搜档网
当前位置:搜档网 › hypermesh笔记原创

hypermesh笔记原创

hypermesh笔记原创
hypermesh笔记原创

? F1 -- Hidden Line 隐藏线? F2 -- Delete 删除(删除任何对象都用此命令)? F3 -- Replace 合并两个节点? F4 -- Distance 测量距离角度等? F5 -- Mask 隐藏? F6 -- Element Edit 单元编辑(创建,合并,分割单元等)? F7 -- Align Node 节点共线排列? F8 -- Create Node 创建节点? F9 -- Line Edit 线编辑(非边界编辑)? F10 -- Check Elem 单元质量检查? F11 -- Quick Edit 快速几何编辑? F12 -- Automesh ?自动网格划分 Shift+F1-F12, Ctrl+F1-F6

Opening and Saving Files - HM-1010

bumper_cen_mid1.hm

1. Access the Import tab in one of the following ways:

?

From the Menu Bar, choose File, then Import

?From the standard toolbar, click Import ()

(这里的Import ()是在已有模型上加另一个模型)

Importing and Repairing CAD - HM-2000

Importing and Repairing CAD - HM-2000

2. Go to the autocleanup panel.

查看拓扑情况,自动清理,可以删一些重复面,距离较小的自由边,修补结点问题Step 3: Delete the surface that overhangs the round corner.(删重复面) From the Geometry menu, point to Delete and click Surfaces

或Press F2(和点叉一样)

Step 4: Create surfaces to fill large gaps in the model

surfaces panel

keep tangency(可以平滑过渡)

Verify the auto create (free edges) check box is selected

Step 5: Set the global geometry cleanup tolerance to .01.(设置全局清理容差,这样其他地方的容差都是0.01)

Press O to go to the options panel

Go to the geometry sub-panel

In the cleanup tol = field, type 0.01 to stitch the surfaces with a gap less than 0.01.

Step 8: Combine the remaining free edge pair using replace.

Go to the replace sub-panel(quick edit是交换点,这里交换边,效果差不多)

Step 9: Find and delete all duplicate surfaces.

Access the Defeature panel

Simplifying Geometry - HM-2020

Step 4 (Optional): Review the quality of the mesh.

Tool page, then select check elems(可以按要求检查,但不能编辑)

3. In the length field, type 1.

4. Click length to evaluate the minimum length.

Many of the elements failing the length test are located around the fillets of this model

Step 6: Remove all surface fillets in the clip.

1. Go to the defeature panel.

In the min radius field, type 2.0.

Refining Topology to Achieve a Quality Mesh

-HM-2030

Step 3: Review the mesh quality.

4. In the length field, type 1.

Step 6: Add edges to the surfaces to control the mesh pattern

1. Access the surface edit

Step 7: Add edges to the surfaces to control the mesh pattern.

Go to the trim with surfs/planes sub-panel

2. In the with plane column, set the active selector to surfs.

3. Select the surfaces indicated in the following image.

4 If necessary, toggle the direction selector to N1, N2, and N3. Click

N1 to make the selector active.(这里选两个点,不要选第三个)

6. Press F4 on the keyboard to enter the distance panel.

7. Go to the three nodes sub-panel.(找到圆心)作为第四步的

14. C lick trim.

Step 9: Remesh the part.

Step 10: Review the mesh quality.

6. Access the automesh panel.

7. Go to the QI optimize sub-panel.

8. Verify that elem size = is set to 2.5 and the mesh type is set to mixed.

9. Click edit criteria.

10. I n the Target element size field, type 2.500.

11. C lick Apply and OK.

12. S elect surfs >> displayed to select all displayed surfaces.

13. C lick mesh.

Note that the old mesh is replaced by the new mesh.

14. If there is a message saying, "There is a conflict between the user requested element size and quality criteria ideal element size," click

the button, Recomute quality criteria using size of 2.5.

15. A ccess the qualityindex panel by doing one of the following:

? From the Menu Bar, select Mesh, then Check, then Elements, then Quality Index

? From the main menu, select the 2D page, then select qualityindex

16. G o to pg1 and verify that the comp. QI is 0.01.

This low value indicates that the mesh is good quality. The higher the number, the lower the mesh quality.

Creating and Editing Line Data - HM-2040

Step 1: Create a component collector to geometry

From the main menu, access the Geom page and click nodes

Go to the type in sub-panel.

Press f to fit the model to the model to the screen

Step 3: Display the node IDs.

Pick the Tool page and click numbers to access the Numbers panel Step 6: Create a line.

select the Geom page, then select lines

Step 7: Duplicate and translate lines.

select the Tool page, then select translate

Step 11: Duplicate and reflect an arc.

select the Tool page then select reflect

Step 12: Create two tangent lines.

Go to the Lines panel, at tangents sub-panel.

Step 16: Create a surface square on an X-Y plane.

select the 2D page, then select planes

Go to the square sub-panel

Switch from mesh, keep surf to surface only

Step 17: Create a line that connects two parallel lines on an X-Y plane. Access the Lines panel.

Go to the at intersection sub-panel.

Use the lines with plane column

Step 19: Extend a line to a surface edge

Go to the Line Edit panel.

Toggle from distance = to to:.

Step 22: Remove all temp nodes.

select the Geom page, then select temp nodes

Creating Surfaces from Elements - HM-2050

Step 2: Obtain surfaces from elements.

1. From the Geom page, click surfaces, and select the from FE sub-panel. Step 3: Capture features with plot elements.

1. From the surfaces panel, FE sub-panel, click the features button to access the features panel.

This is a shortcut to this panel. You can also find features panel in the Tool page by selecting the features sub-panel.

5. Select the advanced analysis check box.

6. This option performs further analysis on the features created based on the angle and combines and extends them to create closed loops.

3. From the features panel, select the edit sub-panel.

9. Generate the surfaces using the surfaces panel, from FE sub-panel. (先生成单元曲面特征,然后修改曲面特征,然后再通过修改好的特征生成曲面,这样比直接不修改生成的好)

Creating and Editing Solid Geometry - HM-2060

Step 2: Create solid geometry from the bounding surfaces.

From the Geom page, enter the solids panel.

Step 3: Create a solid geometry cylinder using primitives.

Go to the cylinder/cone sub-panel.

Toggle full cone to full cylinder.

Step 4: Subtract the cylinder’s volume from the rest of the part From the Geom page, go to solid edit

2. Go to the boolean sub-panel.

3. Verify that operation type: is set to simple (combine all).

4. Set operation: to A-B (remove B from A).

Step 5: Split the solid geometry using bounding lines.(如果不选择延伸,可以不闭合,但是必须确定一个平面,可以一次选择实体,多次切线)

You should still be in the solid edit panel.

