搜档网
当前位置:搜档网 › 重点12

重点12

重点12
重点12

Differential geometry based active fault tolerant control for aircraft$

P.Castaldi a,N.Mimmo a,n,S.Simani b

a Department of Electrical,Electronic and Information Engineering-University of Bologna,Faculty of Aerospace Engineering,Via Fontanelle40,

47121Forlí(FC),Italy

b Department of Engineering-University of Ferrara,Via Saragat1/E,44124Ferrara(FE),Italy

a r t i c l e i n f o

Article history:

Received15July2012

Accepted23December2013

Available online3February2014

Keywords:

Active fault tolerant control

Differential geometry

Non-linear geometric approach

Fault diagnosis

Disturbance decoupling

Aircraft

a b s t r a c t

This work shows how to use a differential geometry tool to design a novel nonlinear active fault tolerant

?ight control system for aircraft.The proposed control scheme consists of two main subsystems:a

controller,which is designed for the nominal plant,and a fault detection and diagnosis module,which

provides fault estimation.A further feedback loop exploits the fault estimation to accommodate faults

affecting the system.The estimate convergence and the stability of the active fault tolerant?ight

controller are theoretically proved.Finally,high?delity simulations show the effectiveness of the

scheme.

&2014Elsevier Ltd.All rights reserved.

1.Introduction

A conventional feedback control design for a complex system

may lead to unsatisfactory performance,or even instability,in the

event of malfunctions affecting actuators,sensors or other system

components.This is particularly important for safety-critical

systems,such as aircraft applications.In these cases,the effect of

a minor fault in a system component,in particular the actuators,

can lead to catastrophic consequences.

To overcome these drawbacks,fault tolerant control(FTC)

systems have been developed in order to tolerate component

malfunctions,while maintaining desirable stability,and perfor-

mance properties.

In general,FTC methods are classi?ed into two types,i.e.

passive fault tolerant control(PFTC),and active fault tolerant

control(AFTC)schemes(Blanke,Kinnaert,Lunze,&Staroswiecki,

2006;Mahmoud,Jiang,&Zhang,2003;Zhang&Jiang,2008).

In PFTC systems,controllers are?xed,and designed to be robust

against a class of presumed faults.This approach,which offers only

limited fault-tolerant capabilities,does not need any fault estimate

(or detection)or controller recon?guration.In contrast to PFTC,

AFTC systems react to the faults actively by recon?guring the

control actions,so that the stability and acceptable performance of

the entire system can be maintained.AFTC schemes rely heavily on

real-time fault detection and diagnosis(FDD)schemes,which are

exploited for providing the most up-to-date information about the

true status of the https://www.sodocs.net/doc/271412478.html,ually,this information can be used

from a logic-based switching controller or a feedback of the fault

estimate.The approach proposed in this paper relies on the latter

strategy.

Over the last three decades many FDD techniques have been

developed,see the survey works(Benini,Castaldi,&Simani,2009;

Ding,2008;Isermann,2005;Simani,Fantuzzi,&Patton,2003;

Theilliol,Join,&Zhang,2008;Witczak,2007).Regarding the AFTC

system design,it was argued that effective FDD is needed

(Mahmoud et al.,2003;Zhang&Jiang,2008).Moreover,it was

claimed that,for the system to react properly to a fault,timely and

accurate detection and location of the fault itself are needed.Fault

detection and isolation(FDI)is the area where research studies

have mostly been explored.On the other hand,FDD schemes

represent a challenging topic because they have to provide also

the fault estimate.FDI and FDD schemes usually exploit dynamic

observers or?lters.Unfortunately,disturbance affecting the sys-

tem can cause false alarms or,even worse,missed faults.Robust-

ness issues in FDI and FDD are therefore very important(Blanke

et al.,2006;Chen&Patton,1999;Isermann,2005;Witczak,2007).

This paper presents an innovative differential geometry appli-

cation together with a novel non-linear geometric approach

(NLGA)results in the?eld of AFTC for aerospace systems.For the

?rst time the standard NLGA procedure presented in Persis and

Contents lists available at ScienceDirect

journal homepage:https://www.sodocs.net/doc/271412478.html,/locate/conengprac

Control Engineering Practice

0967-0661/$-see front matter&2014Elsevier Ltd.All rights reserved.

https://www.sodocs.net/doc/271412478.html,/10.1016/j.conengprac.2013.12.011

Abbreviations:AFTC,active fault tolerant control;FDD,fault detection and

diagnosis;FDI,fault detection and isolation;NLGA,non-linear geometric

approach;AF,adaptive?lters

☆This paper is an extended version with new methodological and applicative

results of the work entitled“Fault Tolerant Control Schemes for Nonlinear Models

of Aircraft and Spacecraft Systems”presented at the18th IFAC World Congress held

in Milan,September

2011.

n Corresponding author.

E-mail addresses:paolo.castaldi@unibo.it(P.Castaldi),

nicola.mimmo2@unibo.it(N.Mimmo),silvio.simani@unife.it(S.Simani).

Control Engineering Practice32(2014)227–235

Isidori(2001)has been extended to the input fault scenario in the presence of fault estimation feedback.

In particular the applied AFTC is based on an extended version of the FDD module,designed in Castaldi,Geri,Bonfè,Simani,and Benini(2010)for the case of sensor faults.

It is worth observing that in Castaldi et al.(2010)the FDD module is used only for fault estimate and the fault feedback is not present,as for the case of the proposed AFTC system.For this reason new proofs,given in the following,are provided to assess the convergence of the fault estimate to the actual fault.

The?lter structure is derived using the coordinate change of the NLGA theory developed in Persis and Isidori(2001),which is only the starting point for the?lter design.The application of the NLGA to the aircraft longitudinal model is investigated,in order to obtain fault estimates decoupled from disturbance and/or other faults.In this paper the actuator fault estimation is accomplished by adaptive?lters(AF)which,designed by using the NLGA,are analytically decoupled from relevant wind components.For the case of the design of the FDI module via the NLGA,see the paper by Bonfè,Castaldi,Geri,and Simani(2007).

The fault estimates provided by the proposed NLGA–adaptive ?lters(NLGA–AF)are unbiased via the above-mentioned disturbance decoupling.It is worth observing that the adaptive?lters not using the proposed NLGA procedure are not decoupled from disturbances and/or other fault.The proposed FDD module thus increases the reliability of the overall AFTC system.Note that the problem of the exact decoupling of disturbance and other faults,proposed in this paper,has not been solved previously by other authors.

Moreover it is important to observe that also the design of the control systems proposed in this work is based on differential geometry tools.The suggested controller presents novel issues with respect to other schemes relying on differential geometry already present in the related literature.With reference to the paper by Castaldi,Mimmo,and Simani(2011)the design of the controller has been completely modi?ed and based on the differ-ential geometry approach.This provides a novel controller that allows us to achieve the stability of the overall AFTC system.In particular,the novel controller has been designed by exploiting some concepts from two well known theoretic tools:exact feed-back linearization(Isidori,1995)and singular perturbation(Khalil, 2002).In particular,starting from the proposed aircraft model, proper controllers are designed via the exact feedback lineariza-tion tool,and assuming suitable virtual control inputs.In this way, the complete system is linear,and exponentially stabilizable.

The overall AFTC scheme,consisting of the proposed controller and the fault accommodation method,shows several interesting properties.To the best of the authors0knowledge,the designed controller,the FDD modules,and the whole scheme represent innovative results.

Finally,the novel aircraft AFTC system,based on the differential geometry tool and the NLGA,has been tested on a high-?delity simulator.It implements realistic disturbance,such as sensor measurement noise and wind,thus showing the effectiveness and the good performance of the proposed AFTCS.

The paper is organized as follows.

Section2describes the structure of the proposed AFTC:the theoretical and practical design of the NLGA–AF,the estimation properties and convergence proof are given in Section2.1;Section 2.3presents the controller design process and its stability proof. The overall AFTCS stability proof is given in Section2.4.

Section3provides more details regarding the simulator,while Section4shows the effectiveness and robustness of the AFTC aerospace system by means of extensive simulations.

Concluding remarks are drawn in Section5.All symbols and equations used in this paper to describe the aircraft model have been listed in Appendix A.2.Differential geometry based AFTC

Fig.1describes the adopted structure of the AFTC scheme where u is the controller output,x is the state vector,y and y ref are the measured and the reference output vectors,respectively. The vector f is the actuator fault,while^f is the estimated actuator fault.Therefore,Fig.1shows that the AFTC strategy is obtained by integrating the FDD module with the control system.The FDD module,consisting of a bank of NLGA–AFs,provides the correct estimation^f of the actuator fault f,as it will be proved in Theorem1.This estimated signal is injected into the control loop in order to compensate the effect of the actuator fault.Thanks to this fault estimation feedback the controller can be easily designed considering the fault-free plant(Fig.2).

2.1.NLGA–AF based FDD module

This section describes the implementation of the FDD module. It is proved that the fault estimation provided by NLGA–AF and exploited in the overall AFTC scheme is unbiased.Note that in the works by the same authors Bonfè,Castaldi,Geri,and Simani(2006, 2007)and Castaldi et al.(2010)related to the FDI scheme design, the fault estimate does not depend on the fault estimate itself due to the further feedback loop.Moreover,in Castaldi et al.(2011)the proof of convergence of the fault estimation was left as an open problem here formally solved for the?rst time.Finally some interesting properties related to the dynamics of the estimation error are given.

The FDD module is based on the NLGA approach,where a coordinate transformation highlights a sub-system affected by the fault and decoupled by the disturbances.This subsystem is the starting point to design a set of adaptive?lters.They are able to both detect additive fault acting on a single actuator and estimate the magnitude of the fault itself.The proposed approach can be properly applied to the nonlinear af?ne model of the system in the form:

_x?nexTtgexTeuà^ftfTtp

d

exTd

y?hexT

(

e1T

where x A X(an open subset of R?n)is the state vector,uetTA R?c is the control input vector,fetTand^fetTA R?f are the fault vector and its estimate,respectively.The vector detTA R?d is the disturbance vector(including also the faults which have to be decoupled,in order to perform the fault isolation)and y A R?m is the output vector,while nexT,the columns of gexT,and p dexTare

smooth

Fig.1.Logic diagram of the integrated AFTC

strategy.

