运动方程与平衡方程 §3.5转动惯量

§3.6刚体的平动与绕固定轴的转动 §3.7刚体的平面平行运动 §3.8刚体绕固定点的转动 *§3.9重刚体绕固定点转动的解 *§3.10拉莫尔进动 小结 补充例题 思考题 习题 第四章转动参考系 §4.1平面转动参考系 §4.2空间转动参考系 §4.3非惯性系动力学(二) *§4.5傅科摆 小结 补充例题 思考题 习题 第五章分析力学 §5.1约束与广义坐标 §5.2虚功原理 §5.3拉格朗日方程

《理论力学》课程的基本内容、教学安排和学习特点

《理论力学》课程的基本内容、教学安排和学习特点 一、《理论力学》课程的教学安排、基本内容和学习特点 1、静力学基础(4学时)(讲授+习题讨论) 知识点:力的概念和静力学公理, 约束及约束反力, 物体的受力分析及受力图。 重点:约束及约束反力, 物体的受力分析及受力图。 难点:物体的受力分析及受力图。 2、平面基本力系(4学时)(讲授+习题讨论) 知识点:平面汇交力系合成与平衡的几何法, 平面汇交力系合成与平衡的解析法, 平面力对点之矩的概念, 平面力偶理论。 重点:平面汇交力系合成与平衡的解析法, 平面力对点之矩的概念, 平面力偶理论。 难点:平面汇交力系合成与平衡的解析法, 平面力偶理论。 3、平面任意力系(8学时)(讲授+习题讨论) 知识点:平面任意力系的简化, 平面任意力系的平衡条件和平衡方程, 平面平行力系的平衡方程, 物体系统的平衡、静定和静不定问题。 重点:平面任意力系的平衡条件和平衡方程,物体系统的平衡、静定和静不定问题。 难点:物体系统的平衡。 4、空间力系(6学时)(讲授+习题讨论) 知识点:力在直角坐标轴上的投影, 力对点之矩和力对轴之矩, 空间力系的简化, 空间力系的平衡方程及其应用, 重心。 重点:力对点之矩和力对轴之矩, 空间力系的简化, 空间力系的平衡方程及其应用。 难点:力对点之矩和力对轴之矩, 空间力系的平衡方程及其应用。 5、摩擦(4学时)(讲授+习题讨论) 知识点:滑动摩擦, 摩擦角和自锁现象, 考虑摩擦时物体的平衡问题, 滚动摩擦和滚动摩阻。 重点:摩擦角和自锁现象, 考虑摩擦时物体的平衡问题。 难点:考虑摩擦时物体的平衡问题。 6、点的运动学基础(4学时)(讲授+习题讨论)

关于如何学好理论力学-1

关于如何学好理论力学-1 《工程力学》系列课程包括《理论力学》和《材料力学》两门课程,本学期我们学习的是《理论力学》,按顺序我们最开始涉及到的是《理论力学》的“运动学”部分,那就先来说一说如何学好这一部分吧。 “运动学”可以说是理论力学中最灵活的一部分了,也是学好后面最难的“动力学”的基础。运动学如果没学好,动力学部分更会一塌糊涂。要想学好“运动学”,应该注意下面几个问题: (1)建立准确的基本概念 有些概念是大家过去熟悉的,但不等于你对它的本质有准确的理解,因为按照你们过去的解题经验,对概念的理解往往过于片面甚至错误,这些错误的概念在处理过去的特例问题时并没有什么问题,但推广到现在的一般情形就不好使了,多数情形下,出错原因往往就是某个基本概念的理解有偏差。所以,对基本概念要认真理解,甚至需要钻钻牛角尖,特别要改正以前已经先入为主占据了地位的错误概念。 (2)学会现在的思考方法和求解思路 运动学的研究内容无非是各种运动学量,速度,加速度,角速度,角加速度等等,这些都是大家耳熟能详的东西,不少人往往有思维定式,解题喜欢用自己过去惯用的思路和方法,这是最要不得的,一定要学会用新的思路和方法——否则的话,越往后就越会感到寸步难行的——大家要清楚地意识到这一点:如果以前学的方法可以求解现在的问题,那我们就没有必要开这门课了。 (3)一定要跟上课程进度,遇到问题要及时解决 《理论力学》课程各章的内容是相互关联的,后面的内容要用到前面的作基础,所以如果前面没有学好,后面的内容几乎无法进行下去——就像大家穿的毛衣,一根线织成,一环套一环,一个地方断了线,会秃噜秃噜破开一大片。所以学习中有了问题,希望大家及时找老师答疑,和同学讨论也是弄明白所以然的途径,大家一起辩论辩论可以澄清模糊的概念,和老师讨论更是找到自己错在哪里的捷径。 先说这些吧,以后针对具体问题还可以讨论。