1. Go to the trim with lines sub-panel.

Step 6: Split the solid geometry using a cut line.(注意利用切换视图工具,是用中键确定)

Step 7: Merge solids together.(合并之后不再有分割线)

Step 8: Split the solid geometry with a user-defined plane.(只要三点确定一平面就行)

4. Set the plane selector to N1, N2, N3.

5. With N1 active, press and hold the left mouse button, and move the mouse cursor over one of the two edges shown in the following image.

The edge should highlight.

Step 9: Split the solid geometry with a swept line.(选择一个实体,选择扫掠线,选择轴,那扫掠线就沿着轴向切割实体)

Step 10: Split the solid geometry with a principal plane.(z轴确定XY 平面,随便确定一基点就确定了平面的位置)

3. Switch the plane selector from N1, N2, N3 to z-axis.

Step 11: Split the solid geometry by creating surfaces inside the solids.(需要到surfaces先创建一个曲面,注意不要勾选自动,否则难选上线,再回到实体编辑选择刚创建的面)

From the Geom page, go to surfaces

Go to the spline/filler sub-panel.

Deactivate auto create(free edge only) and keep tangency options Select the five lines shown in the following image:

Step 12: Suppress extraneous edges on the part.(压缩冒出来的边) Enter the edge edit panel.

Go to the (un)suppress sub-panel.

Select lines >> by geoms.(因为之前创建编辑过的线有些可能冒出来了,所以要压缩)

With the solids entity selector active, select the four solids shown in the following image.

(创建实体的八种方法)

Geometry and Mesh Editing Using the Quick Edit Panel - HM-2070

select the 2D page, then select automesh

Verify that the size and bias sub-panel is selected.

Verify that elements to surf comp is selected.(注意选择的面板,网格大小设为0.1)

Step 2: Simplify the geometry by removing unnecessary holes.

1. From the main menu, select the Geom page, and click quick edit.

.2 For unsplit surf:, activate line(s).(不分割曲面面板,将不需要的孔去除,用填充的话会有共享边出现,而且网格质量不好)

Step 3: Modify geometry around remaining small holes

For the split surf-line function, activate node.

(分割小孔的时候,先把周围修好,再修内部)

Step 4: Trim a washer layer into the surface around each of the four holes. In the offset value field next to washer split, enter 0.05.(偏移值越大,垫片越大)

(调整密度,先调外部垫片再调内部,最后调周围)

Step 5: Adjust the mesh around the large holes on the side surfaces. Use the split surf-line(可以用其他面板生成线辅助,然后再调整密度)这里可以不调,先修剪好,然后再退到auto mesh进行编辑,可以改类型,调的更好

Step 7: Adjust the mesh on the mounting flange.

split surf-line adjust density(对于那些交叉的调不了的网格,可以用faces edit中的untrim调试)交叉的也可以用quick edit中的split surf-nod 来调

Creating 1-D Elements - HM-3000

Step 2: Create 1-D bar elements.

select the 1D page, then select bars

Go to the bar2 sub-panel.

3. Click ax = and enter the value 0.

4. Click ay = and enter the value 0.

5. Click az = and enter the value 0.

These are the values for the bar offset.

6. Click property = and select property1.

A property is now assigned to the element.

7. Click pins a = and enter the value 0.

8. Click pins b = and enter the value 0.

These are the values for the degrees of freedom

9. Click the switch below update and select components from the pop-up menu.

10. A fter x comp =, enter the value 1.

11. A fter y comp =, enter the value 1.

12. A fter z comp =, enter the value 1.

The local y-axis is now specified.(这里x\y\z不能都为0)

13. C lick node A and select the lower node in the graphics area.

14. C lick node B and select the upper node in the graphics area. The two-noded bar element is created.

Step 3: Create 1-D elements along a line.

1. Go to the line mesh panel.

2. Verify that the entity selector is set to lines..

3. Select a line on the model.

4. Verify that the segment is whole line option is set.

5. Set element config: to rigid.

6. Click mesh.

The element density panel now appears.

7. Click set segment to make it the active selector.

8. In the elem density = field, enter 20.

9. Click set all.

10. C lick return twice to access the main menu.

Step 4: Create 1-D elements from the feature in the model.

Use the Model browser to turn off all of the geometry in the model. Tool page, then select features

4. Click the Comps button and pick the feature_elements component.

5. Click select to complete the selection.

6. In the feature angle = field, enter 30.

7. Select the ignore normals check box.

8. Verify that create: is set to plot elements.

9. Click features.

The plot elements are created.

Meshing without Surfaces - HM-3110

Step 2: Create a concentric circle around a hole on the top face using the scale panel.(创建同心圆)

Tool page and go to the scale panel

Click uniform and enter 2.0 for the scale factor.

(这个是放大的倍数)

3. Press F4 to go to the distance panel.

4. Go to the three nodes sub-panel.

(选三点找到圆心)

9. Switch the entity type to lines.

10. I n the graphics area, select the circle.

11. C lick lines >> duplicate >> original comp.

12. C lick the origin: node selector to make it active.

13. S elect the temporary node you created at the circle’s center.

14. C lick scale +.

A new circle is created, which is concentric with the original

Step 3: Create a radial mesh between each of the concentric circles using the spline panel.

select the 2D page and go to the spline panel(然后再把其他的顶面创建,注意选三个外圆)shift+F2可以删除临时结点

Step 5: Mesh the back face of the bracket using the line drag panel. select the 2D page and enter the line drag panel

2. Go to the drag geoms sub-panel.

3. Switch the drag: entity type from node list to line list.

4. Select the line that is on the perimeter of the existing mesh and adjacent to the bracket’s back

(选择一条拉伸的边)

5. Click the along: line list selector to make it active.

6. Select one of the two lines defining the back face and perpendicular

to the selected line to drag.

(选一条路径,即那条垂直的边)

Step 6: Mesh the bottom face of the bracket using the ruled panel (如果想要删除重复图形的某一部分,可以先把不删除的隐藏起来)

注意有时候平面创建了图形但是渲染方式不一样的话,可能看不到图形,这时需要切换渲染方式

select the 2D page and enter the ruled panel

Click node list and select by path.

Switch the lower entity type to line list.

(用结点路径选择拉伸的面,用线选择另一端

Step 7: Mesh the rib using the skin panel.

select the 2D page and enter the skin panel

With the line list selector active, select any two of the three lines defining the rib.

(注意不要选三条)

2-D Mesh in Curved - HM-3120

Step 2: Set the mesh parameters and create the mesh.

. In min elem size = field, type 15.000.

(这里就是element size,如果设的太小会出错,比如说变黑)(或者进入edge deviation或surfaces deviation里面有min elem size设置,这里注意两个面板即使设置同样的数值,他们得出的形状和质量都不一样)

5. Toggle to elems to surf comp.

6. Select surfs > >by collector >> use size from the extended entity selection menu.

Step 3: Set the chordal deviation parameters.

2. Access the edge deviation sub-panel.

3. Click min elem size = and type 1.000.

Cycle through the parameter settings by pressing the TAB key after typing in a value.

Step 4: Create the mesh.

Step 5: Set the chordal deviation parameters and create the mesh.