Fig.2.Altitude and airspeed controller.

P.Castaldi et al./Control Engineering Practice32(2014)227–235 228

vector ?elds,and h ex Tis a smooth map.The design strategy for the diagnosis of the fault f with the NLGA disturbance decoupling is shown in Persis and Isidori (2001)and summarized in the following:

computation of ΣP

n ,i.e.the minimal conditioned invariant distribution containing P (where P is the distribution spanned

by the columns of p d (x ));

computation of Ωn ,i.e.the maximal observability codistribution

contained in eΣP n T?

;

if ?ex T=2eΩn T?,fault detectability condition,the fault is detect-able and a suitable change of coordinate can be determined.

As mentioned above,the considered NLGA to the fault diagnosis problem is based on a coordinate change in the state space and in the output space,Φex Tand Ψey T,respectively.They consist of a surjection Ψ1and a function Φ1such that Ωn \span f d h g ?span f d eΨ1○h Tg and Ωn ?span f d Φ1g ,where:Φex T?ex 1;x 2;x 3TT ?eΦ1ex T;H 2h ex T;Φ3ex TTT Ψey T?ey 1;y 2TT ?eΨ1ey T;H 2y TT

(

are (local)diffeomorphisms,while H 2is a selection matrix,i.e.its rows are a subset of the rows of the identity matrix.This transformation can be applied to the system (1)if and only if the fault detectability condition is satis ?ed.The system (1)in the new reference frame can be decomposed into three subsystems,namely x 1,x 2,and x 3,where the ?rst one is always decoupled from the disturbance vector and affected by the fault as follows:_x 1?n 1ex 1;y 2Ttg 1ex 1;y 2Teu à^f Ttl 1ex 1;y 2

;x 3Tf y 1?h 1ex 1T(

e2T

where n 1,the columns of g 1and l 1are smooth vector ?elds,h 1is a smooth map.The variable y 2in (2)is assumed to be measured and considered as an independent input.With reference to (2),the NLGA –AF can be designed if the detectability condition in Persis and Isidori (2001),and the following new constraints are satis ?ed:

the x 1-subsystem is independent from the x 3state components;

the single fault is modeled as a step function of the time;hence an entry of vector f ,f s ,is a constant to be estimated;

there exists a proper scalar component x 1s of the state vector x 1such that the corresponding scalar component of the output vector is y 1s ?x 1s and the following relation holds (Castaldi et al.,2010):

_y 1s et T?M 1et Tef s à^f s

TtM 2et Te3T

where M 1et Ta 0;8t Z 0.Moreover M 1et Tand M 2et Tcan be com-puted for each time instant,since they are functions only of input and output measurements.In particular,in the absence of unmea-sured states (i.e.x 3is not present),the following relations hold:M 1et T??g 1ex 1;y 2T s

M 2et T??n 1ex 1;y 2Ttg 1ex 1;y 2Tu s

e4T

where,for actuator faults,?g 1ex 1;y 2T s ??l 1ex 1;y 2T s .The subscript

s indicates the s -th scalar component of the dynamics _x

1in (2).In the following,the function dependence on time t will be omitted.The relation (3)describes the general form of the system under diagnosis.Under these conditions,the design of the adap-tive ?lter is achieved,with reference to the system model (3).

It provides a fault estimate,^f s

et T,which asymptotically converges to the magnitude of the fault f s .Let us assume that the subsystem (3)is determined with the proposed NLGA procedure.Then f s can be estimated by means of the following adaptive ?lter using the

least-squares algorithm with forgetting factor (Castaldi et al.,2010).The adaptation law is given by the following:_P ?βP à11tN P 2 M 21

;P e0T?P 040_^f s

?P ;ε M

1

;^f s

e0T?0:8><>:e5T

where P 40is the adaptive parameter,βZ 0is the forgetting factor,εis the normalized estimation error and the term N 2?

1t M 21

is the normalization factor.The following equations repre-sent the output estimation,and the corresponding normalized estimation error:^y 1s ? M 1^f s t M 3tλ y 1s

ε?11tN ey 1s à^y 1s T:8

><>:e6TMoreover,the proposed adaptive ?lter adopts the signals M

1, M 3, y 1s

which are obtained by means of a low-pass ?ltering of the signals M 1,M 2,y 1s as follows:_ M 1?àλ M 1tM 1; M 1e0T?0_ M 3?àλ M 3tM 3; M 2e0T?0_ y 1s ?àλ y 1s ty 1s ; y 1s e0T?0:8>><>>:e7Twhere M 3?M 2àM 1^f s and λ40is a parameter related to the bandwidth of the ?lter.Thus,the considered adaptive ?lter is described by the systems (5)–(7).

2.1.1.NLGA –AF estimate properties

It is worth noting that the relation _ M 3?àλ M 3tM 3?

àλ M 3tM 2àM 1^f s

represents a linear time varying system,hence it is possible to describe the term M

3as the sum of two scalar variables,namely M

31and M 32,such that:_ M 31?àλ M 31tM 2; M 31e0T?0_ M 32?àλ M 32àM 1^f s ; M 32e0T?0 M 3? M 31t M 328>><>>:e8TLemma 1.The considered adaptive ?lter for FDD is described by (5)–(7).The asymptotic relation between the normalized output

estimation error εand the fault estimation error ef s à^f s

Tis the following:lim t -1

εet T?lim

t -1 M

1et T1tN 2et T

ef s à^f s et TT

e9T

Proof.The following auxiliary system is de ?ned in the form:_y 1?àλy 1t_y 1s ;y 1e0T?0_y 2?àλy 2tλy 1s ;y 1e0T?0y ?y 1ty 28><>:

e10TNote that _y 1?àλy 1t_y 1s ?àλy 1tM 1f s

tM 3.Hence,by com-puting its integral,it is possible to write:

y 1et T?Z t

0e àλet àτT_y 1s

eτTd τ?Z t

0e àλet àτTeM 1eτTf s tM 3eτTTd τ

?

Z t 0e àλet àτTeM 1eτTf s tM 2eτTàM 1eτT^f s

eτTTd τ? M 1f s t M 31àZ

t

0e àλet àτTeM 1eτT^f s

eτTTd τe11T

P.Castaldi et al./Control Engineering Practice 32(2014)227–235229

From (8)it is possible to write:

M

3? M 31àR t

e àλet àτT

eM 1eτT^f s

eτTTd τ.Similarly:y 2et T?λZ t

e àλet àτTy 1s eτTd τ?λ y 1s

e12T

Consider now the following candidate Lyapunov function:

V ?12ey ày 1s T

2

e13T

that is trivially positive de ?nite and radially unbounded.Moreover,its ?rst time derivative is _V ?àλey ày 1s

T2e14T

Since _V is trivially negative de ?nite 8y a y 1s

,V is a Lyapunov function that globally asymptotically tends to zero.Moreover,from (11)and (12),the following relation holds:

lim t -1

y 1s ?lim t -1

y ?lim t -1

e M 1f s t M 31tλ y 1s

à

Z

t

e àλet àτTeM 1eτT^

f s

eτTTd τTe15T

By means of (6)it results

lim t -1

ε?lim

t -11

1tN

2

ey 1s à^y 1s

T?lim t -11

1tN 2

e M 1ef s à^f s

TT□e16T

2.1.2.Estimation asymptotic convergence proof

With reference to the AFTC scheme in Fig.1it is possible to de ?ne the following fault estimation problem.

Problem 1.Fault estimation for AFTC.

The estimation of f s requires the design of an adaptive ?lter for the model (3),and therefore of the overall system of Fig.1.This estimate,f s ,asymptotically converges to the magnitude of the step function fault,f s .

The next theorem proves the asymptotic convergence of the fault estimate in the presence of a feedback of the fault estimate itself.This represents one of the main differences with the FDI case described in Castaldi et al.(2010)

Theorem 1.The adaptive ?lter described by (5)–(7)represents a solution to Problem 1,so that ^f s et Trepresents an asymptotically convergent estimation of the step fault f s .Proof.The following function

W ?12e^f s àf s T

2e17T

is trivially positive de ?nite and radially unbounded.Moreover,its ?rst time derivative is _W ?e^f s àf s

TeP ε M 1Te18T

It is worth noting that the smoothness property of the involved

functions allows us to apply the asymptotic approximation of (16)with the expression of (18).

lim t -1

_W ?lim t -1

e^f s àf s

TeP ε M 1T?lim t -1àe^f s àf s T2P 1N

2 M 21o 0e19T

In fact,P et T40;8t 40since P

à1

et T?e àβt

te àβt

Z

t

e βτ

M 21

eτT1t M 1

eτT

d τe20T

with P 040,P (t )is positive 8t Z 0.□

2.1.

3.Estimation error convergence rate Lemma 2.The normalized error is given by

εet T?

11t M

1

et T?y 1s e0Te àλt t M 1et Tef s à^f s et TT e21T

Proof.From (10)using integration by parts it is possible to obtain:y et T?y 1s et Tày 1s e0Te àλt

e22T

Moreover,it has been proved that:y et T? M 1et Tf s t M 3et Ttλ y 1s

et Te23TBy comparing (22)and (23),it results:y 1s et T?y 1s e0Te àλt t M 1et Tf s t M 3et Ttλ y 1s et Te24Tthat replaced in (6),it yields to (21).

Remark 1.The term y 1s e0Te àλt is the initial condition response of

the low-pass ?lters.It is possible to assume that this initial condition transient response is negligible at the time of the fault occurrence.Hence,if the fault occurs at the time t ?0it is possible to write :_y 1?àλy 1t_y 1s ;y 1e0T?0

_y 2?àλy 2tλy 1s ;y 2e0T?y 1s e0Ty ?y 1ty 28><>:

e25TThe equation of the normalized error is approximated by the expression:εet T?

