搜档网
当前位置:搜档网 › 糖酵解途径中的关键酶

糖酵解途径中的关键酶

糖酵解途径中的关键酶
糖酵解途径中的关键酶

糖酵解途径中的关键酶:

丙酮酸脱氢酶系:

三羧酸循环中的关键酶:

①三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。

②TAC过程的反应部位是线粒体。

TCA的生理意义:

1.为生物体提供大量的生物能,完成生物物质的完全降解

2.通过TCA可为蛋白质、核酸的合成提供重要的中间产物,如a-酮戊二酸、草酰乙酸

3.各类有机物质相互转变的枢纽

磷酸戊糖途径(HMP途径)的生理意义:

1.生成了大量核糖-5-P,为合成核苷酸衍生物(如辅酶等)、合成核酸准备了原料,修复再生组织中,次条途径比较旺盛。

2.提供了大量的NADPH,它在脂类、固醇类等物质的生物合成和羟化转化过程中是十分重要的电子供体;与解毒药物有关的肝脏约有30%的G走次途径;它还是GSH还原酶的辅酶。

3.光合作用的暗反应密切相关。

4.产生大量的能量

糖异生:

部位:肝脏

提问:哪些物质可以通过糖异生途径形成糖元?

凡能转变成糖代谢中间产物的物质。

脂质消化的主要部位:十二指肠

β-氧化:

β-氧化发生在肝及其它细胞的线粒体内。

β-氧化包括四个步骤:

终止子:DNA分子上有终止转录的特殊信号,也是特定的核苷酸序列,称为终止子。

氨基酸:体内不能合成,必须由食物蛋白质供给的氨基酸称为必需氨基酸

必需氨基酸一共有八种或十种:Lys、Trp、Phe、Met、Thr、Leu、Ile、V al、(婴幼儿能合成部分His和Arg)。

体内氨的主要代谢去路是用于合成无毒的尿素。合成尿素的主要器官是肝脏

催化这些反应的酶存在于胞液和线粒体中。

高等植物,以谷氨酰胺或天冬酰胺形式储存氨,不排氨。

翻译:将DNA传递给mRNA的遗传信息,根据核酸链上每三个核苷酸决定一个氨基酸的三联体密码规则,合成出具有特定氨基酸顺序蛋白质肽链的过程,这一过程被称为翻译

遗传密码具有以下特点:

①连续性:密码子无标点符号

②简并性:氨基酸可以有几组不同的密码子

③通用性:高等和低等生物共用同一套密码;

④方向性:即解读方向为5′→ 3′;

⑤摆动性:密码子专一性由头两位碱基决定

⑥起始密码: AUG;

终止密码: UAA、UAG、UGA。

tRNA和核蛋白体

种类原核细胞核糖体真核细胞核糖体

70S80S 亚基30S50S40S60S

rRNA16S5S、23S18S 5S、28S、(哺乳动物

5.8S)

蛋白质21种34种30多种50多种

生物氧化:糖,脂,蛋白质等有机物质在细胞中进行氧化分解,生成CO2,H2O并释放出能量,这个过程称生物氧化。

生物氧化的特点

1、细胞内温和环境中的酶促反应。

2、有机酸脱羧产生CO2,底物脱氢传递给氧产生H2O。

3、能量逐步释放,与生成A TP相偶联。

4、可受多种因素的调节。

糖酵解途径

糖酵解途径(glycolytic pathway)是指细胞在胞浆中分解葡萄糖生成丙酮酸(pyruvate)的过程,此过程中伴有少量ATP的生成.在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖酵解.有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O. 葡萄糖不能直接扩散进入细胞内,其通过两种方式转运入细胞:一种是在前一节提到的与Na+共转运方式,它是一个耗能逆浓度梯度转运,主要发生在小肠粘膜细胞、肾小管上皮细胞等部位;另一种方式是通过细胞膜上特定转运载体将葡萄糖转运入细胞内(图4-1),它是一个不耗能顺浓度梯度的转运过程.目前已知转运载体有5种,其具有组织特异性如转运载体-1(GLUT-1)主要存在于红细胞,而转运载体-4(GLUT-4)主要存在于脂肪组织和肌肉组织. 糖酵解过程 糖酵解分为两个阶段共10个反应,每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程,第二阶段5个反应生成4个分子ATP为释能过程. 1.第一阶段 (1)葡萄糖的磷酸化(phosphorylation of glucose) 进入细胞内的葡萄糖首先在第6位碳上被磷酸化生成6-磷酸葡萄糖(glucose 6 phophate,G-6-P),磷酸根由ATP供给,这一过程不仅活化了葡萄糖,有利于它进一步参与合成与分解代谢,同时还能使进入细胞的葡萄糖不再逸出细胞.催化此反应的酶是己糖激酶(hexokinase,HK).己糖激酶催化的反应不可逆,反应需要消耗能量