1. Set max angle = to 20.000.

2. Select surfs >> by collector >> angle ctrl.

3. Click select.

4. Click mesh to create the mesh on the surfaces.

Step 6: Set the chordal deviation parameters and create the mesh.

1. Set max elem size = to 30.000.

2. Select surfs >> by collector >> max size ctrl.

3. Click select.

4. Click mesh to create the mesh.

(设置最大的单元越大则生成的网格单元越少,设置最小的单元越大,有可能使生成的网格越少,不是一定变少)

QI Mesh Creation - HM-3130

Step 2: Working with node and element quality optimization.

Within the qualityindex panel, there are functions that allow the user to select individual nodes or elements, and then alter the position or shape of the node/element to optimize the element quality for the surrounding elements. The element qualities are optimized according to the settings in the qualityindex panel. These features are very useful for improving element qualities in local areas of the mesh.

(在qualityindex面板,有让用户选择不同节点或元素的功能,然后改变元素节点的位置或形状/优化周围元素质量。元素是根据在qualityindex面板品质优化设置决定的。这些特点对于提高网格区域的元素质量非常有用。)

2D page, then select qualityindex

2. Experiment with the node optimize function.

select nodes of elements that are highlighted red, since these have the worst quality. You should see each node move as it is selected, improving the surrounding mesh quality.(选择结点优化,特别是那些红色的结点)Notice what happens to the value of the comp. Q.I. It should improve as you select more nodes.

3. Experiment with the element optimize function.

In particular, select elements that are highlighted red, since these have the worst quality. You should usually see the shape of the element change as it is selected, improving the surrounding mesh quality. Step 3: Resetting the part by remeshing.

select the 2D page, then automesh

2. Go to the size and bias sub-panel.

4. Make sure the panel has the following settings:

?The check-box for previous settings is activated.

?The meshing mode is set to automatic.

(这里应该是用到之前的调整)

Step 4: Using QI optimization smoothing.

select 2D page, then select smooth

1. Access the smooth panel in one of the following ways:

?From the Menu Bar, select Mesh, then Cleanup Elements, then Smooth

?On the main menu, select 2D page, then select smooth

2. Go to the plates sub-panel.

3. Select elems >> displayed.

4. Switch the algorithm to QI optimization. (By default, the button should be set to autodecide.)

6. Click smooth.

Before HyperMesh has run the routine, you should see a message asking to

recompute using a new QI mesh size value.

7. Click continue.

Controls Function

target quality index The value you would like the quality index to be after the

smoothing operation. This value is not guaranteed from smoothing. The smooth operation will attempt to hit this target.

time limit The check box for can be activated or not. If working with

a large models, activate this box to ensure the smoothing

routine does not take more time than you want to allow.

feature angle The smooth panel evaluates the angle between the normals of

two adjacent elements. If this angle is equal to or greater

than the value specified in this field, it will not allow the nodes shared by the elements to move.

use current criteria Allows you to select and use a criteria file for your Q.I.

settings. If a criteria file is specified, leave this option blank.

recursive optimization procedure The other toggle option is single optimization step. Using

the recursive optimization procedure allows the automesher

to take more than one pass in generating the best quality mesh

it can. However, this can take longer than single

optimization step, so you might want to use single optimization step for larger models (递归,可能用很长时间,所以有时你想用一次性的)

Step 5: Using the QI settings in the automesh panel.

1. Access the automesh panel.

2. Go to the QI Optimize sub-panel.

3. Select the surface in the graphics area.

4. Make sure the panel has the following settings:

? The elem size= field has a value of 18.

? The mesh type: is set to quads.

Like the smooth panel, the QI optimized meshing mode of the automesh panel has some controls of which you should be aware. They are, however, not

compare it to the previous mesh:

Meshing a Model Using Shrink Wrap - HM-3150

Step 2: Create a loose shell shrink wrap mesh in the loose_gap component.

3. Click Mesh, then Create, then Shrink Wrap Mesh.

4. Make sure the loose sub-panel is active.

5. Select the component in the graphics area.

6. For element size, enter 4.

7. Click mesh to create the shrink wrap.

. Expand the Component folder in the Model browser.

9. Hide the surfaces component in the Model browser.

10. C lick return to exit the panel.

Step 4: Create a loose shell shrink wrap mesh in the loose component

4. Make sure the loose sub-panel is active.

5. Select the component in the graphics area.

6. For element size, enter 4.

Step 5: Create a tight shell shrink wrap in the tight_shell component. Step 6: Create a tight solid shrink wrap in the tight_solid component

2. Right-click the tight_solid component in the Model browser and click Make Current.

3. Activate the generate solid mesh option.

(用loose生成的壳元素比用tight的少)

4. Click comps and select the block component.

5. Change the minimum jacobian to 1.

6. Click mesh to create the mesh.

Tetrameshing - HM-3200

Step 2: Use the volume tetra mesher and equilateral triangles to create a tetra mesh for the cover.

On the 3D page, click the tetramesh sub-panel

Go to the volume tetra sub-panel

Verify that 2D: is set to trias and 3D: is set to tetras.

These control the type of element that will be created for the surface mesh and solid mesh of the part.

. Activate the option, use curvature.

Verify that the use curvature and use proximity options are not active .

Additional parameters appear. The option, use curvature, causes more elements to be created along areas of high surface curvature. Thus, curved areas such as fillets will have more and smaller elements, which capture those features with higher resolution.

Step 4: Use the volume tetra mesher to create a tetra mesh with more elements along curved surfaces.

2. Activate the option, use curvature.

Additional parameters appear. The option, use curvature, causes more elements to be created along areas of high surface curvature. Thus, curved areas such as fillets will have more and smaller elements, which capture those features with higher resolution.(这个面板可以使圆角处有更多更小的单元,使得这些地方的网格划分更清晰,但是没有圆角的地方,比如说面和面的交界处还是一样)

Step 5: Use the volume tetra mesher to create a tetra mesh with more elements around small features.

2. Activate the use proximity option.

The use proximity option causes the mesh to be refined in areas where surfaces are smaller. The result is a nice transition from small elements on small surfaces to larger elements on larger, adjacent surfaces.

5. Inspect the mesh pattern that the volume tetra mesher created. Compare it to the previous meshes you created and note the differences. More elements were created around surfaces with small angles as indicated in the following image.

(这个选项可以使小的曲面或单元很好的过渡到大的曲面或单元,过渡的地方产生更多的较小的单元)

Step 6: Prepare the display to tetra mesh the hub component using the standard tetra mesher.

4. Turn on the display for the hub and tetras components for elements. There are tria shell elements in the hub component. Currently, there are no elements in the tetras component.

(这里只是比较用tetra mesher.划分的网格)

Step 7 (Optional): Review the connectivity and quality of the tria mesh to validate its integrity for the standard tetra mesher.

From the main menu, select the Tool page and the edges panel.