11t M 1

et T

? M 1et Tef s à^f s et TT e26T

Remark 2.With reference to the dynamics of the estimation error,

by recalling _^f s ?P ε M 1?P M 1

11t M 1

? M 1ef s à^f s

T e27T

and the de ?nition of the estimation error e rr ?^f s àf s it is possible to obtain:_e rr ?àP M 211t M 21e rr

e rr e0T?à

f s

8<:

e28T

Now it is possible to show a further interesting property related to

the dynamics (convergence rate)of estimation error,i.e.the

boundedness of a et T?P M 21=e1t M 21

T.It is easy to see that a et T40,8t 40since M 21=1t M 21

40,8 M 140.Moreover,also P et T40,8t 40since P

à1

et T?e àβt

P 0

te àβt

Z

t

e βτ

M 21

eτT1t M

21

eτTd τ

e29T

with P et T40since P 040.Furthermore,in the proposed case

study,the following relations hold:0o M

1m r M 1r M 1M o 1e30T

hence,the expressions below hold true:

1P 0à1β M 21M 1t M 21M !e àβt t1β M 21M

1t M 21M

"#à1

r P et Tr 1P 0à1 M 2

1m 1t M 1m

!e àβt t

1 M 21m

1t M 1m

"#à1e31T

P.Castaldi et al./Control Engineering Practice 32(2014)227–235

230

and also for P (t )holds 0o P m r P r P M o 1.Finally:0o P m M 21m

1t M

21m

r a m

?min ea et TTr a et Tr max ea et TT?a M r P M M 21M

1t M

21M

o 1

e32T

2.2.FDD design for throttle and elevator faults

The NLGA methodology showed in Section 2.1can be directly

applied only to systems that are af ?ne with respect to both inputs and disturbances.One fault can be isolated from disturbances and other faults if an observable subsystem can be determined.In this section the NLGA –AF methodology is applied to the aircraft case.Moreover,the hypothesis introduced for model approximation and the adaptive ?lters obtained are shown.In the following the disturbance,W w x ,that will be decoupled is the vertical wind gust:_x ?n tg eu à^f tf Ttp d W w x

y ?h (

e33T

where the dependence of n ,g and p d ,on x has been omitted.The term f ??f δe ;f δth T represents the fault vector.The disturbance vector ?eld is p d ??0;V sin γcos γ;cos 2γ;0;e1=4I y TρVSc 2C mq ;0 T .Problem 2.Elevator Fault Estimation.

Let us consider the model in (33)and isolate,if possible,the elevator fault,f δe from other faults (throttle)and disturbances (vertical wind gusts).

Solution.The dynamic system solving the considered problem is derived in the following.It has been obtained by applying the procedure stated in Section 2.1with γsatisfying the relations cos γ%1àγ2and sin γ%γ.This approximation is needed to allow for the NLGA application.

The ?lter is decoupled from both aerodynamic disturbance and the other fault (throttle).It is possible to specify the particular expression of the faulty dynamics of (3)for f s ?f δe :_y 1s ;δe ?M 1;δe f δe tM 2;δe y 1s ;δe ?14I y ρVSc 2C mq γàq M 1;δe ?à12I y ρV 2ScC m δe M 2;δe ?14I y ρVSc 2C mq ??γ1

T àD àmg sin γeTt

t1m L àmg cos γeT!à1I y 12ρV 2Sc C m 0tC m ααàtC m q q c 2V tC m δe δe 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:e34TIt is worth observing that M 1;δe et Tis a 0,8t Z 0,since V is always strictly positive in all the ?ight conditions.

Problem 3.Throttle Fault Estimation.

Let us consider the model in (33)and isolate,if possible,the throttle fault,f δth from other faults (elevator)and disturbances (vertical wind gusts).

Solution.The ?lter for the diagnosis of f δth has been obtained by following the same procedure adopted for solution of Problem 2.

In this case no model approximation is needed.

_y 1s ;δth ?M 1;δth f δth tM 2;δth y 1s ;δth ?ωM 1;δth ?C 2eC 3àC 4H T

I M 2;δth ?à

Q f I tP E I ωàP P I ω

8>>>>>>>><

>>>>>>>>:e35T

Note that the term M 1;δth is always greater than zero for altitude assumed by the simulated aircraft.

2.3.Differential geometry based ?ight control system

This section presents an altitude and airspeed autopilot for a longitudinal dynamics of an aircraft.It is worth highlighting again one of the main points of the paper.The singular perturbation analysis allows us to simplify the controller design phase.In particular,the whole controller can be divided into two controllers,one for the fast dynamics and the other for the slow dynamics.Each controller has been designed with a differential geometry tool,i.e.the Feedback Linearization technique,useful to guarantee overall asymptotic stabi-lity.The stability proof is based on the joint use of Lyapunov function and singular value perturbation theory,which is particularly suitable for aircraft application due to the presence of natural fast (short period)and slow (phugoid)dynamics.The controller design is further-more simpli ?ed since the fault accommodation task has been already accomplished with the strategy presented at the beginning of this section,i.e.the model for the controller design is considered not affected by faults.

2.3.1.Aircraft model for controller design

Starting from the common and comprehensive aircraft model literature,the following assumptions have been introduced for designing purposes:

drag coef ?cient,C D ?C D 0tC D αα; lift coef ?cient,C L ?C L 0tC L αα; small attack angle,i.e.cos α%1;

small thrust climbing effect,i.e.j T sin αj 5j L j ;

small thrust pitching effect,i.e.j Td T j 5j M j ;

The longitudinal aircraft dynamics can be well approximated by a singular perturbed model where two dynamics can be recognized:the reduced system (phugoid)and the boundary layer system (short period and engine mode).Due to the previous assumptions and singular perturbation,the aircraft model is described as follows:_χ

1?f 1eχ1Ttg 1eχ1Tz 2χ02?f 2eχ1;χ2Ttg 2eχ1;χ2Tu z 1?h 1eχ1Tz 2?h 2eχ2T

e36T

where χ1??H ;V ;γ T ,χ2??α;q ;ω T ,z 1??H ;V T ,z 2??α;T eωT T ,u ??δe ;δth T .The term χ02indicates the derivative respect to the slow time τ.Note that τ?t =?where ?51is the singular perturba-tion parameter.

2.3.2.Slow dynamics controller

By means of the singular perturbation approximation it is possible to assume that while the slow variables are changing,the fast ones are at their asymptotic equilibrium points.In this way the simpli ?ed slow subsystem can be modeled as an input af ?ne model where a static feedback linearization is possible.In this case the vector relative degree is equal to the slow state order (three)leading to a controlled phugoid without zero dynamics.

P.Castaldi et al./Control Engineering Practice 32(2014)227–235231

2.3.3.Fast dynamics controller

By following the considerations above,it is possible to assume that the slow variables are?xed,while the fast ones are changing.Under these hypotheses,the fast subsystem dynamics are described as an input af?ne model that can be controlled and stabilized by means of static feedback linearization.In particular the vector relative degree is equal to the fast subsystem order(also in this case it is three),thus implying the possibility of an exact linearization and avoiding possible unstable zero dynamics.The fast dynamics controller design is comp-leted by feeding the fast subsystem itself with the designed control law as a reference signal.In this way,the regulated fast variables have to follow the reference value provided by the slow controller.

Remark3.The overall controller for airspeed and altitude con-troller has been designed starting from the work(Farrell,Sharma, &Polycarpou,2003)but with some remarkable improvements brie?y summarized in the following:

engine dynamics:typically the time scale of engine dynamics is of the same order of that of the short period;

no time derivatives of the reference commands have been used,

i.e.no derivatives computation or their estimation/approxima-

tions have to be performed;

2.3.4.Controlled aircraft stability proof

Theorem2.Asymptotic stability of the controlled aircraft.

Let the singular perturbed aircraft with the proposed controller and consider an equilibrium point,namelyχe??χ1e;χ2e T.The equili-brium point is locally asymptotically stable.

Proof.The proof is based on the application of Theorem11.4of Khalil(2002).It is very easy to verify that the controlled fast and slow subsystems are both linear(due to the exact static feedback linearization).Hence these two subsystems are locally exponen-tially stable and,as stated in Khalil(2002),this represents a suf?cient condition in order to assure the asymptotic stability of the equilibrium point for the overall complete system.

2.4.Active fault tolerant control stability proof

Theorem3.Active fault tolerant control system asymptotic stability. Consider the aircraft model and the autopilot de?ned in Theorem2 and the fault estimation feedback given by(5)–(7):

_x?fexTtgexT?uàe

f

_e

f

?àC f e fe37TSuppose an equilibrium point for the augmented system(where the augmented states are the fault estimation errors),namely z e??x e0 T,then the equilibrium point is locally asymptotically stable. Proof.Let us start by showing that the fault estimation error dynamics,_e f?àC f e f,has a local asymptotic stable equilibrium point at the origin.This can be obtained by recalling results achieved for the FDD stability.Moreover it is always possible to?nd a real constant,λf, greater than zero,given the Lyapunov function V fee fT,such that:

V f?1

2e T f

e f

_V f ?àe T

f

C f e f ràλf J e f J2

8e f:J e f J o d fe38T

For exampleλf can be equal to the modulus of smallest eigenvalue of C f(that are strictly negative).

In the same way,it can be shown that the?ight path control system with its plant(i.e.the aircraft)has a local asymptotic stable equilibrium point at the reference point.It is possible to select the modulus of smallest eigenvalue of the controlled aircraft,namely λx,and assume that:

ν?e1àdTVtdW

_ν?e1àdT_Vtd_W ràλx‖x‖2

8x:J x J o d xe39Twhere x is the aircraft state.

