搜档网
当前位置:搜档网 › 微波实验7

微波实验7

微波实验7
微波实验7

实验七微带缝隙天线仿真设计

徐盛平11081339 11083414 周四上午

一实验目的:

1、了解微带缝隙天线的概念

2、掌握MWO EM structure仿真方法

3、掌握天线基本参数及优化设计方法

二.实验原理

微带缝隙天线

这种天线由三层组成:上层为金属层(构成槽线、微带线的地),中间为介质基板,下层为金属层来构成微带导带。

微带天线特点

具有以下优点:馈电网络和辐射单元相对分离,从而把馈线对天线辐射方向图的影响降到最小,对制造公差要求比贴片天线低,可用标准的光刻技术在敷铜电路板上进行生产,在组阵时其单元间隔离可比贴片天线更大。特别是对于运动物体所用天线,微带缝隙天线可以说是理想的选择,因为它可以与物体的表面做得平齐,没有凸起部分,用于快速飞行器表面时不会带来附加的空气阻力,既隐蔽又不影响物体的运动。。

三.实验要求

熟悉利用MWO软件进行EM仿真。

熟悉微带天线基本特性

了解WMO原理图引入 EM 结构方法,利用MWO分析天线工作特性(反射,方向图等四.实验步骤与结果

建立微带缝隙天线结构

分析可以得到方向图特性

3D试图观察微带缝隙天线基本结构

观察电流和电场分布

回波损耗与反射系数

对微带缝隙天线的仿真有了进一步的了解,以及在匹配中的使用。

微波技术基础实验指导书讲解

微波技术基础实验报告 所在学院: 专业班级: 学生姓名: 学生学号: 指导教师: 2016年5月13日

实验一微波测量系统的了解与使用 实验性质:验证性实验级别:必做 开课单位:学时:2学时 一、实验目的: 1.了解微波测量线系统的组成,认识各种微波器件。 2.学会测量设备的使用。 二、实验器材: 1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容: 1.了解微波测试系统 2.学习使用测量线 四、基本原理: 图1。1 微波测试系统组成 1.信号源 信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。 本实验采用DH1121A型3cm固态信号源。 2.选频放大器

当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。它具有极高的灵敏度和极低的噪声电平。表头一般具有等刻度及分贝刻度。要求有良好的接地和屏蔽。选频放大器也叫测量放大器。 3.测量线 3厘米波导测量线由开槽波导、不调谐探头和滑架组成。开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。 4.可变衰减器 为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。 五、实验步骤: 1.了解微波测试系统 1.1观看如图装置的的微波测试系统。 1.2观看常用微波元件的形状、结构,并了解其作用、主要性能及使用方法。常用元件如:铁氧体隔离器、衰减器、直读式频率计、定向耦合器、晶体检波架、全匹配负载、波导同轴转换器等。2.了解测量线结构,掌握各部分功能及使用方法。 2.1按图检查本实验仪器及装置。 2.2将微波衰减器置于衰减量较大的位置(约20至30dB),指示器灵敏度置于较低位置,以防止指示电表偶然过载而损坏。 2.3调节信号源频率,观察指示器的变化。 2.4调节衰减器,观察指示器的变化。 2.5调节滑动架,观察指示器的变化。 六、预习与思考: 总体复习微波系统的知识,熟悉各种微波元器件的构造及原理特点。 实验二驻波系数的测量

最新微波技术实验指导书

微波技术实验指导书

微波技术实验指导书

实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做 开课单位:信息与通信工程学院学时:2学时一、实验目的: 1.了解微波测量线系统的组成,认识各种微波器件。 2.学会测量设备的使用。 二、实验器材: 1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容: 1.了解微波测试系统 2. 学习使用测量线 四、基本原理: 图1.1 微波测试系统组成 1.信号源

信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。 本实验采用DH1121A型3cm固态信号源。 2.选频放大器 当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。它具有极高的灵敏度和极低的噪声电平。表头一般具有等刻度及分贝刻度。要求有良好的接地和屏蔽。选频放大器也叫测量放大器。3.测量线 3厘米波导测量线由开槽波导、不调谐探头和滑架组成。开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。 4.可变衰减器 为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。 五、实验步骤: 1.了解微波测试系统 1.1观看如图装置的的微波测试系统。