ATP,Mg2+是反应的激活剂,它能催化葡萄糖、甘露糖、氨基葡萄糖、果糖进行不可逆的磷酸化反应,生成相应的6-磷酸酯,6-磷酸葡萄糖是HK的反馈抑制物,此酶是糖氧化反应过程的限速酶(rate limiting enzyme)或称关键酶(key enzyme)它有同工酶Ⅰ-Ⅳ型,Ⅰ、Ⅱ、Ⅲ型主要存在于肝外组织,其对葡萄糖Km值为10-5~10-6M Ⅳ型主要存在于肝脏,特称葡萄糖激酶(glucokinase,GK),对葡萄糖的Km值1~10-2M,正常血糖浓度为5mmol/L,当血糖浓度升高时,GK 活性增加,葡萄糖和胰岛素能诱导肝脏合成GK,GK能催化葡萄糖、甘露糖生成其6-磷酸酯,6-磷酸葡萄糖对此酶无抑制作用. (2)6-磷酸葡萄糖的异构反应(isomerization of glucose-6-phosphate) 这是由磷酸己糖异构酶(phosphohexose isomerase)催化6-磷酸葡萄糖(醛糖aldose sugar)转变为6-磷酸果糖(fructose-6-phosphate,F-6-P)的过程,此反应是可逆的. (3)6-磷酸果糖的磷酸化(phosphorylation of fructose-6-phosphate) 此反应是6磷酸果糖第一位上的C进一步磷酸化生成1,6-二磷酸果糖,磷酸根由ATP供给,催化此反应的酶是磷酸果糖激酶1(phosphofructokinase l,PFK1). PFK1催化的反应是不可逆反应,它是糖的有氧氧化过程中最重要的限速酶,它也是变构酶,柠檬酸、ATP等是变构抑制剂,ADP、AMP、Pi、1,6-二磷酸果糖等是变构激活剂,胰岛素可诱导它的生成. (4)1.6 二磷酸果糖裂解反应(cleavage of fructose 1,6 di/bis phosphate)

关键酶

糖酵解的关键酶——己糖激酶Hexokinase ,磷酸果糖激酶-1 PFK-1,丙酮酸激酶regulative factor:Insulin promotes the synthesis of three key enzymes 磷酸果糖激酶-1 PFK-1: 1)6- 磷酸果糖、1,6-二磷酸果糖、2,6-二磷酸果糖、ADP、AMP是变构激活剂。 2)ATP、柠檬酸及长链脂肪酸是变构抑制剂。 丙酮酸激酶: 1)1,6-二磷酸果糖、ADP是变构激活剂 2)ATP,乙酰CoA及长链脂肪酸是变构抑制剂。 丙酮酸氧化脱酸的关键酶——丙酮酸脱氢酶复合体 E1 TPP VitaminB1 E2 硫辛酸硫辛酸 coenzyme A 泛酸 E3 FAD Vitamin B2 NAD+ Vitamin PP Regulation:受催化产物ATP、乙酰CoA的抑制。AMP 、CoA 、NAD+增加乙酰CoA减少,酶激活 三羧酸循环的关键酶—— 1)柠檬酸合酶 2)异柠檬酸脱氢酶(高能状态-ATP多-的情况下受抑制,and vice verse ), 3)α-酮戊二酸脱氢酶(类似丙酮酸脱氢酶复合体,3,5形式) 产物堆积抑制TCA,主要是ADP 、ATP 的变化。 Ca+ 可促进TCA 磷酸戊糖的关键酶——6-磷酸葡萄糖脱氢酶 受NADPH 的反馈抑制性调节 糖异生的关键酶——G-6-P酶,果糖二磷酸酶,磷酸烯醇式丙酮酸激酶(草酰乙酸磷酸烯醇丙酮酸)、丙酮酸羧化酶(丙酮酸草酰乙酸) 途径Ⅰ:果糖二磷酸酶(1,6二磷酸果糖G-6-P)G-6-P酶(G-6-P Glucose )2,6-二磷酸果糖和AMP激活G-6-P酶,而抑制果糖二磷酸酶的活性而抑制糖异生 途径Ⅱ:丙酮酸激酶(磷酸烯醇式丙酮酸丙酮酸) 1,6二磷酸果糖是丙酮酸激酶的变构激活剂 增强糖异生,必要抑制糖酵解。 原料增加可促进糖异生,乙酰CoA可加强糖异生 丙酮酸羧化酶,辅基:生物素。需要Mg2+ 和Mn2+ 磷酸烯醇式丙酮酸有能量最高的高能磷酸键 糖原合成的关键酶——糖原合酶