The last step consists of building a Lyapunov function for the cascade system(37).As stated in Isidori(1999)a cascade of two systems having their origin locally asymptotically stable is also locally asymptotically stable.In fact,let N?V fee fTtν:

8e f x:J e f J o d f J x J o d x

N?V ftν40

8e f x:J e f J o d f J x J o d x

_N?_V

f

t_νràλx‖x‖2àλf J e f J2e40Tthat proves the theorem.□

3.Simulator description

3.1.Aircraft,engine,propeller,actuators and environment

The simulated aircraft is a piper PA-30for which very detailed NASA and Lycoming technical data are available.NASA technical notes(Fink&Freeman,1969;Gray,1943;Koziol,1971)describing the aircraft and propeller aerodynamics and the engine manual (Lycoming O-320Operator0s Manual,1973)for engine modeling have been implemented for simulation purposes.Appendix A summarizes the main technical issues from the above-mentioned works.Fig.3shows the details of the simulator structure and its block diagram.It is worth observing that the simulator performs the updating of both the air density,ρ,and the gravity acceleration modulus,g,by implementing the reference U.S.Standard Atmosphere(1976)and World Geodetic System(1984)respec-tively.Finally,the elevator and throttle actuators have been modeled as suggested in Stevens and Lewis(1992).

Fig.4depicts,on the basis of what is prescribed in Pilot0s Operating Handbook(1993),the simulated?ight envelope which corresponds to the actual piper PA-30?ight envelope(Fig.5).

3.2.Wind

The1àcos wind gusts,modeled as in https://www.sodocs.net/doc/271412478.html,itary Speci?-cation(1980),are generated by means of the“Discrete Wind Gust Model”block available in the“Aerospace Blockset”of Matlab-Simulink(Aerospace Blockset,2010).In particular,the

simulated

Fig.3.Simulator structure.

P.Castaldi et al./Control Engineering Practice32(2014)227–235 232

vertical wind gusts are described into the inertial frame.When an aircraft ?ights into a variable vertical wind there is always a rotational wind ?eld associated to it.The rotational wind ?eld causes a pitching moment due to air relative pitch rate.Also this effect has been taken into account during simulations.Further-more the Dryden turbulence model (https://www.sodocs.net/doc/271412478.html,itary Handbook,1997;https://www.sodocs.net/doc/271412478.html,itary Speci ?cation,1980)(translational and rotational)has been implemented by using the “Dryden Wind Turbulence Model ”in the “Aerospace Blockset ”of Matlab-Simulink (Aerospace Blockset,2010).

3.3.Input and output sensors

The simulator implements a model of the measurement system as follows:

the command surface de ?ection angles are acquired by poten-tiometers whose errors are modeled as white noises;

the angular rate measurements are given by 2gyroscopes of an IMU (inertial measurement unit).The corresponding errors take into account non-unitary scale factor,alignment error (random),g-sensitivity,additive white noise and gyro drift; the attitude angle measurement is given by a digital ?ltering system of both angular rate and accelerations provided by the IMU.The corresponding errors are due to a systematic uncer-tainty generated by the apparent vertical and a colored noise due to the system structure and the environment in ?uences; the angular rate measurements provided by a gyroscope unit different from gyroscope device estimating angular rates and characterized by small drift https://www.sodocs.net/doc/271412478.html,rger bandwidths;

Air data computer (ADC):

○Errors affecting the true airspeed are due to calibration error of differential pressure sensor,additive colored noise induced by wind gusts and atmospheric turbulence and additive white noise.

○Errors affecting the altitude are the calibration error of the static pressure sensor and an additive white noise.

○Uncertainties affecting the attack angle are calibration errors affecting the wing boom sensors and additive white noise.A detailed description of the measurements used by the consid-ered system can be found in Bonfèet al.(2006).

4.Extended simulation results

This section is divided into two subsection:the ?rst one shows the performance of the NLGA –AF and the latter provides the performance of the overall AFTC system exploiting the proposed control systems described in Section 2.3and NLGA –AF reported in Section 2.2.

4.1.Aircraft NLGA –AF simulation results

In this case study the ?lters,described in Section 3,are decoupled from both aerodynamic disturbances,i.e.wind,and the other fault.Fig.6shows a fault on the elevator (dotted line)of size f δe ?11and its estimate (black and gray)during an altitude hold ?ight phase.The fault is detected,isolated and estimated with a time delay smaller than the characteristic ?ight dynamics period and the convergence of the estimate to the actual fault size is observed.The fault commences at time t ?50s.Fig.6shows that,via the NLGA design,the residual from the ?lter for the throttle fault does not exceed its thresholds even in the presence of elevator faults.The lower picture of Fig.6shows also an elevator fault estimation (gray line)that is not decoupled from wind disturbances.It is clear how the wind gust (at time 20s)affects the fault estimate (gray line)making it useless.

Fig.7shows the accurate fault estimate for the case of a fault on the throttle of size f δth ?à10%.

4.2.Performance of the aircraft AFTC systems

In this section the simulation results concerning the perfor-mance of the overall AFTC system for the proposed aerospace application are given.The performance of the controlled aircraft with or without the estimated fault feedback is compared.In this

30

405060708090100110

01

234

5Equivalent Air Speed [m/s]

L o a d F a c t o r [?]

Piper PA ?30: Flight Envelope

Fig.4.Piper PA-30simulated ?ight envelope.

-50510W x

, W h [m /s ]

Wind: linear and rotational speeds

20

40

6080100

120

-20

020q W [d e g /s ]

Time [s]

Fig.5.Simulated wind conditions.

01δt h

[%]

Fault Estimate: δth

and δ

e

1-1-1Time [s]

δe [d e g ]

Fig.6.Estimate ^f δe of f δe

fault.P.Castaldi et al./Control Engineering Practice 32(2014)227–235233

way,the bene ?ts of adopting the proposed AFTC scheme are highlighted in terms of state dynamics.

The following simulations performed in the presence of wind and noise on both input and output sensors serve to highlight the advantages of the fault recovery procedure obtained using the fault estimate feedback.Since the fault is detected,isolated and estimated with a time delay smaller than the characteristic ?ight dynamics period the ?ight can proceed normally without loss of performance.Fig.8is particularly meaningful since it compares the in ?uence of the wind gust and the effect on the altitude of the elevator fault that is not recovered.The advantages of the proposed AFTC is clear.Similar considerations hold for Fig.9that depicts the transient after the fault occurrence.It is worth observing that the results refer to the same simulation conditions (noises,disturbances,etc.).

5.Conclusion

In this paper,a novel nonlinear aircraft active fault tolerant control system was proposed.

In particular the applied active fault tolerant control is based on a fault detection and diagnosis module providing a fault estimate exploited by an additional feedback loop,thus allowing fault accom-modation.In this way,the controller can be designed on the faulty-free model.

One feature of the paper is that both the developed controller and the FDD module design are based on differential geometry.With reference to the fault detection and diagnosis module,an important point is that the fault estimates are robust with respect to disturbance and/or other fault,and hence unbiased due to the analytical decoupling provided by application of the non-linear geo-metric approach.In the aircraft case,faults were decoupled from aero-dynamic disturbances,such as vertical wind gusts and turbulences.The performance of the autopilot in the transient phases in the presence of faults was improved by the added loop providing fault recovery.

With reference to the design of the control systems,it is worth observing that it is based on two main theoretic tools:singular perturbation and linearization via static feedback .The main advan-tage of theories hybridization stays in the possibility of achieve linear,and than locally exponentially stable,reduced and bound-ary layer systems.This fascinating property has been used to claim in turn the stability of the controlled system and the stability of the overall active fault tolerant control systems.

The considered aircraft model was described in detail and the design of the controller was based both on rigorous control theory and solid aeronautical consideration.With reference to the above consideration,it is not surprising that the theory of singular perturbation has been used in developing the control system.In fact aircraft is naturally characterized by slow and fast dynamics.

The exploited high ?delity plant model and the assumed practical mathematical hypotheses were tested via extensive simulations.The results showed that the designed nonlinear active fault tolerant scheme was reliable and ready for implementation.

Appendix A.Aircraft,aerodynamic,engine and propeller model This appendix summarizes all useful models,their nomencla-ture,symbols and related references.

The aircraft model is described by the following model (Stevens &Lewis,1992).

_X

?V cos γtU w _H

?V sin γàW w _V

?1?T cos αàD àmg sin γ tV sin γcos γ?W w

z ?X

_γ?1?T sin αtL àmg cos γ tcos 2γ?W w

z

?X _α?q à_

γ_q

?d T I y T tM I y eA :1T

with the following variables:Symbol Description

Unit X

X Inertial coordinate m H Altitude m V Airspeed

m/s γAir ramp angle rad U w Horizontal wind m/s W w

Vertical wind

m/s

-15-1005-5δt h

[%]

Fault Estimate: δth and δe

-1-0.500.5

Time [s]

δe [d e g ]

Fig.7.Estimate ^f δth of f δth fault.

320

330

340H [m ]

485052545658V [m /s ]

Time [s]

Fig.8.Aircraft state with and without AFTC scheme:case of fault on δe .

320330340H [m ]

4850525456V [m /s ]

Time [s]

Fig.9.Aircraft state with and without AFTC scheme:case of fault on δth .

P.Castaldi et al./Control Engineering Practice 32(2014)227–235

234

m Aircraft mass kg

αAttack angle rad

g Gravity constant m/s2

q Body pitch rate rad/s

d T Thrust arm m

I y y-Inertia momentum kg m2 W w

z

Vertical wind component m/s

The equations describing the aerodynamics(Stevens&Lewis, 1992)are summarized below.