3. Click find edges.

A message in the status bar should state, "No edges found. Selected elements may enclose a volume."

This is desired as the tetra mesher requires a closed volume of shell

elements.(这是所想要的四面体测量所需的封闭的壳单元体积) From the main menu, select the Tool page and the check elems panel.

6. Verify that you are in the 2-d sub-panel.

7. Identify elements having an aspect ratio greater than 5.

Aspect ratio is the ratio of the longest edge of an element to its shortest edge. This check helps you to identify sliver elements.

All of the hub’s shell elements pass the check; all of the elements have an aspect ratio less than 5. (检验纵横比大于5的单元,检测的所有都通过,说明所有的单元纵横比都小于5)

8. Identify tria elements having an angle less than 20. (trias: min angle) This check also helps you to identify sliver elements.

All the hub’s shell elements pass the check; all the elements have angles greater than 20.

The surface mesh is suitable for creating a tetra mesh.

Step 8: Create a tetra mesh for the hub using the standard tetra mesher(这里要先有网格才能生成六面体网格,之前是空心的,生成之后是实心的)

4. With the comps selector active under select trias/quads to tetramesh, select one of the hub shell elements from the graphics area.

By default, HyperMesh will swap the diagonal for any pair of surface triads that will result in a better tetra mesh quality. If you would rather keep the diagonal, see sub-step 5.

5. (Optional) To keep the diagonal as is, switch no fixed trias/quads to fixed trias/quads and select comps.(第四步和第五步没什么好像没什么联系,使用fixed trias/quads得到的网格单元少一点)

6. Click mesh to generate the tetrahedral elements.

Step 9: Check the quality of the hub’s tetra elements.

2. Access the check elems panel.

3. Go to the 3-d sub-panel.

4. Identify the smallest element length among the displayed elements. If the minimum length is acceptable for a target element size of

5.0, then no further action is necessary.

6. Identify elements having a tet collapse smaller than 0.3.

(检查网格崩塌小于0.3,值是1表明用可能的最大体积完美的形成一个单元,值是0表明完全崩塌的单元没有体积,设定的值越大,失败的单元越多,即接近理想的单元少,值是1才是理想的)The tet collapse criteria is a normalized volume check for tetrahedral elements. A value of 1 indicates a perfectly formed element with maximum possible volume. A value of 0 indicates a completely collapsed element with no volume.

The status bar indicates that three elements have a tetra collapse smaller than 0.3. (HypeMesh通过一下步骤来确定四面体单元的不规则度:首先在四面体的四个节点中任取一个并计算该节点到与其相对的单元的距离,然后计算与其相对的单元的面积的平方根值,用得到的距离除以平方根值。在四个节点上会得到一个最小值,将其最小值用1.24规一化然后显示出来。如果四面体的形状太

差,这个值接近0.0,如果是理想的,这个值是1.0)

Step 10: Isolate the element with the tetra collapse smaller than 0.3 and find the elements surrounding it.(把崩塌小于0,3的四面体单元隔离开)

1. With 0.3 still specified for tet collapse, click tet collapse again.

2. Click save failed.

The element that failed the tetra collapse check is saved in the user mark, and can be retrieved in any panel using the extended selection menu.

3. Click return to exit to the main menu.

4. Access the mask panel in one of the following ways:

?From the display toolbar, select Mask ().

?Press F5 on your keyboard.

5. Set the entity selector to elems and select elems >> retrieve. (找到那些刚刚检查的保存过的不合格的单元)The element that was saved in the check elems panel is retrieved.

6. Select elems >> reverse.(反向,得到所有合格的单元)

7. Click mask to mask the elements.(将合格的单元隐藏,不合格的展示) Only the one tetra element that failed the tetra collapse check should be displayed.

8. Click return to exit to the main menu.

9.

On the display toolbar, click unmask adjacent ()(找出不合格单元的临近单元).

The layer of elements that is attached to the one displayed element is identified and displayed.

10. Click unmask adjacent () two more times.

The layer of elements that is attached to the displayed elements is identified and displayed. The functionality of unmask adjacent can be duplicated using the find panel, find attached sub-panel on the Tool page. Step 11: Remesh the hub’s displayed tetra elements to improve their tetra collapse.

1. Access the tetramesh panel.

2. Go to the tetra remesh sub-panel.

3. Select elems >> displayed.

4. Click remesh to regenerate this area of the mesh.

(把上面那些查找到的单元重新网格,以提高网格的质量,重新网格之后发现同样的数值失败的单元变少了,即质量提高了)Note that the re-meshing operation works on only one group of elements (one volume) at a time.

5. Click return to exit to the main menu.

6. Access the check elems panel.

7. Click tet collapse to find out if the tetra collapse has improved for the displayed elements.

The message in the status bar should indicate that the minimum tetra collapse is larger than the value reported before the tetra elements were remeshed.

8. Click return to exit to the main menu.

Summary

A tetra mesh has been created for both parts in the file. Different procedures for tetra meshing were used. Either method can be used to mesh parts, depending on the needs of the analysis. Also, the tetra remesh function was used to show how to quickly fix the quality of tetra elements.(一个四面体网格已经在文件中创建了两个部分.四面体网格划分使用了不同的程序. 根据需求分析任何一种方法可以用来网格部分, 同时,四面体网格划分功能是用来显示如何快速修复四面体单元的质量。)

Creating a Hex-Penta Mesh using Surfaces - HM-3210

Step 2: Mesh the top surface of the base, including the L-shaped surface. In the Model browser right-click base and select Make Current(这个功能是指将所有的创建元素等操作放在base上,如果放在其他地方,就是创建在其他地方)

From the 2D page enter the automesh panel.

7. For element size = specify 10.

Step 3: Create layers of hex elements for the base

1. Go to the elem offset panel.(在3D面板)

2. Select the solid layers sub-panel.

3. With the elems selector active, select the elements on the base.

4. For number of layers = specify

5.

5. For total thickness = specify 25.

6. Click offset+.

The hexa mesh is created(里面是实心的,即通过一个面使用偏移面板,设置好层数和厚度就可以创建六面体网格).

Step 4: Prepare the display for meshing th e arm’s curved segment.(这里先隐藏base部分

1. Show the arm_curve component in the Model browser.

2. Press the F5 key to go to the mask panel.

3. Select elements >> by config, and select the hex8 configuration.

4. Click select entities.(整个六面体网格只有创建的初始面没有被选择) All of the elements with a configuration of hex8 in the model are selected.

5. Select elements >> by config, and select the penta6 configuration.

6. Click select entities.

All of the elements with a configuration of penta6 in the model are

selected.

7. Click mask to mask the elements.

8. Click return to return to the main menu.

Step 5: Create a node at the center of the arm radius.

1. Press the F4 key to enter the distance panel.

(记住快捷键,因为如果不用快捷键,你直接后退去选择其他面板,则之前选择的东西就会消失不见,用快捷键则可以避免这种情况)

Step 6: Create hexa elements in the curved portion of the arm using spin.