糖酵解途径中的关键酶

糖酵解途径中的关键酶: 丙酮酸脱氢酶系: 三羧酸循环中的关键酶: ①三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。 ②TAC过程的反应部位是线粒体。 TCA的生理意义: 1.为生物体提供大量的生物能,完成生物物质的完全降解 2.通过TCA可为蛋白质、核酸的合成提供重要的中间产物,如a-酮戊二酸、草酰乙酸 3.各类有机物质相互转变的枢纽 磷酸戊糖途径(HMP途径)的生理意义: 1.生成了大量核糖-5-P,为合成核苷酸衍生物(如辅酶等)、合成核酸准备了原料,修复再生组织中,次条途径比较旺盛。 2.提供了大量的NADPH,它在脂类、固醇类等物质的生物合成和羟化转化过程中是十分重要的电子供体;与解毒药物有关的肝脏约有30%的G走次途径;它还是GSH还原酶的辅酶。 3.光合作用的暗反应密切相关。 4.产生大量的能量 糖异生: 部位:肝脏 提问:哪些物质可以通过糖异生途径形成糖元? 凡能转变成糖代谢中间产物的物质。 脂质消化的主要部位:十二指肠 β-氧化: β-氧化发生在肝及其它细胞的线粒体内。 β-氧化包括四个步骤: 终止子:DNA分子上有终止转录的特殊信号,也是特定的核苷酸序列,称为终止子。 氨基酸:体内不能合成,必须由食物蛋白质供给的氨基酸称为必需氨基酸 必需氨基酸一共有八种或十种:Lys、Trp、Phe、Met、Thr、Leu、Ile、V al、(婴幼儿能合成部分His和Arg)。 体内氨的主要代谢去路是用于合成无毒的尿素。合成尿素的主要器官是肝脏 催化这些反应的酶存在于胞液和线粒体中。 高等植物,以谷氨酰胺或天冬酰胺形式储存氨,不排氨。 翻译:将DNA传递给mRNA的遗传信息,根据核酸链上每三个核苷酸决定一个氨基酸的三联体密码规则,合成出具有特定氨基酸顺序蛋白质肽链的过程,这一过程被称为翻译 遗传密码具有以下特点: ①连续性:密码子无标点符号 ②简并性:氨基酸可以有几组不同的密码子 ③通用性:高等和低等生物共用同一套密码; ④方向性:即解读方向为5′→ 3′; ⑤摆动性:密码子专一性由头两位碱基决定 ⑥起始密码: AUG;

各种物质代谢关键酶及其调节

各种物质代谢关键酶及其调节 代谢途径关键酶抑制剂激活剂 糖酵解 己糖激酶G6P、长链脂酰CoA 胰岛素 磷酸果糖激酶-1ATP、柠檬酸ADP、AMP F-1,6-2P、F-2,6-2P 丙酮酸激酶ATP、丙氨酸、胰高血糖素F-1,6-2P 糖的有氧氧化(除糖酵解) 丙酮酸脱氢酶复合体ATP、乙酰CoA NADH、脂肪酸 AMP、CoA NAD+、Ca2+异柠檬酸脱氢酶ATP ADP、Ca2+α-酮戊二酸脱氢酶ATP、NADPH、琥珀酰CoA Ca2+ 磷酸戊糖途径葡糖-6-磷酸脱氢酶NADPH/NADP+比例↑NADPH/NADP+比例↓糖原合成糖原合酶糖原合酶b(无活性、磷酸化) 糖原合酶a(有活性、去磷酸化) 糖原分解糖原磷酸化酶糖原磷酸化酶b(去磷酸化) 糖原磷酸化酶a(磷酸化) 糖异生 葡糖-6-磷酸酶 果糖二磷酸酶-1 果糖-2,6-二磷酸ATP/AMP 丙酮酸羧化酶乙酰CoA 磷酸烯醇式丙酮酸羧激酶 胆固醇的合成羟甲基戊二单酰CoA还原酶 (HMG CoA还原酶) 甲羟戊酸、胆固醇、7β-羟胆固 醇、25β-羟胆固醇、胰高血糖素、 皮质醇 胰岛素、甲状腺素 甘油三酯的合成脂酰CoA转移酶 脂肪酸的合成乙酰CoA羧化酶脂酰CoA 胰高血糖素、肾上腺素、生长素柠檬酸、异柠檬酸、乙酰CoA 胰岛素 脂肪动员激素敏感性甘油三酯脂肪酶 (HSL) 胰岛素、前列腺素E2 Adr、NA、胰高血糖素、ACTH、 TRH