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

北邮电磁场与微波技术实验实验一

实验一网络分析仪测量振子天线输入阻抗 一,实验目的 1.掌握网络分析仪矫正方法; 2.学习网络分析仪测量振子天线输入阻抗的方法; 3.研究振子天线输入阻抗随振子电径变化的情况。 二,实验步骤 1.设置仪表为频域模式的回损连接模式后,矫正网络分析仪; 2.设置参数并加载被测天线,开始测量输入阻抗; 3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4.更换不同电径(Φ1,Φ3,Φ9)的天线,分析两个谐振点的阻抗变化情况。 三,实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印廷矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h<<λ时,可认为 R≈40(πh)2 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一λ ?1] 倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为W=60[ln2h a 四,实验数据 试验参数:BF=600,ΔF=25,EF=2600,n=81 1.短路时矫正,阻抗点分布:

2.开路时矫正,阻抗点分布: 3.选择电径为Φ1=1mm的天线,阻抗点分布:

由图及数据表可知其谐振点频率约为1225MHz,第二谐振点频率约为2450MHz,即第二次谐振时频率约为第一次两倍。 4.选择电径为Φ3=3mm的天线,阻抗点分布:

微波技术实验报告

微波技术实验指导书目录 实验一微波测量仪器认识及功率测量________________________________ 2实验二测量线的调整与晶体检波器校准_______________________________ 5实验三微波驻波、阻抗特性测量_____________________________________ 8

实验一微波测量仪器认识及功率测量 实验目的 (1)熟悉基本微波测量仪器; (2)了解各种常用微波元器件; (3)学会功率的测量。 实验内容 一、基本微波测量仪器 微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。它主要包括微波信号特性测量和微波网络参数测量。 微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。 测量的方法有:点频测量、扫频测量和时域测量三大类。所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。 图1-1 是典型的微波测量系统。它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。 图 1-1 微波测量系统 二、常用微波元器件简介 微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件: (1)检波器(2)E-T接头(3)H-T接头(4)双T接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器 三、功率测量 在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。

微波通信实验微波控制电路的设计与测试

1格式已调整,word 版本可编辑. 电 子 科 技 大 学 实 验 报 告 学生姓名: 宫大鹏 学 号: 0406 指导教师: 张小川 课程名称:微波通信专业学位综合实验1

电子科技大学 实验报告 学生姓名:宫大鹏学号:0406指导教师:张小川 实验地点:科研楼701实验时间:2012.10 一、实验室名称:微波通信专业学位实验室 二、实验项目名称:微波控制电路的设计及测试 三、实验原理: 微波控制电路根据其用途分类,主要包括以下三种情况:(1)微波信号传输路径通断或转换——微波开关,脉冲调制器等;(2)控制微波信号的大小——电控衰减器,限幅器,幅度调制器等;(3)控制微波信号的相位——数字移相器,调相器等。控制电路广泛用于微波测量、微波中继、雷达、卫星通信等系统。本实验重点讲解微波SPST和SPDT 的工作原理、设计及开关、环形器、隔离器主要电性能指标的测试。 衡量开关的电性能指标有:工作频率范围,插入损耗,隔离度,功率容量等。具体定义为: 1. 工作频率范围,指满足各项指标要求的频率范围,用起止频率表示; 2. 插入损耗,是开关导通时传到负载的实际功率与理想开关传到负载的功率之比; 3. 隔离度,是开关断开时负载上的实际功率与理想开关传到负载的功率之比; 如果用二端口网络参量表征开关网络特性,则开关的插入损耗和隔离度的定义可用(1-1)式表达 1.二极管开关工作原理 由二极管实现SPST分为串联型和并联型,其原理电路及等效电路如图3-1所示。在串联型电路中,器件呈低阻抗时,对应开关的导通状态,信号沿传输线传输。当器件呈高 2格式已调整,word版本可编辑.