1. Set arm_curve as the current component using the Model browser.

2. Go to the spin panel.

3. Select the spin elems sub-panel.

4. Using elems >> by window, select the plate elements within the L-shaped cross section of the arm.(选的过程中不要进行放大缩小,不用选的太精准,点选择实体时它会自动捕捉,如果之前选过出现了一个框,不用理它,直接重新选一个,它会选用最近生成的那个)

5. Click select entities.

6. For angle = specify 90 degrees.

7. For the direction, select the x-axis (Y-Z plane).

8. For the base node (B), click the center node created above.

9. For on spin = specify 24.(选择层数,即整个旋转方向有24层网格)

24 layers of hex elements will be created when the plate elements are spun.

10. C lick spin -.(遵循右手法则,创建的是实体)

11. C lick return to return to the main menu.

Step 7: Create faces on the hex elements.

1. Go to the faces panel.

2. With the entity selector set to comps, select the arm_curve component.

3. Click find faces.

(选择零件,就可以在零件的表面创建面了)

Step 9: Mesh the L-shaped set of surfaces between the arm_straight and boss components.

(在面上创建网格)

Step 10: Use linear solid to build the mesh between the two sets of shell elements.

From the 3D page, go to linear solid

For density = specify 12(这里密度数值是多少就是多少层)

Step 12: Create a shell mesh on the bottom of the boss.

Go to the automesh panel.

Step 13: Project a node to the bottom face of the boss.(为后面Step 14中选点用,否则曲线上不知道选哪一点)

1. Go to the project: panel.

1. Go to the project: panel.

2. Select the to line sub-panel.

3. Select the node on the rightmost top vertex, as per the following image.

4. Click nodes >> duplicate.

(复制一个点在曲线上)

Step 14: Generate hexas for the boss using the solid map panel.

From the 3D page, go to solid map

2. Go to the general sub-panel.

3. Select source geom: (none)(这里不需要用几何体拉伸,用的是底部的网格单元).

4. Select along geom: mixed.

5. Under along geom: mixed, click lines to make it the active selector.

6. Select the line indicated in the following image(选择结点路径的方向).

7. Click node path to make it the active selector.

8. Select nodes to define the exact location of the solid element layers, as indicated in the following image.

A total of 13 nodes should be selected, starting at the boss mesh, and then using all of the nodes along the edge of the arm_straight component, ending with the node projected to the top of the boss. (结点一般沿着线,则单元会沿着点建立单元网格,点有多少,网格就有多少层,线可以不选,但不能乱选,比如说不能选顶面的园曲线)

Step 15 (optional): Check the connectivity of the model.

1. Go to the faces panel.

2. Click comps to go to a list of components.

3. Select every component from the list, or select comps >> all.

4. Select the components to complete the selection and go back to the faces panel.

5. Click find faces.

6. Turn off the geometry display of all components via the Model browser.

7. Turn off the element display of all components except ^faces.

8. Click return to exit the the panel.

9. On the Post page go to the hidden line panel. (F1 on the keyboard.)

10. G o to the cutting sub-panel.

11. A ctivate the xz plane and trim plane options.

12. C lick fill plot.

(先查找面,然后用隐藏线工具选平面,切割激活,然后得到按平面切割的模型,退出后会自动恢复)

The faces are now displayed with a plane cutting the model in half. This is so that the interior of the model can be viewed.

13. Click near the cutting plane. Holding the left mouse button down, move

the mouse back and forth.

The cutting plane moves through the model, allowing you to see if any face elements exist on the interior of the model.

You should see that there are face elements interior to the model, between the boss and arm. You need to perform some corrections on the connectivity.(按住鼠标可以移动平面,你可以查看连接性)

Step 16 (Optional): Correct the connectivity of the model.

1. Display elements for all components except for the ^faces component.

2. Display the elements of the solidmap component as transparent.

3. Go to the faces panel.

4. Select elems >> displayed.

5. Click preview equiv.

Coincident nodes on the intersection between the arm and the boss are highlighted.

6. Specify a slightly larger value for tolerance =, and click preview

equiv to identify more coincident nodes on the intersection.

7. Repeat 16.6 until all 60 coincident nodes have been found.

8. Click equivalence.

The nodes are replaced to the location of the lowest node ID.

9. Switch all the components to the shaded visual mode.

Step 17 (Optional): Recheck the connectivity of the model.

Repeat Step 16 to make sure the model is now equivalenced. If you find errors, repeat Step 16.

Creating a Hexahedral Mesh using the Solid Map Function - HM-3220 Step 2: Mesh the 1/8th sphere-shaped region.

3D page, go to solid map

3. Go to the one volume sub-panel.(这个面板可以一个一个的网格分块的实

4. Under along parameters:, set elem size= to 1.

5. With the solid entity selector under volume to mesh active, select the

small cube-shaped solid, as shown in the following image.

Step 3: Create a shell mesh with the automesh panel to control a mesh pattern.

?From the Mesh menu, select Create, and click 2-D AutoMesh

?Press F12(这一步网格为后面做准备,如果不网格的话,第四步中网格实体调整实体密度时就会将这个面的网格随便变化,做了这一步,就固定住了这一面的层数,那么它就会在其他地方调整以达到密度要求)

Step 4: Mesh the solid volume on which the surface mesh was created in Step 3.

1. Enter the solid map panel by clicking Mesh, then Create, then Solid Map Mesh.

2. Go to the one volume sub-panel.

3. Select the volume shown in the following image.

4. Under along parameters:, toggle elem size= to density= and enter 10.

5. Click mesh.

6. Rotate the part and note how the mesh pattern created with the automesh panel has been used for the solid elements.(前面两块先网格以控制其他实体块网格部分密度调整)

Step 5: Mesh the remaining solid volumes.

You should still be in the solid map panel.

1. Select one of the remaining unmeshed solid volumes.

Make sure to select a solid adjacent to one that has already been meshed so that connectivity is maintained.(选择临近的实体以保证连接性)

2. Switch source type: to mixed.

3. Under along parameters:, toggle density= to elem size= and enter 1.5.

4. Click mesh.

5. Repeat until all solid volumes are meshed.

6. Click return to return to the main menu.

Automated Solid Map Meshing

The capability to automate the solid map meshing process is now available. Using the “Mappable” visualization mode in conjunction with the multi-solids feature will inform you that the solid(s) are ready for solid meshing. Using the multi-solids feature will allow for all solids within the model to be meshed in one step provided that they are mappable.

In this section of the tutorial we will delete all the elements from the previous section. Use the Mappable visualization mode and solid mesh the part using multi-solids.

自动网格的能力去网格实体的程序现在是可用的. 使用“Mappable“可视化模式结合multi-solids功能将会告诉你,实体已经准备实体网格。利用multi-solids特性将允许在这个模式之下的所有的固体被网格化,其中有一步是mappable提供。在本节教程中这一部分我们将会从以前的截面删除所有元素。使用Mappable可视化模式和multi-solids实体网格。

Step 7: Delete the elements within the model.