代谢途径关键酶抑制剂激活剂脂肪酸分解(β-氧化) 肉碱脂酰转移酶I 尿素的合成氨基甲酰磷酸合成酶I N-乙酰谷氨酸 精氨酸代琥珀酸合成酶 嘌呤核苷酸的从头合成磷酸核糖焦磷酸(PRPP)合成酶 PRPP酰胺转移酶 嘧啶核苷酸的从头合成氨基甲酰磷酸合成酶II(人类) 天冬氨酸氨基甲酰转移酶(细菌) 胆汁酸的合成胆固醇7α-羟化酶 DNA的合成DNA-pol(DNA聚合酶) RNA的合成RNA-pol(RNA聚合酶) 蛋白质的合成氨基酰tRNA合成酶 冈崎片段的处理是复制过程中的切除修复,所需的酶——RNA酶、DNA-pol I、DNA连接酶 由糖基化酶起始作用的损伤切除修复所需的酶——内切酶、外切酶、连接酶、聚合酶 紫外线所致损伤修复所需的酶——蛋白质UvrA、B、C,解螺旋酶、DNA-pol I、连接酶

糖酵解途径

第六章糖代谢 第一节糖酵解途径** 糖酵解途径中,葡萄糖在一系列酶的催化下,经10步反应降解为2分子丙酮酸,同时产生2分子NADH+H+和2分子ATP。 主要步骤为(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛和磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H及磷酸变成丙酮酸,脱去的2H被NAD+所接受,形成NADH+H+。 丙酮酸的去路: (1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1分子NADH+H+。乙酰辅酶A进入三羧酸循环,最后氧化为CO2和H2O。 (2)在厌氧条件下,可生成乳酸和乙醇。同时NAD+得到再生,使酵解过程持续进行。 第二节三羧酸循环*** 在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧和脱羧生成琥珀酰CoA;琥珀酰CoA发生底物水平磷酸化产生1分子GTP和琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。三羧酸循环每循环一次放出2分子CO2,产生3分子NADH+H+,和一分子FADH2。 第三节磷酸戊糖途径** 在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段和非氧化阶段被氧化分解为CO2,同时产生NADPH + H+。 其主要过程是G-6-P脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。6分子核酮糖-5-磷酸经转酮反应和转醛反应生成5分子6-磷酸葡萄糖。中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。 第四节糖异生作用** 非糖物质如丙酮酸,草酰乙酸和乳酸等在一系列酶的作用下合成糖的过程,

糖酵解、TCA途径

糖酵解途径(EMP途径) 定义:葡萄糖经过一系列步骤降解成丙酮酸并生成ATP过程,被认为是微生物最古老原始的获能方式。指在O2不足情况下,葡萄糖或糖原分解为丙酮酸或乳酸,并伴随少量ATP生成。在细胞质中进行。 两个阶段: 一:活化阶段 a:葡萄糖磷酸化:活化葡萄糖,消耗1ATP,使葡萄糖和磷酸结合成葡萄糖-6-磷酸(己糖激酶) b:葡萄糖-6-磷酸重排成果糖-6-磷酸(葡萄糖磷酸异构酶) c:生成果糖-1、6-二磷酸(6-磷酸果糖激酶-1),消耗1ATP d:果糖-1、6-二磷酸断裂为3-磷酸甘油醛和磷酸二羟丙酮(醛缩酶)e:磷酸二羟丙酮很快转变为3-磷酸甘油醛。(丙糖磷酸异构酶)二:放能阶段 a:3-磷酸甘油醛氧化生成1、3-二磷酸甘油酸,释出2电子和1H+,生成NADH+ H+,且将能量转移至高能磷酸键中。 b:不稳定的1、3-二磷酸甘油酸失去高能磷酸键,生成3-磷酸甘油酸,能量转移至ATP中,生成1ATP(发生第一次底物水平磷酸化)c:3-磷酸甘油酸重排生成2-磷酸甘油酸 d:2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸 e:磷酸烯醇式丙酮酸将磷酸基团转移给ADP生成ATP,同时形成丙酮酸(发生第一次底物水平磷酸化)

附图:

总反应式: 一.糖无氧氧化反应(分为糖酵解途径和乳酸生成两个阶段)(一)糖酵解的反应过程(不是限速酶的反应均是可逆的) 1.葡萄糖磷酸化为6-磷酸葡萄糖 [1] 己糖激酶(hexokinase)催化,I-IV型,肝细胞中为IV型,又称葡萄糖激酶 区别:前者Km值小、特异性差。 意义:浓度较低时,肝细胞不能利用Glc。 [2]需要Mg++参与,消耗1分子ATP [3] 关键酶(限速酶):己糖激酶。 [4]反应不可逆,受激素调控。 [5]磷酸化后的葡萄糖不能透过细胞膜而逸出细胞。

相关主题