微波技术基础 简答题整理

第一章传输线理论 1-1.什么叫传输线?何谓长线和短线? 一般来讲,凡是能够导引电磁波沿一定方向传输的导体、介质或由它们共同体组成的导波系统,均可成为传输线;长线是指传输线的几何长度l远大于所传输的电磁波的波长或与λ可相比拟,反之为短线。(界限可认为是l/λ>=0.05) 1-2.从传输线传输波形来分类,传输线可分为哪几类?从损耗特性方面考虑,又可以分为哪几类? 按传输波形分类: (1)TEM(横电磁)波传输线 例如双导线、同轴线、带状线、微带线;共同特征:双导体传输系统; (2)TE(横电)波和TM(横磁)波传输线 例如矩形金属波导、圆形金属波导;共同特点:单导体传输系统; (3)表面波传输线 例如介质波导、介质镜像线;共同特征:传输波形属于混合波形(TE波和TM 波的叠加) 按损耗特性分类: (1)分米波或米波传输线(双导线、同轴线) (2)厘米波或分米波传输线(空心金属波导管、带状线、微带线) (3)毫米波或亚毫米波传输线(空心金属波导管、介质波导、介质镜像线、微带线) (4)光频波段传输线(介质光波导、光纤) 1-3.什么是传输线的特性阻抗,它和哪些因素有关?阻抗匹配的物理实质是什么? 传输线的特性阻抗是传输线处于行波传输状态时,同一点的电压电流比。其数值只和传输线的结构,材料和电磁波频率有关。 阻抗匹配时终端负载吸收全部入射功率,而不产生反射波。 1-4.理想均匀无耗传输线的工作状态有哪些?他们各自的特点是什么?在什么情况的终端负载下得到这些工作状态?

(1)行波状态: 0Z Z L =,负载阻抗等于特性阻抗(即阻抗匹配)或者传输线无限长。 终端负载吸收全部的入射功率而不产生反射波。在传输线上波的传播过程中,只存在相位的变化而没有幅度的变化。 (2)驻波状态: 终端开路,或短路,或终端接纯抗性负载。 电压,电流在时间,空间分布上相差π/2,传输线上无能量传输,只是发生能量交换。传输线传输的入射波在终端产生全反射,负载不吸收能量,传输线沿线各点传输功率为0.此时线上的入射波与反射波相叠加,形成驻波状态。 (3)行驻波状态: 终端负载为复数或实数阻抗(L L L X R Z ±=或L L R Z =)。 信号源传输的能量,一部分被负载吸收,一部分反射回去。反射波功率小于入射波功率。 1-5.何谓分布参数电路?何谓集总参数电路? 集总参数电路由集总参数元件组成,连接元件的导线没有分布参数效应,导线沿线电压、电流的大小与相位,与空间位置无关。分布参数电路中,沿传输线电压、电流的大小与相位随空间位置变化,传输线存在分布参数效应。 1-6.微波传输系统的阻抗匹配分为两种:共轭匹配和无反射匹配,阻抗匹配的方法中最基本的是采用λ/4阻抗匹配器和支节匹配器作为匹配网络。 1-7.传输线某参考面的输入阻抗定义为该参考面的总电压和总电流的比值;传输线的特征阻抗等于入射电压和入射电流的比值;传输线的波阻抗定义为传输线内横向电场和横向磁场的比值。 1-8.传输线上存在驻波时,传输线上相邻的电压最大位置和电压最小位置的距离相差λ/4,在这些位置输入阻抗共同的特点是纯电阻。 第二章 微波传输线 2-1.什么叫模式或波形?有哪几种模式?