Step 8: Use the mappable visualization mode

From the geometry visualization pull-down, select Mappable ().

You will notice that each solid is color coded, the color of the solid represents its mappable state. The goal is to ensure that each solid is either 1-directional or 3-directional mappable.

The color of the mappable state can be found (and adjusted if necessary) within the Preferences > Color panel.

(你会发现每一个坚实的是用不同颜色标注,这种颜色的固体代表其mappable状态。其目的是确保每一个坚实的要么是1-directional或3-directional mappable。

3-directional mappable solid, the rest are 1-directional mappable.

一旦变成mappable可视化模式,很清楚的显示有一个3-directional mappable 固体,其余的都是1-directional mappable。

Step 9: Use the multi-solid feature to mesh the part.

click Mesh, then Create, and Solid Map Mesh to open the solid map panel. (这里它会自动跳到multi solid面板)(第一次网格应该是生成三个方向的面,第二次才是按单方向进行实体网格)

The solids will be sequentially solid meshed. Once complete inspect the model and note that all the mesh within the solids is correctly equivalenced.

这个实体将会连续的进行实体网格。一旦完成检查模型并且值得注意的是,在实体内的所有的网格也已经equivalenced了。

hypermesh运用实例

运用HyperMesh软件对拉杆进行有限元分析 1、1 问题得描述 拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。求载荷下得应力与变形。 图1-1 拉杆结构图 1、2 有限元分析单元 单元采用三维实体单元。边界条件为在拉杆得纵向对称中心平面上施加轴向对称约束。 1、3 模型创建过程 1、3、1 CAD模型得创建 拉杆得CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。

图1-2 拉杆三维模型 1、3、2 CAE模型得创建 CAE模型得创建工程为: 将三维CAD创建得模型保存为lagan、igs文件。 启动HyperWorks中得hypermesh:选择optistuct模版,进入hypermesh程序窗口。主界面如图1-3所示。 程序运行后,在下拉菜单“File”得下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应得图形按钮,选择“lagan01、igs”文件,点击“import”按钮,将几何模型导入进来,导入及导入后得界面如图1-4所示。 图1-3 hypermesh程序主页面

图1-4 导入得几何模型 (4)几何模型得编辑。根据模型得特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。因此,首先对其进行几何切分。 1)曲面形体实体化。点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。 图1-5 Geom页面菜单及其对应得面板 图1-6 solids按钮命令对应得弹出子面板

hypermesh 心得

先利用Collector各别归类每一装配体,再个别单一划分,并且划分时隐藏其他装配体避免混淆。.强调一点,在划完网格后进行检查时,使用find face,find edge时要注意,因为各零件间的间隙可能小于容差,可能会将零件网格合并。所以各零件一定要分开检查。 hypermesh学习心得1.所有面板上都有cleanup tolerance和visual options选项。其中前者用于判断两个曲面的边或两个曲面的顶点是否可以被视为重合。在几何清理操作中,间距在容差(tolerance)范围内的任何两条曲面的边或两个曲面的顶点将被视为重合,随后被合并。cleanup tol =的值可以在两个地方设定。一个是对其全局值,可以在options/modeling子面板中设定。另一个是局部值,可以在geom cleanup面板中设定,用于特定的几何清理操作。有时,按局部清理容差进行的操作可以被全局清理容差覆盖。 2. 例如,在一个用局部清理容差形成的曲面上进行分离操作之后,因为surface edit面板仅采用全局清理容差,被分离曲面的所有的边都被用全局清理容差重新评估,重新确定它们的状态。 设定的几何清理容差最大值的合理性与单元大小有关。例如,单元尺寸为30,几何清理的容差应为0.3 (30/100)或0.15 (30/200). 3. Edges子面板 edges子面板用于修改曲面边界的连接状态。子面板中有四个子菜单toggle,replace,(un)suppress和equivalence。 ? toggle toggle菜单可以通过在边界上单击鼠标左键将其从自由边变成共享边,或者从共享边变成压缩边。使用鼠标右键可以取消toggle操作,并将压缩边变为共享边,或将共享边变成自由边。要将一条自由边变成共享边,在这条自由边附近的容差范围内必须有一条对应的自由边。? replace replace菜单可以将一对自由边合并成共享边,但是合并后的共享边的位置是在设定的被保留的边上,而另一条边则被删除。这一功能实际上扩展了toggle的控制功能。任何与被删除的边相关连的几何特征被关连到被保留的边上。 ? (un)suppress (un)suppress菜单允许同时压缩或释放多条边。在这个菜单可以使用扩展的线条选择菜单,可以使用多种线条选择方式。如果需要消除在由对称方式生成曲面时产生的缝隙,该功能非常有用。 ? equivalence equivalence菜单可以自动识别并合并多个自由边对。 4. Surfaces子面板 surfaces子菜单用于查找和删除重合曲面并组织曲面。有三个子菜单find duplicates,organize by feature和move faces。 ? find duplicates find duplicates菜单用于识别和删除重合曲面。 ? organize by feature organize by feature菜单在一系列不同参数基础上识别和压缩曲面的共享边。最终结果是对更大曲面的更合理地组合。 ? move faces move faces 菜单可将多个面缝合到一个已有曲面上或缝合多个曲面形成一个新曲面. 5. 大多数几何清理操作都需要特定的清理容差(cleanup tolerances)。这个容差指定了几何清理操作可以缝合的最大缝隙。通常,容差不应该超过网格单元尺寸的15-20%,否则可能产

hypermesh精华笔记总结

1.如何添加重力 collector-loadcols-name(自己输入名字)-card image-grav-creat/edit,G中输入重力加速度(注意单位一般输入9800),N1,N2,N3,(0,-1,0)表示Y 轴负方向。 在BCs中选择control cards,然后选择acceleration,然后根据需要选择。 另外,如果要添加重力,那么材料属性里RHO一定要填写,这是表示密度。 2.划网格产生的问题 在sw中建好的模型导入到hypermesh里本来是没有自由边,可是在一个面上划完网格后就产生了自由边。这个自由边是肯定会产生的。因为这个时候 仅仅是在一个面上划了网格,按照自由边的定义,在这个面的外围没有其他的面与之相连,所有会产生自由边。这个自由边不能去掉,而且没办法去 掉。 3.网格密度对拓扑优化结果有影响。 4.拓扑优化中常用质量分数作为约束,但是除非在优化设计要求中明确提出优化后质量减轻的百分比,否则优化前很难断定质量分数应该选取多大合适,因此可能需要指定几个不同的质量分数分别进行优化,然后再在结果中选取最优参数 5.为模态分析设置频率分析方法的card 是EIGRL 其中ND跟设置有几阶模态有关系。V1,V2设置频率范围。 6.coupled mass matrix耦合质量矩阵 7.设置载荷类型 BCs->load types->constraint->DAREA(dynamic load scale factor)这里是设置动态载荷。 8.频率载荷表 collector type->loadcols->....->card image->TABLED1 例如:TABLED1_NUM=2,X(1)=0,Y(1)=1.0,X(2)=1000,Y(2)=1.这样就定义了频率范围为0~1000Hz,幅值为1的载荷 9.创建随频率变化的动态载荷 loadcols->..->card image->RLOAD2(frequency response dynamic load,form2) 10.Card Image是你在创建一个新的组的时候,通过Card Image赋予这个组里面的单元一些属性. 具体怎么用,跟你用的模板有关对于hm7.0版本,如果选ANSYS模板,创建component的时候,Card Image所指定的就是这个组的单元的单元类型.(8.0 改了,不能通过Card Image定义单元类型了.)。如果选abaqus, card image指定这个组里面的单元是solidsection 还是shellsection还是rigid body或者其什么的。总之,你要对你所用的求解器的关键字比较熟,才能更好的使用HyperMesh做前处理. 11.瞬态载荷card TLOAD1