简介理论力学及其学习方法

简介理论力学及其学习方法 胡楚勒 摘 要:本文介绍理论力学课程的内容、任务、特点及其学习方法。 关键词:理论力学;经典力学;理论物理;宏观机械运动 与接触任何新生事物一样,当你开始学习一门新的课程时,总有一种强烈的求知欲,渴望掌握这门课程,提高自己的水平有效地进行学习。为此,总希望学习开始时了解这门课程的内容、任务、特点及其学习方法。希望我下面的一些看法对理论力学的学习者有所帮助。 一、理论力学课程的内容 理论力学的研究对象与普通物理力学相同,都是研究宏观物体作低速机械运动的普遍规律,即研究当量子效应和相对论效应都可忽略时物体的机械运动规律,因此,理论力学的研究内容又称为经典力学。 目前我国绝大多数院校物理学专业的理论力学课程的内容包括牛顿力学和分析力学两部分。牛顿力学和分析力学代表经典力学中两种不同的理论体系,反映处理经典力学问题的两种不同方法。前者是以牛顿定律为基础发展起来的,它将周围物体的作用归结为“力”,强调力与运动变化间的因果关系,与此相应,它以矢量分析为主要数学工具,通过演绎的方法,深入地、系统地、全面地将宏观机械运动的内在规律揭示出来。牛顿力学在科学技术领 域及天体运行理论方面取得的成功,反映了人类智慧获得的辉煌成就。分析力学是由拉格朗日(https://www.sodocs.net/doc/2016064512.html,grange)和哈密顿(W.R.Hamilton)等人建立并完善起来的经典力学理论,它的理论体系和采用的方法与牛顿力学完全不同,它强调的是具有广泛意义的“能量”概念而不是力的概念,它所揭示的规律具有更高的概括性,因而也具有更大的普遍性。它不仅揭示出宏观机械运动的统一规律,能够用普遍适用的统一的方法处理各种力学体系的运动问题,而且还揭示出力学规律与其他规律间的统一性。因此,分析力学代表经典力学的进一步发展,分析力学的发展为从经典物理向近代物理过渡起到了重要作用。根据教学计划,本课程在专科阶段只要求掌握牛顿力学部分;在本科阶段则要求掌握 牛顿力学和分析力学两部分内容。 机械运动(即位置的变动)是物质运动最简单的形式,物质运动的其他高级的形式往往都包含有机械运动。因此,经典力学的内容具有基础的性质,它的使用范围虽然受到限制,但仍然十分广阔。从满足一定条件的微观粒子到地面上的物体

理论力学教案

理论力学 教案 《理论力学》课程基本信息 (一)课程名称:理论力学 (二)学时学分:每周4学时,学分4 (三)予修课程:力学、高等数学 (四)使用教材:金尚年、马永力编著《理论力学》,第二版.,北京:高等教育出版社,2002年7月,面向21世纪课程教材。 (五)教学参考书: 1.周衍柏《理论力学教程》(第二版),北京:高等教育出版社,1986年。 2.郭士望《理论力学》上、下册,北京:高等教育出版社,1982。 3.梁昆森《力学》上、下册,北京:人民教育出版社,1979。 (六)教学方法:课堂讲授,启发式教学 (七)教学手段:传统讲授与多媒体教学相结合 (八)考核方式:闭卷考试占总成绩70%,平时作业成绩占30% (九)学生创新精神与实践能力的培养方法:在课程讲授过程中注意采用启发式教学手段,将基本的概念和规律讲清、讲透,而将一些具有推广性的问题留给学生思考,以此来提高学生分析问题、解决问题的能力。并且在课堂讲授时多联系实际的力学问题,以此来提高学生解决实际问题的能力。 (十)其他要求:每堂课后布置适量的课后作业并定期批改、检查和给出成绩,这部分成绩将占期末总成绩的30%。