哈工大 微波技术实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 微波技术 实验报告 院系:电子与信息工程学院班级: 姓名: 学号: 同组成员: 指导老师: 实验时间:2014年12月18日 哈尔滨工业大学

目录 实验一短路线、开路线、匹配负载S参量的测量------------------------------3 实验二定向耦合器特性的测量------------------------------------------------------6 实验三功率衰减器特性的测量-----------------------------------------------------11 实验四功率分配器特性的测量-----------------------------------------------------14 附录一RF2000操作指南-------------------------------------------------------------19 附录二射频电路基本常用单位------------------------------------------------------23 实验总结------------------------------------------------------------------------------------24

实验一 短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。 二、实验原理 S 参量 网络参量有多种,如阻抗参量[Z],导纳参量[Y],散射参量[S]等。微波频段 通常采用[S]参量,因为它不仅容易测量,而且通过计算可以转换成其他参量, 例如[Y]、[Z] 图1-1 一个二端口微波元件用二端口网络来表示,如图1-1所示。图中,a1,a2分 别为网络端口“1”和端口“2”的向内的入射波;b1,b2分别为端口“1”和端口 “2”向外的反射波。对于线性网络,可用线性代数方程表示: b1=S11a1+S12a2 b2=S21a1+S22a2 (1-1) 写成矩阵形式: ?? ??????????????=????? ???a a S S S S b b 212212211121 (1-2) 式中S11,S12,S21,S22组成[S]参量,它们的物理意义分别为 S11=11 a b 02=a “2”端口外接匹配负载时, “1”端口的反射系数 S21=12 a b 02=a “2”端口外接匹配负载时, “1”端口至“2”端口的传输系数 S12=21 a b 01=a “1”端口外接匹配负载时, “2”端口至“1”端口的传输系数

微波技术基础

摘要 本文主要介绍了微波的基础知识,在第一章中介绍了微波的概念、基本特点以及微波在民用和军事上的应用,在第二章中介绍了微波传输线理论,主要介绍了TE型波的理论和传输特性。 10 This paper describes the basics of microwave in the microwave first chapter introduces the concept of the basic characteristics and microwave in the civilian and military applications, in the second chapter describes the microwave transmission line theory, introduces the theory and the type of wave Transmission characteristics.

微波技术基础 第一章微波简介 1.1 什么是微波 微波是频率非常高的电磁波,就现代微波理论的研究和发展而论,微波是指频率从GHz 300的电磁波,其相应的波长从1m~0.1mm,这段电磁频谱包~ MHz3000 括分米波(频率从300MHz~3000MHz),厘米波(频率从3GHz~30GHz),毫米波(频率从30GHz~300GHz)和亚毫米波(频率从300GHz~3000GHz)四个波段。 下图为电磁波谱分布图: 1.2微波的基本特点 1.似光性和似声性 微波波段的波长和无线电设备的线长度及地球上的一般物体的尺寸相当或小的多,当微波辐射到这些物体上时,将产生显著地反射、折射,这和光的反射折射一样。同时微波的传播特性也和几何光学相似,能够像光线一样直线传播和容易集中,即具有似光性。这样利用微波就能获得方向性极好、体积小的天线设

北京理工大学微波实验报告——无线通信系统

实验一无线通信系统(图像传输)实验 一、实验目的 1、掌握无线通信(图像传输)收发系统的工作原理; 2、了解各电路模块在系统中的作用。 二、实验内容 a)测试发射机的工作状态; b)测试接收机的工作状态; c)测试图像传输系统的工作状态; d)通过改变系统内部连接方式造成对图像信号质量的影响来了解各电路模块的作用。 三、无线图像传输系统的基本工作原理 发射设备和接收设备是通信设备的重要组成部分。其作用是将已调波经过某些处理(如放大、变频)之后,送给天馈系统,发向对方或转发中继站;接收系统再将空间传播的信号通过天线接收进来,经过某些处理(如放大、变频)之后,送到后级进行解调、编码等。还原出基带信息送给用户终端。为了使发射系统和接收系统同时工作,并且了解各电路模块在系统中的作用,通过实验箱中的天线模块和摄像头及显示器,使得发射和接收系统自闭环,通过图像质量来验证通信系统的工作状态,及各个电路模块的作用和连接变化时对通信或图像质量的影响。 以原理框图为例,简单介绍一下各部分的功能与作用。摄像头采集的信号送入调制器进频率调制,再经过一次变频后、滤波(滤去变频产生的谐波、杂波等)、放大、通过天线发射出去。经过空间传播,接收天线将信号接收进来,再经过低噪声放大、滤波(滤去空间同时接收到的其它杂波)、下变频到480MHz,再经中频滤波,滤去谐波和杂波、经视频解调器,解调后输出到显示器还原图像信号。 四、实验仪器 信号源、频谱分析仪等。 五.测试方法与实验步骤 (一)发射机测试 图1原理框图 基带信号送入调制器,进行调制(调幅或调频等调制),调制后根据频率要求进行上变频,变换到所需微波频率,并应有一定带宽,然后功率放大,通过天线发射或其它方式传播。每次变频后,会相应产生谐波和杂波,一般变频后加响应频段的滤波器,以滤除谐波和杂波。保证发射信号的质量或频率稳定度。另外调制器或变频器本振信号的稳定度也直接影响发射信号的好坏,因而,对本振信号的