2019年hypermesh笔记

1 如何添加重力 collector-loadcols-name(自己输入名字)-card image-grav-creat/edit,G中输入重力加速度(注意单位一般输入9800),N1,N2,N3,(0,-1,0)表示Y轴负方向。在BCs中选择control cards,然后选择acceleration,然后根据需要选择。另外,如果要添加重力,那么材料属性里RHO一定要填写,这是表示密度。 2.划网格产生的问题 在sw中建好的模型导入到hypermesh里本来是没有自由边,可是在一个面上划完网格后就产生了自由边。这个自由边是肯定会产生的。因为这个时候仅仅是在一个面上划了网格,按照自由边的定义,在这个面的外围没有其他的面与之相连,所有会产生自由边。这个自由边不能去掉,而且没办法去掉。 3.网格密度对拓扑优化结果有影响。 4.拓扑优化中常用质量分数作为约束,但是除非在优化设计要求中明确提出优化后质量减轻的百分比,否则优化前很难断定质量分数应该选取多大合适,因此可能需要指定几个不同的质量分数分别进行优化,然后再在结果中选取最优参数! 5.为模态分析设置频率分析方法的card 是EIGRL: 其中ND跟设置有几阶模态有关系。V1,V2设置频率范围。 mass matrix耦合质量矩阵 7.设置载荷类型 BCs->load types->constraint->DAREA(dynamic load scale factor)这里是设置动态载荷。 8.频率载荷表 collector type->loadcols->....->card image->TABLED1 例如:TABLED1_NUM=2,X(1)=0,Y(1)=,X(2)=1000,Y(2)=1.这样就定义了频率范围为0~1000Hz,幅值为1的载荷 9.创建随频率变化的动态载荷 loadcols->..->card image->RLOAD2(frequency response dynamic load,form2) Image 是你在创建一个新的组的时候,通过Card Image赋予这个组里面的单元一些属性.具体怎么用,跟你用的模板有关对于版本,如果选ANSYS模板,创建component的时候,Card Image所指定的就是这个组的单元的单元类型. 改了,不能通过Card Image定义单元类型了.)。如果选abaqus, card image指定这个组里面的单元是solidsection 还是shellsection还是rigid body或者其什么的。总之,你要对你所用的求解器的关键字比较熟,才能更好的使用HyperMesh做前处理. 11.瞬态载荷card TLOAD1 12.模态分析关键步骤: 1. 创建一个load collector, card image选择EIGRL(LANCZOS方法)。 2. 创建subcase,type为normal modes, method选中刚才创建的load collector。 3. 在control cards的sol选择nomal modes,param中选择autospec, 如果想生成op2文件,把post也选上 4. 导出成bdf文件,启动nastran进行分析。 和profile (即在里选择preferences,然后选择user profiles)是不同的。

Hypermesh和Abaqus的接口分析实例

Hypermesh和Abaqus的接口分析实例(三维接触分析) In this tutorial, you will learn how to: ?Load the Abaqus user profile and model ?Define the material and properties and assign them to a component ?View the *SOLID SECTION for solid elements ?Define the *SPRING properties and create a component collector for it ?Create the *SPRING1 element ?Assign a property to the selected elements Step 1: Load the Abaqus user profile and model A set of standard user profiles is included in the HyperMesh installation. They include: RADIOSS (Bulk Data Format), RADIOSS (Block Format), Abaqus, Actran, ANSYS, LS-DYNA, MADYMO, Nastran, PAM-CRASH, PERMAS, and CFD. When the user profile is loaded, applicable utility menu are loaded, unused panels are removed, unneeded entities are disabled in the find, mask, card and reorder panels and specific adaptations related to the Abaqus solver are made. 1. From the Preferences drop down menu, click User Profiles.... 2. Select Abaqus as the profile name. 3. Select Standard3D and click OK. 4. From the File drop down menu, select Open… or click the Open .hm file icon. 5. Select the abaqus3_0tutorial.hm file. 6. Click Open. Step 2: Define the material properties HyperMesh supports many different material models for Abaqus. In this example, you will create the basic *ELASTIC material model with no temperature variation. The material will then be assigned to the property, which is assigned to a component collector. Follow the steps below to create the *ELASTIC material model card: 1. From the Materials drop down menu, select Create. 2. Click mat name = and enter STEEL. 3. Click type= and select MATERIAL. 4. Click card image = and choose ABAQUS_MATERIAL. 5. Click create/edit. The card image for the new material opens. 6. In the card image, select Elastic in the option list.

hypermesh笔记原创

? F1 -- Hidden Line 隐藏线? F2 -- Delete 删除(删除任何对象都用此命令)? F3 -- Replace 合并两个节点? F4 -- Distance 测量距离角度等? F5 -- Mask 隐藏? F6 -- Element Edit 单元编辑(创建,合并,分割单元等)? F7 -- Align Node 节点共线排列? F8 -- Create Node 创建节点? F9 -- Line Edit 线编辑(非边界编辑)? F10 -- Check Elem 单元质量检查? F11 -- Quick Edit 快速几何编辑? F12 -- Automesh ?自动网格划分 Shift+F1-F12, Ctrl+F1-F6 Opening and Saving Files - HM-1010 bumper_cen_mid1.hm 1. Access the Import tab in one of the following ways: ? From the Menu Bar, choose File, then Import ?From the standard toolbar, click Import () (这里的Import ()是在已有模型上加另一个模型) Importing and Repairing CAD - HM-2000 Importing and Repairing CAD - HM-2000 2. Go to the autocleanup panel. 查看拓扑情况,自动清理,可以删一些重复面,距离较小的自由边,修补结点问题Step 3: Delete the surface that overhangs the round corner.(删重复面) From the Geometry menu, point to Delete and click Surfaces 或Press F2(和点叉一样) Step 4: Create surfaces to fill large gaps in the model surfaces panel keep tangency(可以平滑过渡) Verify the auto create (free edges) check box is selected Step 5: Set the global geometry cleanup tolerance to .01.(设置全局清理容差,这样其他地方的容差都是0.01) Press O to go to the options panel Go to the geometry sub-panel In the cleanup tol = field, type 0.01 to stitch the surfaces with a gap less than 0.01. Step 8: Combine the remaining free edge pair using replace. Go to the replace sub-panel(quick edit是交换点,这里交换边,效果差不多) Step 9: Find and delete all duplicate surfaces. Access the Defeature panel