D?1

2

ρV2SC D

L?1ρV2SC L

M?1

2

ρV2ScC m

C D?C D

0tC D

α

αtC D

δe

δe

C L?C L

0tC L

α

αtC L

_αtC L

q

qtC L

δe

δe

C m?C m

0tC m

α

αtC m

_αtC m

q

qt

?W w z

?X

tC m

δe

δeeA:2T

and the meaning of the symbols is described below:

Symbol Description Unit D Drag force N

L Lift force N

M Pitch momentum N m ρAir density kg/m3 c Mean aerodynamic chord m

C D

#

Drag coef?cients–

C L

#

Lift coef?cients–

C m

#Momentum coef?cients–

δe Elevator rad

The engine(Lycoming O-320Operator0s Manual,1973)is described by the model(A.3):

_ω?àQ f

I t

P E

à

P P

P E?C1HtC2ω?δtheC3àC4HTàC5

Q f?J vω3eA:3T

whose parameters are summarized below:

Symbol Description Unit

ωPropeller angular rate rad/s

Q f Shaft friction torque N m

P E Engine Power W

I Engine-propeller inertia kg m2

C#Engine coef?cients Various δth Throttle–

J v Shaft friction coef?cient kg m2s Finally,the propeller relations(Gray,1943)are reported:

P P?C P

V cosα

ωD

ρω3D5PR

T?

2

V cosα

ηV cosα

P PeA:4T

whose variables are described below:

Symbol Description Unit

P P Propeller power W

T Thrust N

C P Prop.power coef?cient radà3

D PR Propeller diameter m

ηPropeller ef?ciency–

References

Aerospace blockset3:user0s guide,Revised for version3.5,MathWorks Inc.,2010.

Benini,M.,Castaldi,P.,&Simani,S.(2009).Fault diagnosis for aircraft system models:

An introduction from fault detection to fault tolerance.KG.,Dudweiler Landstr,99,

66123,Saarbrücken,Germany:VDM Verlag Dr.Müller Aktiengesellschaft&Co.

Blanke,M.,Kinnaert,M.,Lunze,J.,&Staroswiecki,M.(2006).Diagnosis and fault-

tolerant control.Berlin,Germany:Springer-Verlag.

Bonfè,M.,Castaldi,P.,Geri,W.,&Simani,S.(2006).Fault detection and isolation for

on-board sensors of a general aviation aircraft.International Journal of Adaptive

Control and Signal Processing(20),381–408.

Bonfè,M.,Castaldi,P.,Geri,W.,&Simani,S.(2007).Design and performance

evaluation of residual generators for the FDI of an aircraft.International Journal

of Automation and Computing(4),156–163.

Castaldi,P.,Geri,W.,Bonfè,M.,Simani,S.,&Benini,M.(2010).Design of residual

generators and adaptive?lters for the FDI of aircraft model sensors.Control

Engineering Practice(18),449–459.

Castaldi,P.,Mimmo,N.,&Simani,S.(2011).Fault tolerant control schemes for

nonlinear models of aircraft and spacecraft systems.In Proceedings of the18th

IFAC world congress(Vol.18).World Congress.

Chen,J.,&Patton,R.J.(1999).Robust model-based fault diagnosis for dynamic

systems.Norwell,MS:Kluwer Academic Publishers.

Ding,S.X.(2008).Model-based fault diagnosis techniques:Design schemes,algo-

rithms,and tools(1st ed.).Berlin,Heidelberg:Springer.

Farrell,J.,Sharma,M.,&Polycarpou,M.(2003).Longitudinal?ight-path control

using online function approximation.Journal of Guidance,Control,and

Dynamics26(6),885–897.

Fink,M.P.,&Freeman,D.C.(1969).Full-scale wind-tunnel investigation of static

longitudinal and lateral characteristics of a light twin-engine airplane,No.TN

D-4983,NASA Technical Note.

Gray,H.(1943).Wind tunnel test of single and dual rating tractor propellers at low

blade angles of two and three blade tractor propellers at blade angles up to60,No.

L-316,NACA.

Isermann,R.(2005).Fault-diagnosis systems:An introduction from fault detection to

fault tolerance(1st ed.).Berlin,Heidelberg,New York:Springer-Verlag.

Isidori,A.(1995).Nonlinear control system I.Berlin,Heidelberg,New York:Springer.

Isidori,A.(1999).Nonlinear control system II.Berlin,Heidelberg,New York:Springer.

Khalil,H.(2002).Nonlinear systems(3rd ed.).Upper Saddle River,New Jersey:

Prentice Hall.

Koziol,J.(1971).Simulation model for the piper PA-30light maneuverable aircraft in

the?nal approach,No.DOT-TSC-FAA-71-11,NASA Technical Memorandum.

Lycoming O-320operator0s manual.(1973),(2nd ed).

Mahmoud,M.,Jiang,J.,&Zhang,Y.(2003).Active fault tolerant control systems.

Berlin,Heidelberg,New York:Springer-Verlag.

Persis,C.D.,&Isidori,A.(2001).A geometric approach to nonlinear fault detection

and isolation.IEEE Transaction on Automatic Control,6(46),853–865.

Pilot0s operating handbook and FAA approved airplane?ight manual:Piper PA-30twin

comanche.Second issue,Rev.1.Austin,Texas:Aircraft Publications,1993.

Simani,S.,Fantuzzi,C.,&Patton,R.J.(2003).Model-based fault diagnosis in dynamic

systems using identi?cation techniques.Advances in industrial control(1st ed.).

London,UK:Springer-Verlag.

Stevens,L.,&Lewis,L.(1992).Aircraft control and simulation.Canada:Wiley-

Interscience.

Theilliol,D.,Join,C.,&Zhang,Y.(2008).Actuator fault tolerant control design based

on a recon?gurable reference input.International Journal of Applied Mathematics

and Computer Science,18(4),553–560.

https://www.sodocs.net/doc/271412478.html,itary Handbook.(1997).Flying qualities of piloted airplanes.(1997)https://www.sodocs.net/doc/271412478.html,-

HDBK-1797.

https://www.sodocs.net/doc/271412478.html,itary Speci?cation.(1980).Flying qualities of piloted https://www.sodocs.net/doc/271412478.html,-F-8785C.

U.S.Standard Atmosphere.(1976).Washington,DC:https://www.sodocs.net/doc/271412478.html,ernment Printing Of?ce.

Witczak,M.(2007).Modeling and estimation strategies for fault diagnosis of non-

linear systems:From analytical to soft computing approaches.In Lecture Notes

in Control&Information Sciences(1st ed.).Berlin and Heidelberg:Springer-

Verlag GmbH&Co.

World Geodetic System(1984).Its de?nition and relationship with local geodetic

systems,No.NIMA TR8350.2,Department of Defense.

Zhang,Y.,&Jiang,J.(2008).Bibliographical review on recon?gurable fault-tolerant

control systems.Annual Reviews in Control,32(2),229–252.

P.Castaldi et al./Control Engineering Practice32(2014)227–235235

2021年公司人力资源部工作总结

( 工作总结 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2021年公司人力资源部工作总 结 The work summary can correctly recognize the advantages and disadvantages of previous work, clarify the direction of the next work, and improve work efficiency

2021年公司人力资源部工作总结 自上月十二号至今,我来三星人力资源部已经有一个月了。一个月的工作学习、环境适应、思维转变……也还算是忙忙碌碌,因忙碌故而充实,然而因为充实往往日子过得似乎仓促,仓促地不暇思索。可是,当蓦然回首的时候才发现,这匆匆而过的一个月确让我有了相当程度的转变,或者说是提高。也许这时候说完成了由校园向职场的转换还为时过早,然而不可置疑的是,这一个月的锻炼让我更成熟了、更自信了、更能以积极上进的态度面对工作、生活中的问题了…… 毕业之初能来到三星这个平台是我的万幸。当前很多人主张大学生要先就业再择业,我向来不赞成,认为这不过是无奈之举,如果能有丝毫的机会还是要在就业之前择好业,做好职业生涯规划(这

丝毫的机会对每个人都是有的)。我就是在毕业之前花了相当的时间在对自我的审视和人生方向的选择上,所以说,毕业之后能够从事本专业(人力资源)工作是我的必然。不过,尽管是必然,三星人力资源部这个平台也确实让我意外惊喜,在做好了一波三折的打算之后能够顺水推舟地实现这个目标对谁都是一种万幸!对万幸的事自然不能辜负。 一、工作描述 一个月内的工作感觉繁琐、忙碌,但是总结之下要做的也不过简简单单的几件事: 一、统计分析岗位需求。定期了解各分公司的缺员情况,随时掌握人员变动状况,定期对入职人员做分类统计,有效利用岗位分析表。 二、搜寻并联系紧需人才。每天查看邹平人才网、51job、公司邮箱,筛选求职者简历,联系合格者面试,并通过其他各种途径获得所需人才信息并取得联系。 三、办理员工报名、入职手续。

英语七下重点短语句型

-教育精选- 七年级下册重点短语及句型 Unit 1 重点短语: 1、想加入一个英语俱乐部 want to join an English club 5、讲故事俱乐部the story telling club 7、弹吉它play the guitar 8、敲鼓play the drums 9、给……说/与……交谈talk to/with… 10、喜欢做某事like to do / doing sth 11、和…一块玩游戏play games with… 12、帮助(某人)做某事 help (sb) with sth / help (sb) (to) do sth 13、说英语的学生English-speaking students 14、打电话找某人call sb at + 电话号码 15、有空be free 16、善于与某人相处be good with sb 17、擅长做某事be good at doing sth 对……有益/好处be good for… 18、与某人交朋友make friends with sb 19、在周末on /at the weekend = on / at weekends 20. 讲故事tell stories 重点句子: 1.你会弹吉它吗?Can you play the guitar?