微波通信实验微波控制电路的设计与测试

电子科技大学 实 验 报 告 学生姓名:宫大鹏 学号:201222040406 指导教师:张小川

电 子 科 技 大 学 实 验 报 告 学生姓名: 宫大鹏 学 号: 201222040406 指导教师:张小川 实验地点: 科研楼701 实验时间:2012.10 一、 实验室名称:微波通信专业学位实验室 二、 实验项目名称:微波控制电路的设计及测试 三、 实验原理: 微波控制电路根据其用途分类,主要包括以下三种情况:(1)微波信号传输路径通断或转换——微波开关,脉冲调制器等;(2)控制微波信号的大小——电控衰减器,限幅器,幅度调制器等;(3)控制微波信号的相位——数字移相器,调相器等。控制电路广泛用于微波测量、微波中继、雷达、卫星通信等系统。本实验重点讲解微波SPST 和SPDT 的工作原理、设计及开关、环形器、隔离器主要电性能指标的测试。 衡量开关的电性能指标有:工作频率范围,插入损耗,隔离度,功率容量等。具体定义为: 1. 工作频率范围,指满足各项指标要求的频率范围,用起止频率表示; 2. 插入损耗,是开关导通时传到负载的实际功率与理想开关传到负载的功率之比; 3. 隔离度,是开关断开时负载上的实际功率与理想开关传到负载的功率之比; 如果用二端口网络参量表征开关网络特性,则开关的插入损耗和隔离度的定义可用(1-1)式表达 ()11lg 10lg 102 21--==ΛΛΛΛΛΛΛS P P L out a

1.二极管开关工作原理 由二极管实现SPST分为串联型和并联型,其原理电路及等效电路如图3-1所示。在串联型电路中,器件呈低阻抗时,对应开关的导通状态,信号沿传输线传输。当器件呈高阻抗时,对应开关断开。在并联型电路中,情况正好相反,当器件呈高阻时,信号可传送至负载。器件呈低阻时,电路近似短路,信号几乎全部反射。 单刀双掷开关常用于实现共用天线收发信机中接收支路和发射支路间的相互转换。与SPST相似,SPDT按PIN管联接方式,也可分为并联型和串联型两种电路,电路原理图如图3-2所示。以并联型电路为例来分析其工作原理。当D1导通,D2截止时,由于D1管近似短路,经过四分之一波长传输线后,相当于开路,因此B2为开关的导通端,B1为隔离端。反之,当D2导通,D1截止时,B1为开关的导通端,B2为隔离端。 00 (a)串联型(b)并联型 out P 0 P P out (c)串联等效电路(d)并联等效电路图3-1 单刀单掷开关电路简化图 g λ g λgλ g λ (a)并联型(b)串联型 图3-2 单刀双掷开关原理电路

微波实验指导(终)