绪论 一:《理论力学》课程的内容:该课程是以牛顿力学和分析力学为主要内容的力学理论,是理论物理的第一门课程。是从物理学的基本经验规律出发,借助于微积分等数学工具,推导出关于物体机械运动时所满足的整体规律的一门课程。 二:《理论力学》与《力学》的区别和联系 1.内容:《理论力学》包括牛顿力学和分析力学,是《力学》课程的深入和提高;而《力学》课程仅讲授牛顿力学,且研究的深度不及《理论力学》。 2.研究手段:《力学》是从物理现象出发,通过归纳总结出物质运动的规律。 《理论力学》是从经验规律出发,借助于数学工具,推导出物质运动所满足的规律,并通过实践来检验该规律的真伪,着重培养学生理性思维的能力。 三:本教材的特点:将牛顿力学和分析力学穿插在一起讲解,可对比二者在处理力学问题时各自的优缺点,并适当增加了分析力学在这门课中的比重。 第一章牛顿动力学方程 教学目的和基本要求:要求学生了解牛顿运动定律的历史地位,掌握牛顿第二定律在常用坐标系中的表达式和使用方法;熟练掌握运用运动微分方程求解并讨论力学问题的方法;理解质点系、质心、动量、角动量和能量的概念;熟练掌握三个基本定理、三个守恒定律的内容和它们的适用条件,以及应用它们求解问题的方法步骤;了解研究变质量物体运动的指导思想和处理方法。 教学重点:熟练掌握牛顿运动定律,动量、角动量、能量定理以及运用这些定理解决力学问题的方法。 教学难点:如何讲清牛顿第二定律、三个守恒定律在具体力学问题中的应用方法。 §1.1 牛顿的《原理》奠定了经典力学的理论基础 一:经典力学的理论基础——牛顿于1687年发表的《自然哲学的数学原理》,简称《原理》,是牛顿在总结伽利略等前人的研究成果再加上自己的研究成果后形成的。在原理中牛顿提出了著名的力学三定律和万有引力定律,并阐述了关于时间、空间的基本概念和区别相对运动和绝对运动的思想。

理论力学第三版(周衍柏)习题答案

第一章 质点力学 第一章习题解答 1.1 由题可知示意图如题1.1.1图: { { S S t t 题1.1.1图 设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a . 则有: ()()??? ??? ? +-+=-=2 21210211021221t t a t t v s at t v s 由以上两式得 1102 1 at t s v += 再由此式得 ()() 2121122t t t t t t s a +-= 证明完毕. 1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题1. 2.1图. 题1.2.1图 设A 船经过0t 小时向东经过灯塔,则向北行驶的B 船经过??? ? ?+2110t 小时经过灯塔任意时刻A 船的坐标

()t t x A 15150--=,0=A y B 船坐标0=B x , ?? ????-??? ??+-=t t y B 15211150 则AB 船间距离的平方 ()()222B A B A y y x x d -+-= 即 ()2021515t t d -=2 01521115?? ????-??? ??++t t ()2 02 002211225225675900450??? ? ?++++-=t t t t t 2d 对时间t 求导 () ()67590090002 +-=t t dt d d AB 船相距最近,即() 02=dt d d ,所以 h t t 4 30= - 即午后45分钟时两船相距最近最近距离 2 2min 231543154315??? ???-?+??? ? ? ?=s km 1.3 解 ()1如题1.3.2图 第1.3题图

相关主题