-教育精选- 2.你会唱歌或跳舞吗?Can you sing or dance? 3.你非常擅长讲故事。 You are very good at telling stories. 4.学校文艺表演招募学生 students wanted for school show 5.来加入我们吧!Come and join us! 6.我喜欢和人们一块谈话和玩游戏。 I like to talk and play games with people. 7.放学后你忙吗?Are you busy after school? 8.请拨293-7742找布朗先生。 Please call Mr Brown at 293-7742. 9.周末你有时间吗?(同义句)Are you free on the weekend? / Do you have time …? 10.你善于与老人相处吗? Are you good with old people? Unit 2 重点短语: 1、去/到达学校go/get to school 2、回/到家go/get home 4、刷牙brush teeth 5、吃早餐eat/have breakfast 6、从晚上12点到早上六点from twelve o’clock

2016年托福独立写作全年汇总

2016年托福独立写作全年汇总,献给2017年备考的你 之前的每周六日都是托福考生们考试的日子,本周六则是大家欢庆圣诞的日子,2016年的托福考试已经全部结束,本文将会汇总全年的托福独立写作题目,希望备考2017年托福考试的小伙伴能够好好利用这批题目,回温一下本年的考试重点,准备迎接明年的托福考试。 1、Some people think that starting school day early is a good approach to support learning; other people think that starting school day at the later time is a good approach to support learning. Which one do you prefer? 2、In times of economic crisis, in which field do you think the government can cut financial support? 3、The high school students are required to study many different subjects at the same time or they should study only three or four subjects at a time? 4、Nowadays, children rely too much on the technology, like computers, smartphone, video games, for fun and entertainment. Playing simpler toys or playing outside with friends would be better for the children's development. 5、Do you agree or disagree with the following statement: For a student, reading on his/her own is as important as, or even more important than reading what is assigned by teachers. 6、Do you agree or disagree with the following statement: After completing high school, students should take at least one year off work or travel before they begin studying in university. 7、The university club want to help others,if you are a member of them, you only could undertake one project this year. which following would you prefer to choose? To help students at a nearby primary school with reading and mathematics; Build house for people who cannot buy or rent; Visit and assist the elderly people with daily tasks. 8、The university club want to help others,if you are a member of them, you only could undertake one project this year. which following would you prefer to choose? To help students at a nearby primary school with reading and mathematics; Build house for people who cannot buy or rent; Visit and assist the elderly people with daily tasks.

2019年度人力资源部工作重点

2019年度人力资源部工作重点某集团人力资源部2019年工作总结 集团公司:

2019年,是公司五年战略规划的第一年,在这一年里,公司加大对人力资源部的授权,规范化人力资源管理的分工,从专业人力资源管理的角度出发,力求将人力资源部打造成专业,系统,规范,高效的部门。在这一年里,人力资源部在公司党委、董事会的坚强领导下、在上级各级领导部门的具体指导和全部同志的共同努力下,深入贯彻落实科学发展观,按照“走专业化道路,做规范化人力资源管理”的总体化要求,克服现阶段人力资源管理无序化,人力资源管理人员业余化等多重问题,以建设规范化的人力资源管理为切入段,从变革、创新、发展的大局出发,紧紧围绕公司五年战略规划,解放思想,与时俱进,开拓进取,立足本职,认真落实每一项工作,努力学习专业化知识,为公司经济和发展建设提供了人力资源保障。 今年是公司管理突破年,也是人力资源部专业化建设的第一年,意味着公司人力资源管理工作必须从业余到实业化转变,从零散到系统化转变,所以今年的工作中,加强学习,建设系统性的人力资源管理模式是原则:工作丰富化,建设多元化的人力资源管理是根本。在这一年里,人力资源员工参加专业的人力资源管理培训班,增强人力资源管理专业能力。 在这一年里,人力资源部落实责任一对一,对模块的工作明确主要负责人;再将各模块有机结合,建设系统化的人力资源管理模式。 在2019年,人力资源部的专业管理能力有了质的飞跃和提升,整体工作也有了长足的发展,但是,在公司当前高速发展的态势下,人力资源部还有很多的东西要学习,还有很多问题需要去解决。鉴于此,现将本年度的工作总结报告如下:

英语七下重点短语句型

七年级下册重点短语及句型 Unit 1 重点短语: 1、想加入一个英语俱乐部 want to join an English club 5、讲故事俱乐部the story telling club 7、弹吉它play the guitar 8、敲鼓play the drums 9、给……说/与……交谈talk to/with… 10、喜欢做某事like to do / doing sth 、 11、和…一块玩游戏play games with… 12、帮助(某人)做某事 help (sb) with sth / help (sb) (to) do sth 13、说英语的学生English-speaking students 14、打电话找某人call sb at + 电话号码 15、有空be free 16、善于与某人相处be good with sb 17、擅长做某事be good at doing sth 对……有益/好处be good for… 18、与某人交朋友make friends with sb 19、在周末on /at the weekend = on / at weekends 》 20. 讲故事tell stories 重点句子:

1.你会弹吉它吗Can you play the guitar 2.你会唱歌或跳舞吗Can you sing or dance 3.你非常擅长讲故事。 You are very good at telling stories. 4.学校文艺表演招募学生 students wanted for school show 5.来加入我们吧!Come and join us! 6.我喜欢和人们一块谈话和玩游戏。 I like to talk and play games with people. 7.放学后你忙吗Are you busy after school 8.请拨293-7742找布朗先生。 - Please call Mr Brown at 293-7742. 9.周末你有时间吗(同义句)Are you free on the weekend / Do you have time … 10.你善于与老人相处吗 Are you good with old people Unit 2 重点短语: 1、去/到达学校go/get to school 2、回/到家go/get home 4、刷牙brush teeth ! 5、吃早餐eat/have breakfast

托福写作满分范例

GOOD 29 When you are assigned an important presentation for work or school, you prefer to work on it right away so that you can work on it a little bit every day, or wait until you have a good idea about the presentation? Though novel ideas can help better assignments, I prefer to work on the presentation as soon as I am assigned it. First, the presentation cannot be done just by creativity, but by proper arrangement. A job plan, manageable, precise and rational, is not only the bed rock of completing but also the guarantee of time-saving. For instance, preparing the material for the topic, researching some knowledge in the textbooks and discussing the task with the other students in group are the things that you can do even when you do not have any inspiration. So redistributing your plan can avoid wasting your time waiting. Second, good idea is always late for your deadline, a regret that can be eliminated by right-away action. The more time you waste on planning and considering your presentation, the less time you will have to revise and complete your assignment. Take my brother Jim for an example. He is a freshman in university and quite into the first presentation in the opening of semester. Spending the last 4 days engaging in assembling the ideas, he, with barely nothing innovative, has no time typing a practicing so that he needs to stay up late the last night to catch up in time. As a result, he can not hand in the presentation when the deadline

人力资源12项重点工作

人力资源十二项重点工作 一、战略规划 到年度末时,人力资源首要工作都是制定企业年度人力资源战略规划。战略规划就是人力资源为实现企业目标而拟订的一套措施,从而求得资源需求量和资源拥有量之间在企业未来发展过程中的相互匹配。 二、企业文化 为什么优秀公司能够持续发展,能够出奇制胜?是因为文化差距决定管理差距,常青的公司都具有经久传承的文化理念和文化思想。企业文化是一只无形的手,温暖着每一个员工的心。人力资源工作重点之一就是用企业文化来增加员工对企业的忠诚度。 与此同时,企业文化也在规范员工的行为,引导员工在工作中积极的精神面貌和行为。 三、招聘 招聘中能否有效择员,取决于人力资源对岗位工作职责及应具备的能力素质进行明确分析,并在招聘过程中对应聘者的的知识、技能、个性、潜质、动机做出综合评估,从而符合人岗匹配的黄金法则,招聘是人力资源所有工作中的最重要的一个环节,选择的人决定了后面环节工作的难度。当然这也是难度最大的一个工作。 四、绩效管理 绩效管理是企业目标管理和计划控制的重要辅助,也是人力资源工作中最基础的工作,绩效管理能促进企业战略目标的实现和员工能力素质的提高,能实现企业内部的竞争和淘汰,激励和鞭策员工努力地完成工作目标并实现提高。 五、薪酬福利 一个合理的薪酬福利制度体系有利于人力资源招聘和员工关系相关工作的开展,从内部角度来说,激励和留住员工、提升员工的满意度。从外部角度来说。合理的薪酬体系对外部人才具有吸引力,提升公司在人才市场的竞争力,体现公司实力和形象。 六、员工培训 培训在培育和加强企业能力的过程中扮演着核心角色,并逐渐演变为企业战略实施的重要一环。培训贯穿于人力资源全年工作中,培训需求调查、培训课程安排,讲师选择,时间地点协调、培训评估等等都离不开人力资源工作者的辛勤汗水。员工培训可以提高员工的各方面能力以满足现在或将来工作的需要,也是企业规范化、制度化必不可少的环节。 七、职业生涯规划 这里的职业生涯规划只人力资源工作者要帮助企业内部员工最好职业生涯规划,完善企业内部的晋升制度和晋升通道,帮助员工与企业一起成长,为员工规划未来美好前景才能使员工全身心的投入到工作中去。才会对企业产生感情,真心的为企业工作。

(完整版)外研版英语七年级下册短语及重点句型汇总

外研版英语七年级下册短语及重点句型汇总 2016-05-24 14:24阅读:2,580 Module 1 Lost and found 【短语归纳】 1. lost and found box 失物招领箱 2. be careful with… 小心… 3. from now on 从现在开始 4. (be) in a hurry 匆忙 5. hundreds of 成百上千 6. look for 寻找(过程) 7. first of all 首先 8. find 找到(结果) 9. try to do sth 努力做某事(会成功) 10. choose from 从…中挑选 11. try doing sth 试图做某事(成功与否未知) 12. at the moment 此时此刻 13. such as 例如(用于列举) 14. for example 例如 【重点句型结构】 1. Whose + 名词+is this ? 这是谁的…? 2. help sb do sth. 帮助某人做某事 3. Please be careful with… 请小心保管… 4. Welcome to + 地点欢迎来到… 5. call sb at + 电话号码拨…给某人打电话 【语法专项】 物主代词:表示所属关系的代词(…属于谁的) 人称单数复数形容词性物主代词名词性物主代词形容性物主代词名词性物主代词第一人称my mine our ours 第二人称your yours your yours 第三人称his his their Theirs her hers its its 形容词性物主代词:必须和名词在一起,例如my father, yourteacher... 名词性物主代词:相当于与之相对应的形容词性物主代词+名词,例如This shirt is mine. =This i s my shirt. Module 2 What can you do? 【短语归纳】 1. get on well with sb. 与某人相处融洽 2. play the piano 弹钢琴 3. play table tennis 打乒乓球 4. what about…?=how about…? ...怎么样? 5. worry about… 担心… 6. be good at doing sth. 擅长做某事