实验一 系统设备简介、频率测量 一、 实验目的: 1通过实验使得学生熟悉、了解实验所用设备及附件的性能、用途等。 2 掌握用频率计测量频率的方法。 二、 实验所用设备及方框图(设备详细介绍见附录2) 本实验所用设备及附件为YM1123信号发生器;YM3892选频放大器;波导/同轴转换器;PX16频率计;晶体检波器,其连接方框图如下: 图 1 三、频率测量的实验步骤: 1 按方框图连接好实验系统。 2 检查实验系统准确无误后,打开选频放大器,将增益开关置于40~60分贝档。 3 打开信号发生器,圆盘刻度置于100档,重复频率量程置于100处,设备右上角←、→置于档,这时即有了输出,输出功率的大小用衰减旋纽调 节。 4 观察选频放大器,若指示太小,调节晶体检波器和选频放大器增益调节,原则上使选频放大器指针指示在满刻度的4/5上,调节频率计,找到频率计的吸收峰值,观察这时频率计的刻度值,此值即为所测的频率值。 5 关闭设备,整理好附件。 6 数据整理,写出实验报告。

实验二 波导波长的测量 一、 实验目的 1 掌握使用“中值法”测量最小值的方法。 2 掌握波导波长的测量方法。 3 熟练掌握微波成套设备的使用。 二、 实验原理 波导波长是用驻波测量线进行测量的,驻波测量线可测出波导中心电场纵 轴的分布情况,在矩形波导中: g λ= (1) 其中c λ为截止波长,0λ为自由空间波长。 ''' 2222(()/2g D D D λ==+ c λ = 对截止波长:m=1,n=0; 2c a λ= 我们知道相邻两个电场的最小点(或最大点)间的距离为半个波长。如图所示: E E 121 2 21E

微波技术试验分解

微波技术试验 姓名:洪小沯

实验一 短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S 11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S 11及S 21的测量,了解微带线的特性。 二、实验原理 S 参量 一个二端口微波元件用二端口网络来表示。a 1,a 2分别为网络端口“1”和端口“2”的 向内的入射波;b1,b2分别为端口“1”和端口“2”向外的反射波。对于线性网络,可 用线性代数方程表示。 b 1=S 11a 1+S 12a 2 (1-1) b 2=S 21a 1+S 22a 2 写成矩阵形式: ??? ?????????????=????????a a S S S S b b 212212211121 (1-2) 式中S 11,S 12,S 21,S 22组成[S]参量,它们的物理意义分别为 S 11=11a b 0 2=a “2”端口外接匹配负载时“1”端口的反射系数 S 21=12a b 0 2=a “2”端口外接匹配负载时,“1”端口至“2”端口的传输系数 S 12=21a b 0 1=a “1”端口外接匹配负载时,“2”端口至“1”端口的传输系数 S 22= 22a b 01=a “2”端口外接匹配负载时,“1”端口的反射系数 对于多端口网络,[S]参量可按上述方法同样定义,对于互易二端口网络,S12=S21,则 仅有三个独立参量。 三、实验仪器及装置图 1模组编号:RF2KM1-1A (OPTN/SHORT/THRU CAL KIT) 3 RF2000测量主机:一台 4 PC 机一台,BNC 连接线若干 四、实验内容及步骤

微波技术实验指导_报告2017

Harbin Institute of Technology 微波技术 实验报告 院系: 班级: 姓名: 学号: 同组成员: 指导老师: 实验时间: 哈尔滨工业大学

实验一短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。S11 二、实验原理 (一)基本传输线理论 在一传输线上传输波的电压、电流信号会是时间及传递距离的函数。一条单位长度传输线之等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1(a )所示。假设波传输播的方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式。 其中假设电压及电流是时间变量t 的正弦函数,此时的电压和电流可用角频率ω的变数表示。亦即是 而两个方程式的解可写成 z z e V e V z V γγ--++=)( (1-1) z z e I e I z I γγ--+-=)((1-2) 其中V + ,V -,I +,I - 分别是波信号的电压及电流振幅常数,而+、-则分别表示+Z,-Z 的传输方向。 γ则是[传输系数](propagation coefficient ),其定义如下。 ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示。 I L j R dz dV ?+-=)(ωV C j G dz dI ?+-=)(ω (1-4) 将式(1-1)及(1-2)代入式(1-3)可得 C j G I V ωγ +=++ t j e z V t z v ω)(),(=t j e z I t z i ω)(),(=

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

微波技术实验指导书(带封皮版)

微 波 技 术 实 验 报 告 班级: 学号: 姓名:

实验一微波测量系统的了解与使用 实验性质:验证性实验级别:选做 开课单位:信息与通信工程学院学时:2学时 一、实验目的: 1.了解微波测量线系统的组成,认识各种微波器件。 2.学会测量设备的使用。 二、实验器材: 1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容: 1.了解微波测试系统 2. 学习使用测量线 四、基本原理: 图1.1 微波测试系统组成 1.信号源 信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。 本实验采用DH1121A型3cm固态信号源。

2.选频放大器 当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。它具有极高的灵敏度和极低的噪声电平。表头一般具有等刻度及分贝刻度。要求有良好的接地和屏蔽。选频放大器也叫测量放大器。 3.测量线 3厘米波导测量线由开槽波导、不调谐探头和滑架组成。开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。 4.可变衰减器 为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。 五、实验步骤: 1.了解微波测试系统 1.1观看如图装置的的微波测试系统。 1.2观看常用微波元件的形状、结构,并了解其作用、主要性能及使用方法。常用元件如:铁氧体隔离器、衰减器、直读式频率计、定向耦合器、晶体检波架、全匹配负载、波导同轴转换器等。2.了解测量线结构,掌握各部分功能及使用方法。 2.1按图检查本实验仪器及装置。 2.2将微波衰减器置于衰减量较大的位置(约20至30dB),指示器灵敏度置于较低位置,以防止指示电表偶然过载而损坏。 2.3调节信号源频率,观察指示器的变化。 2.4调节衰减器,观察指示器的变化。 2.5调节滑动架,观察指示器的变化。 六、预习与思考: 总体复习微波系统的知识,熟悉各种微波元器件的构造及原理特点。

通信原理实验 微波通信系统视频与音频传输实验

微波通信综合实验 实验三微波通信系统视频与音频传输实验 一、实验目的 1.了解射频发信机与接收机的基本结构与主要设计参数。 2.利用实验模块的实际测量了解发信机与收信机的特性。 二、预习内容 1.预习变频器(锁相本振源、混频器、滤波器),功率放大器的原理的理论知识。 2.预习锁相本振源、混频器、滤波器、天线、和功率放大器的设计原理。 三、实验设备 四、理论分析 微波通信系统是一套短距离、点对点的微波电视发送和接收系统,它将现场摄得的电视视频、音频信号以微波方式传送,再向电视中心站或有线电视站发送。 伴音采用FM,图像采用AM,分别调制到中频信号70MHz附近(双载波),经过中频滤波,再经上变频输出为2.1-2.7GHz射频信号。经功率放大后,最终由天线发射出去。 五、主要技术指标 1、工作频段:2.1~2.7GHz,S波段。可根据用户要求设定频段。 2、输出功率:7dBm~20dBm(5~100mW)并可调节。 3、频率稳定度:±5ppm 或 (1~2)×10-5 4、本振相噪:1k -70dBc 10k -85dBc 5、杂散发射:-65dBc 6、通频带宽度:±20M 7、视频调制方式:AM,音频调制方式:FM 8、70M调制器输出电平:0dBm±2db 9、接收机灵敏度:-70~-30dB 10、自动增益控制范围(AGC):40dB 11、工作电源:220AC输入,+12V,+5V(DC)输出

实验三 微波通信系统视频与音频传输实验 六、发信机原理简介 1、原理方框图 2、微波发信机物理链路基本概念: 发信系统如图3-1所示。当输入信号(话音、数据和图象)对中频70MHz 进行调制后,得到一个中心频率为fm 的调制信号,通过20dB 可调衰减,经中频滤波器滤去信道通带外的各次谐波,然后用一个本振信号与中频信号送至混频器,混频器执行乘积功能,得出双边带信号产生已调载波。也就是说,混频输出包含有下边带f LO -f m 和上边带f LO +f m 。后送至微波带通滤波器,得出上变频载波信号(和频),并滤除带外无用信号。功率放大器放大此信号,最后送到天线发射。 七、收信机原理简介 1