托福写作高分攻略

托福写作高分攻略丨了解文化差异避开“中式思维”影响 一.敢于表达“自我” 众所周知,托福写作部分通常以议论文形式考察学生,要求学生对某一话题进行探讨,是否赞同及理由是什么。在此类文章下,西方写作要求作者鲜明地展现自己观点,突出作者的“自我”,而我们学生往往表现的“唯唯诺诺”,似乎不敢直接说出自己的想法,拉长文章篇幅,却让读者疑惑。 二.“直线思维”写作 举例说明,儿时写游记作文时,大家最喜欢在开头写“今天秋高气爽”,而每每和外国友人提起此,他们都纷纷表示“然后呢?”,因为在西方人眼里天气好就是天气好,无它。 而中国文化里“秋高气爽”隐指“心情舒畅”,我们更希望塑造一种语境让读者猜测,这在西方文化里是行不通的。托福写作里,我们鼓励学生在每个主体段第一句直接提出论点,就是为了迎合西方写作思维,把最想表达的以最直接的方法,放在最显眼的位置,使考官一目了然,想高分进击。 三.了解托福写作考察重点 托福写作考察的是学生对语段的转述、总结能力,对事物观点的看法,而不仅仅是英语语法和词汇的运用。常见到学生文章里用复杂的句型和高深的词语,细看却内容空泛,没有思想。这也是为什么很多学生认为自己辛苦背句型却得不到高分的原因。 要想避免在写作中免受“中式思维”的影响,必须要敢于表达自我,采用“直线思维”的方式写作,这样才更有可能拿到托福写作高分。反之,如果持续按照“中式思维”去写文章,可能会一直卡在托福写作提升的瓶颈期。 托福写作:常见立场介绍 1.持一立场 针对某一个论题,每一种观点都有它的理由。同样,在托福作文中也不存在着唯一的观点和内容。这时,你可以从两个完全相反的观点中选择一个立场。关键在于你如何说服读者:尽管存在着相反的立场,你的观点从总体上来说仍然是最具说服力的。 一般说来,应该选择那个政治上正确的或者大多数考生会选择的观点。当然,如果你不擅长写这种文章,你可以适当地调整一下内容以适应你较习惯的舒服的表达方式。但总的说来,文章要均衡,不要包含高度争议性的论述。不要把这里当成思想家的论坛。写一篇高度争议性的文章只会让读者对你产生偏见,同时也会使电脑评分器费解,因为这种文章和其数据库里所储存的文章差别太大。所以,针对问题时尽量使用较冷静平和的语气。尽管如此,你也不能不选择一个立

2020年公司人力资源部工作总结

2020年公司人力资源部工作总结 公司人力资源部工作总结 各位领导、各位同仁:大家好!匆匆逝去,我们钢材大市场的一切营运工作也准备就绪,所有长天人都在满怀希望地期盼着市场正式开业春天的早日到来,值此辞旧迎新之际,我谨代表公司人力资源部对本部门这一年来的工作做个简要总结,同时也作为个人的述职 报告,一并向大家汇报。我部门的工作是以人力资源管理工作计划为基础,并配合公司的 工作重心逐步开展的。现将今年我们完成的工作总结如下: 一、公司人力资源管理体系的建立和完善 1、公司组织架构的完善及人员编制的确定人力资源部于年初就划分、明确了各部门 的组织架构,分析并制定了各部门的岗位设置及人员编制,从而初步确定了公司的定员定编,并且不断依据实际情况和工作重点,有针对性地对各部门的定员定编进行适当的调整,以期使公司的人员与岗位设置情况达到最佳的配置,最大可能地发挥每一个职能部门和员 工的作用。 2、公司管理制度体系的建立我们深知严谨规范的管理对一个公司的生存和发展具有 极其重要的意义,所以人力资源部一直致力于建立完善的公司内部管理体系。具体而言, 规划组织编制了三套内部基础管理的规范性文件——《公司岗位职责》《公司管理制度汇编》《公司工作流程汇编》。其中《管理制度汇编》前后经过两次广泛征求意见,四次修改、完善,人力资源部已全部统一汇编整理完毕,只需组织讨论通过,即可印发执行;公 司的《工作流程汇编》组织拟订也接近尾声;《公司岗位职责》的调整完善工作也已开始。 3、人事管理体系的确立人力资源部在致力于建立完善公司基础管理体系的同时,也 不忘人力资源部自身规范管理体系的建立工作。 ①制定了新的薪酬制度体系,并在公司领导的大力支持下于07月起成功地实施了新 的薪酬制度。 ②为系统配合公司新的薪酬制度,制定了公司绩效考评制度草案,现正在进一步调整 和完善过程中,将正式付诸实施。 ③重新修订了《员工手册》。 二、公司人员招聘工作 是公司高速发展的一年,是公司人员流动较为频繁的一年,也是公司人员招聘工作任 务繁重的一年。在这一年里,公司的空缺岗位多,人员需求多,要求员工到岗时间紧迫, 故人力资源部在全年的招聘工作中花费了较多的时间和精力。在人力资源部先后参加了八 次现场人才招聘会,其中包括春季、冬季两次面向全国的大型招聘会。共面试各类人才逾 千人次,社会反响巨大,招聘成果显著,不仅为公司的长远发展储备了一批高素质、有潜

2013人教版七年级英语下册重点短语和句子翻译

Unit 1 Can you play the guitar? 一、词汇拓展 1. sing(现在分词)_________ 2. dance(现在分词)_________ 3. swim(现在分词)_________ 4.draw(同义词)_________ 5. story(复数)_________ 6.write(同音词)_________ 7. drum(复数)_________ 8. piano(复数)_________ 9. also(同义词)_________ 10.make(单三)_________ (现在分词)_________ 11. center(形容词)_________ 11.teach(单三)_________ (名词)_________ 13. musician(形容词_________ 二、重点短语与句型 1.下国际象棋___________________ 说英语___________________ 弹吉它___________________ 想做……___________________ 2. 擅长于_______________ 什么俱乐部/运动 ___________________ 艺术/音乐/游泳/运动俱乐部___________________ ___________________ 擅长做某事___________________= ___________________ like to do …喜欢做…What about…?…怎么样? be good at doing…擅长做…tell stories 讲故事 the story telling club 讲故事俱乐部G7BU1p2 3. talk to 跟…..说write stories 写小说 want …for the school show为学校表演招聘……after school 放学后 do kung fu 打中国功夫come and show us 来给我们表演G7BU1p3 4. play the drum 敲鼓play the piano弹钢琴 play the violin 拉小提琴G7BU1p4 5. be good with 善于应付(处理)…的;和某人相处很好 make friends 结交朋友help sb. with sth=help sb.(to) do sth.在某方面帮助某人 on the weekend 在周末=on weekends help with...帮助做…… be free /busy 有空/很忙call sb. at…拨打某人的……号码 need sb./sth. to do…需要某人/某物做…… English-speaking students说英语的学生G7BU1p5 join……the club加入…俱乐部,be in=join in …成为…中的一员G7BU1p6 三、关键句型 1. Can you draw? Yes, I can. / No, I can’t. 2. What club do you want to join? I want to join the chess club. 3. You can join the English club. Sounds good. 4. I can speak English and I can also play soccer. 5. Please call Mrs. Miller at 555-3721. Unit 2 What time do you usually go to school? 一、词汇拓展 1. up(反义词)down 2. brush(单三)brushes 3. tooth(复数)teeth 4. always (反义词)never 5.early(反义词)late 6. work(同义词)job 7. night(反义词)day 8. half(复数)halves 9. run(现在分词)running 10. clean(现在分词)cleaning 11. either…or…(反义词)neither …nor… 12. life(复数)lives 13. taste(单三)tastes 二、重点短语与句型 1.get up 起床,站起get dressed穿上衣服have/take a shower 洗淋浴 brush teeth涮牙eat breakfast 吃早餐What time 几点,何时 go to school 去学校do homework 做家庭作业G7BU2p7 2. at night 在晚上from…to…从……到……G7BU2p8 in the morning 在上午go to work 去上班

托福写作技巧(总结)