微波技术实验报告

微波技术与计算机仿真实验报告 实验一史密斯圆图与传输线理论的关系 1.1不同负载阻抗所对应的传输线工作状态及其在史密斯圆图上对应的区域; 实验步骤: 1.连接负载、传输线和微波端口,传输线长度 电路连接如图所示: 2.进一步将负载阻抗设置为50欧姆,传输线阻抗设置为50欧姆,传输线长度为0,衰减为0,微波端口阻抗也设置为50欧姆。 3.分析计算后,在阻抗圆图上观察反射系数的位置,将结果填入实验记录; 4. 将负载阻抗实部设置为小于50欧姆,虚部为零,其余设置不变,

分析后,在阻抗圆图上观察反射系数的位置,将结果填入实验记录; 5.将负载阻抗实部设置为大于50欧姆,虚部为零,其余设置不变,分析后,在阻抗圆图上观察反射系数的位置,将结果填入实验记录; 6.负载阻抗的实部不变,将负载阻抗的虚部设置为大于0,其余条件不变,分析后,在阻抗圆图上观察反射系数的位置,将结果填入实验记录; 7.负载阻抗的实部不变,将负载阻抗的虚部设置为小于0,其余条件不变,分析后,在阻抗圆图上观察反射系数的位置,将结果填入实验记录; 8.将负载阻抗的实部设置为0,虚部为分别设置为0、大于0,小于0和10000,其余条件不变,分析后,在阻抗圆图上观察反射系数的位置,将结果填入实验记录;

1.2 反射系数沿传输线变化在阻抗圆图上的轨迹的观察研究 1.如图1示连接负载、传输线和微波端口,将频率设置为固定频率。 2.将负载阻抗设置为复数,其余参数不变; 3.改变传输线的长度,从0到λ/2变化(分别选6个以上长度以上进行计算仿真),观察反射系数随传输线长度改变在阻抗圆图上位置的变化,填入实验报告 4.将传输线的衰减值设置为有限值(如5),其余参数不变,重复步骤3,观察反射系数随传输线长度改变在圆图上的变化,将结果填入实验报告。 5.对步骤2.3和2.4的结果进行分析和比较,总结反射系数幅度和相位随参考面变化的规律并写入实验报告 实验内容反射系数沿传输线变化在阻抗圆图上轨迹的 研究

实验 微波的传输特性和基本测量

实验 微波的传输特性和基本测量 实验目的 1、 了解电磁波在矩形波导中传播的特点,学会用驻波测量线测量波的纵向分布。 2、 掌握一些微波基本量的测量基本技术,学会测量驻波比、波导波长、检测信号频率等。 3、 学会阻抗调配。 实验仪器 微波窄带扫频信号源、衰减器、频率计(波长计)、驻波测量线等。 一、实验原理 微波是指波长范围在11mm m ,即频率范围在300300MHz GHz 的电磁波。微波信号系统 中最基本参数有频率、驻波比、功率等。 1. 矩形波导及其中的10TE 波: 矩形波导是一个横截面为a b ?矩形的均匀、无损耗的波导管。如下图1。本实验室使用的是国际通用的标准波导,其内壁尺寸为:22.86,10.16a mm b mm ==。波导中传播的电磁波被完全局限在波导管内。 假设矩形波导管内壁为理想导体且波导沿z 轴方向为无限长,由麦克斯韦电磁理论可求得矩形波导中10TE 波的各电磁场分量为: 0x E = () 0sin j t z y x E E e a ωβπ-??= ??? 图1 矩形波导结构图

0z E = () 0sin j t z x x H E e a ωββ πωμ--??= ??? 0y H = () 02s j t z z x H j E co e a a ωβππωμ-??= ??? 波导中电磁场的电场强度分布如图2所示。电磁场的结构具有以下特性: ⑴0,0z E H =≠,电场在z 方向无分量,为横电波; ⑵电磁场沿x 方向为一个驻立半波,沿y 方向为均匀分布; ⑶电磁场沿z 方向为行波状态,在该方向,电磁场分量y E 与x H 的分布规律相同。 2.实验装置 其它元件: x E 图2 10TE 波的电场分量分布图 标准短路片 待测阻抗 匹配负载 阻抗调配器

相关主题