把教授如何反驳文章中三个分论点挺清楚,例子都是阅读文章里的所以不用记,听力里主要是在讲阅读文章中的例子有哪些缺陷或不严谨的地方,从而无法成为有效的论据,甚至成为别的观点的论据。 有自己的写作模式、写作套路。 先不限时写几篇,写完一篇就立刻打印出来逐字逐句修改(电脑上改容易偷懒),把过于简单的词和句子一一替换,注意别用太难的词和没把握的词,能用到6级词汇就差不多了,心情好了再拽两个托福词汇上去也就足够了。我觉得最好用的就是形容词和副词,可以记几个托福水平的精彩形容词和副词,选择自己看着顺眼的,在平凡的名词前加好看的形容词,在平淡的句子里随处放置抢眼的副词,这样文章一下子就丰富起来了。 插入语,句式变换,每段第一句试着倒装、或用被动语态 多用具体的详细的例子,别停留在就事论事上,可以试着延伸到生活的其他方面 注意线性思维,“总分总” 托福作文写五段,第一段是中心思想段,二三四是支持段落,最后是总结段落 无论是综合写作还是独立写作,考生追求的基本目标是把想说的意思用书面英语表达清楚,让阅卷人读懂和明白。从语言角度来说,有两大标准,即准确性和多样化。能够达到词词准确,又使用到不同的词句来表达相同、相似的意思,从语言角度来说已经符合托福考试的高分要求。 仿写。只看不写,永远不能将输入语言化成输出语言。尽量仿写整句,保持原句结构,替换内容! In a word, it is rather superficial to simply say that.........+观点:In a word, it is rather superficial to simply say that parents are the best teachers。用一句话说,简单地认为父母是最好的老师是相当肤浅的。 综合写作部分的评分标准: 1、内容的完整性和准确性。简单地说,就是文章是否有将讲座中的关键信息点完整、准确地提 取出来,并和阅读材料中的相关内容有效地一一对应。如果讲座中的信息点有缺失,那么会有一定程度 的扣分;如果只写了有关阅读材料的观点,得1分。 文章的组织机构,词汇和语法的正确性和准确性。高分的作文需要做到条理清晰,结构连贯,用词 恰当,能够准确地表达讲座中的观点与阅读材料中的观点是如何相互联系的,只要作文中的错误不至于 使内容表述出现误解,一些偶尔出现的语言错误,如单词拼写、单复数问题等,不会对作文成绩产生很 大影响,当然,错误肯定是越少越好的。 独立写作部分的评分标准: 1、有效回应题目,阐明文章主题。一般来说,独立写作完全跑题的情况很少,但是很多考生在 展开讨论时所采用的论据,比较容易出现跟主题关联性不大的情况,即局部答非所问的现象,从而影响 了得分。2、逻辑条理清楚,论证充分展开。这一点的关键在于文章论证的展开,是否提供了大量的细节和例子来支持观点,而非泛泛而谈地说理。3、内容连贯一致,衔接自然流畅。达到内容连贯一致的文章通常全文围绕中心论点展开,而不会论据自相矛盾,也不会重复论证,有时候通过一些表示因果、先后、递进的关系连词可以起到粘合剂的作用。4、遣词造句地道,语言驾驭娴熟。托福考试终究是语言考试,最终还是要考查考生的语言运用能力,但是要注意的是,并不是要求考生通篇都用难词偏语长句,而是要会变化着用一些美国人常用的语句把自己的想法表达清楚,所以建议考生尽量多阅读和模仿英文原版材料,这样写出来的文章才能够原汁原味。

人力资源部月度工作总结及计划.doc

人力资源部月度工作总结及计划 篇一:人力资源部9 月份工作总结及10 月份计划 人力资源部9 月份工作总结及10 月份工作计划 填报日期: 20XX年 9 月 30 日填报人:薛红部门:人力资源部 一、主要业绩指标与工作完成情况分析报告 1,招聘与培训 9月份招聘工作基本未能完成本月度招聘任务,招聘达 成率为 53%。结合过往企业员工变化规律,10 月份拟加大人员储备(特别是一线员工),以确保在流失率较高的前提下 满足用工需求。 培训方面在9 月份基本为零,结合中基层管理执行力不 够和工伤频发现象,拟计划在10 月份对中基层管理进行执 行力培训,对冲压,模具车间员工进行安全生产培训(培训 课件已编写完善)。 2,绩效管理 9月份对公司绩效管理进行了初步了解,在月底相应对 绩效管理、绩效考核的落实情况进行了检查。如果实施绩效 考核管理的话,是否考虑先和考核对象订立绩效合同及确定 绩效考核内容。 3,薪酬管理

根据月初对于内部员工薪酬调查,结合公司各岗位实 际,建议对表现优秀的员工采用排名奖励的方式及薪酬补 助,对表现不佳的员工采取末位淘汰的方式。以绩效定薪酬、以绩效促效率,明确考核依据、追查数据,彰显公司公平、 公正的理念,完善薪酬管理体系。(公司一线员工工资略低, 相对外部而言竞争力似乎不大) 4,企业文化建设、员工管理及福利保障 9 月份借助一汽检查团的外势力量,全面推行了5S运动,各部门宣传力度、工作场所虽有所改变但还需加强。10 月份将落实成立5S 小组, 5S 定时会议。 本月违反厂纪厂规 3 起,都已做出罚款处理,并已张贴通告,对员工教育将有一定帮助。本部门在9 月份加强对 于新进员工和部分老员工的走访,从走访中了解员工需求、 思想动态。 9 月份对部分辞职人员进行了相关调查,就避免 员工流失问题拟定了措施。 5 ,组织建设 在本部门建设中,从月初开始,人力资源部从人员配备 上应该是齐全的,现除前台人员较难胜任本职工作外,招聘,培训,薪酬、绩效、人事等方面工作基本正常。二,公司目前状况及出勤率与流失率分析 上月公司总人力为701 人,截止 9 月 30 号现有人力691 人。其中:高管4+1=5 人,财务6+1=7 人,技术部51 人,工艺 2 人,自动化 8-1=7 人,人事部 8 人(含屈峰,喻双霞),

2019年12月11日托福写作答案解析

2019年12月11日托福写作答案解析综合写作 独立写作 Do you agree or disagree with the following statement? Visiting museums is the best way to learn about a country. 这是一道绝对词题(题干出现the best,the most important 等字眼),反对比较好写,一个实用易学的破解角度是"承合驳绝",即承认合理性,反驳绝对性。 三个主体段能够这么写, 1.承认合理性(这段也能够合并进开头段):Visiting museums does have some advantages, i.e. a wide range of carefully selected and beautifully arranged materials;save time and money 2.指出不足:the amount of information in museums is limited and not as lively as when it is presented in real life. Besides, museums usually only provide a singe perspective on major historic events and modern issues. 3.提出更好的 (必要的逻辑环节):there are better ways to learn about a country like traveling to that country or talking with friends as well as strangers from that country. 另外两种主体段分段能够是 1.承认合理性

人力资源部2015年度重点工作计划

**银行人力资源部 2015年度重点工作计划 2015年,配合我行战略发展规划的顺利推进,人力资 源部主要立足于我行人才的培养和素质的提升、服务水平的 提高,打造良好的外部形象。2015年重点工作计划如下: 一、做好各项培训工作 在2014年培训工作的基础上,加强培训的针对性、适 应性和有效性,提高培训向工作能力转化的效率,分层次、 抓重点,围绕我行经营管理、专业技术和技能操作三方面组 织培训工作。 (一)对中层管理人员的培训 根据我行阶段性的工作安排和战略发展步伐,采取多种形式对全行高管人员、中层干部和员工进行升级培训。聘请 中介机构制定培训方案,提高高管人员的决策能力和管理水 平,提高中层干部的专业水平和业务拓展能力,提高员工职 业化素养及服务营销水平。 (二)配合各部门做好专业培训工作 通过配合各业务部门举办的各种相关业务知识和技能 的培训,使职工能全面的对所涉及的业务领域有更深刻的 了解和掌握,全面提升全行的服务水平和优质高效的服务

技能。 二、加强员工职业化队伍建设 职业化的问题已经成为制约企业发展的重要问题之一, 也是迫切需要解决的问题之一。在2014年探讨摸索学习的基础之上,加强我行员工的职业化建设的提升,沉积商行发 展的内在动力起着关键性的作用。 (一)培养员工的职业精神。 培养员工的职业意识,使员工养成良好的学习的心态、 积极的心态、感恩的心态,遵循职业道德,提高员工的职业 素养。拟在上半年聘请专家进行一次职业道德和职业意识的 培训,内容包括:爱岗敬业、对企业忠诚、诚实守信、办事公 道、尊重他人、追求卓越、承担责任及客户服务意识、团队意识、沟通意识、计划意识、角色意识、效率意识、创新意识、危机意 识等。 (二)提高员工的职业能力。 完善我行各种职业规范,鼓励员工职业资质化,提高员工应具备的职业能力和职业技能。继续推行银行从业人员资 格考试,加大从业资格认证的覆盖面。 (三)做好员工职业生涯的规划。 使每一个员工都能认识和感受到,只要有真才实学,有良好的品德和业务水平,有超群的领导和管理能力,通过基 层临柜及各种实际业务的操作和锻炼,都能够充分施展自己

人教版七年级下Unit 2重点短语、句子

Unit 2 Where’s the post office? Ⅰ、重点短语: 1. (the) post office 邮局 2. (the) pay phone 公用电话 3. near here 在这儿附近 4. on the street 在这条街 5. on Center Street 在中心街 6. be across from 在……对面 7. be next to 在……旁边;贴近…… 8. be between … and … 在……和……之间 9. be in front of 在……之前 10. on Green Street 在格林街 11. be behind 在……之后 12. in the neighborhood 在附近 13. go straight 直走 14. turn left/right 坐/右转 15. be down Bridge Street 沿着大桥街 16. on the right 在右边 17. a clean/dirty park 一个清洁的/肮脏的公园 18. a quiet/busy street 一条宁静的/繁忙的街道 19. a new hotel 一家新旅馆 20. an old hotel 一家旧旅店 21. welcome to sp. 欢迎到某地 22. the garden district 花园小区 23. on fifth Avenue 在第五大道 24. enjoy the city’s quiet streets 喜欢/享受这城市静谧的街道 25. take a walk 散步

26. through the park 穿过公园 27. on Center Avenue 在中心大道 28. across from the park 在公园对面 29. a small house with an interesting garden 一栋有个引人注目的花园的小房子 30. the beginning of ………的开始 31. visit Bridge Street 游览大桥街 32.have fun 玩得开心 33. a good place to have fun 一个好玩的地方 34. be hungry 饿了 35. buy some food 买点食物 36. be arriving 就要到达了 37. next Sunday 下周六 38. let me tell you sth. 让我告诉你某事 39. the way to sp. 去某地的路 40. take a taxi 乘出租车 41. from the airport 来自机场 42. pass a bank 经过一间银行 43. on your right/left 在你的右/左侧 44. go down … 沿着……去 45. go through … 穿过…… 46. at New Park 在新公园 47. have a good trip 旅途愉快 48. around here 在这附近 *49. a quiet street off Fifth Avenue 一条远离第五大道的静谧的街道*50. on the corner 在街角;在拐角处 Ⅱ、重点句子:

相关主题