hypermesh学习笔记

Hypermesh学习笔记 1一些常用的快捷键 F2删除 F3合并节点 F4测量 F5隐藏 F6网格编辑 F7节点对齐 F8节点创建 F11快速几何清理 F12网格划分 Shift+F2 临时节点创建与编辑 Shift+F3 边界查找与缝合 Shift+F10 单元法向量 Shift+F4 对象平移translate Shift+F7 投影Project Shift+F11对象管理organize Ctrl+F1 (=Ctrl+F2)去背景截图 2.方向向量的两种确定方法 ①2个点确定一个方向向量:该向量从N1指向N2 ②3个点确定一个方向向量:首先三个点确定一个平面,该方向向量为平面的法向,正方向 由右手定则确定

3.hypermesh 为不同的求解器建有限元模型的步骤: ①首先user profile中选择对应的求解器 ②建模 ③模型导出成求解器可以识别的格式:file—export—solver data,并在export option中选择需要导出的对象 一些实用的小技巧 ①平移技巧 Translate的作用是平移,如果是复制平移,则在平移之前要先duplicate,duplicate时,会弹出副本归属对话框,这时可以将需要副本归属的集合设置成当前,然后在副本归属对话框中选current comp,这样复制平移的对象就会放到这个集合中,可以免去organize的步骤; ②镜像技巧 Reflect的作用是镜像,镜像的技巧参考平移技巧! 特别说明:镜像时不一定非得严格找到对称平面,可以是与对称平面平行的平面,在用translate工具平移即可! ③抽中面的技巧 Midsurface的作用是抽取中面,抽中面时可以用sort选项将各个部件的中面分配到不同的component中,否则就会在一个component中。 ④对象的保存和再提取 Save fail 命令可以保存失败的单元,然后在所有含有elem选择器的界面中可以通过retrieve 命令将其提取出来! ⑤surf 与elem的灵活运用 由于surf面板中没有“通过硬点或节点创建面”命令,但是有“From FE”(即由网格创建面),所以可以先通过4个节点创建一个四边形单元,然后再通过“from FE”间接创建面。 ⑥三角形面创建规则网格 当为三角形面创建网格时,可以先作出三角形所在的矩形的网格(通过四个节点作一个网格),再将这个网格划分成所需尺寸的网格,然后用网格编辑中的split命令将对角线上的网格劈成两半,最后删除三角形面以外的那一半即可。 ⑦模型的完全删除:

hypermesh使用指南

Hypermesh软件是美国Altair公司的产品,是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面。 FEA流程图: Step1:CAD模型的导入与修复 文件导入 文件的导入有很多种方式,常用的是导入parasolid形式,即x_t 文件。因为这种文件不容易出现缝隙、重叠、边界错误等缺陷,减轻了几何清理的工作量。 File→import→Geometry→parasolid→**.x_t (导入的模型如果是组件,最好直接将组件导入,在HM中组装比较麻烦。) 几何清理 如图,geom页面点击autocleanup,使用线框模型来查看模型。

线条为红色是自由边,表示相邻曲面没有相互连接,或者相邻曲面间有空隙。线条为黄色为T形连接边,表示曲面的边界被三个或三个以上的曲面所共享,如果不是,说明模型存在重复曲面。 修补方法: (1)缝补破面。Geom页面选择surfaces面板,点击左上方Spline/Filler选项,不选Keep Tangency选项。对象设置为lines,激活Auto Create(Free Edges only)选项,点击破损平面的一条边。(2)删除所有重复面。在Geometry菜单中点击Defeature→Duplicates →Surfaces→Displayed。在Cleanup Tol中输入0.01,点击find→Delete。Step2:几何模型的简化 简化几何模型是指为了使零件几何形状更简单而去掉一些细节。根据分析问题的需要,比如考虑零件在总装配中的重要程度、几何特征与分析问题的着重点的相关程度、几何特征尺寸与平均网格尺寸的对比等因素,模型的某些几何细节(如一些小孔或倒角)可以忽略。删除对于分析没有必要的模型细节,有助于改善网格质量,分析也会进行得更有效率。 进入页面Geometry→Defeature

HyperMesh知识总结

Hypermesh知识总结 1.如何从体单元提取面单元 TOOL->faces->find faces 2.在Hypermesh中使用OptiStruct求解器的重力、离心力、旋转惯性力施加方法 在HyperMesh中采用定义loadcols组件(colletors)的方式定义重力、离心力以及惯性力。 (1)重力 重力的施加方式在的card image中选择GRAV,然后create/edit,在CID中输入重力参考的坐标系,在G中输入重力加速度,在N1、N2、N3中输入重力方向向量在重力参考坐标系中的单位分量,然后返回即可。 (2)离心力 离心力的施加方式在的card image中选择RFROCE,然后create/edit,在G 中输入旋转中所在节点编号,在CID中输入离心力所参考的坐标系,在A中输入旋转速度,在N1、N2、N3中输入离心 力方向向量在离心力所参考坐标系中的单位分量,返回即可创建离心力;如果需要定义旋转惯性力,在RACC中输入旋转加速度即可,二者可以同时创建,也可单独创建。 如果在一个结构分析中,需要同时考虑结构自身的重力和外界施加的外载荷,那么可以建立重力load collector,但是外部载荷的load collector怎么建立?是同时建立在重力的load collector中吗?如果是,那边有一个十分混淆的问题:在你建立重力的load collector的时候,你选择了GRAV卡片,那么你凡是建立的该重力load collector之中的力都带有GRAV卡片属性,这显然是不对的。但是,如果你重新建立一个新的load collecotr,然后把外部载荷建立在其中,那么就有重力和外部载荷两个load collectors,但是在你建立subcase 的时候你只能选择一个load collector,那么你无论选择哪一个都必将失去另外一个,这就与我们的本意相矛盾了,我们是希望同时考虑结构自重和外部载荷的联合作用下进行分析的,这个时候应该怎么办?怎么获得结构同时在自身重力和外部载荷作用下的变形和应力? 方法1:工况组合;使用"LOAD"卡片叠加重力载荷和其他载荷;创建一个 load collector;card image选LOAD;点击create/edit;把下面的load_num_set 改成你所要组合的载荷的数目;然后在

螺栓预紧结构用Hypermesh做接触实例

螺栓预紧结构用Hypermesh 做接触实例 在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F ,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm ,而单元的尺寸为3~4mm ,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh 划分网格后的模型。 图1 实体模型 图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

Hypermesh使用技巧总结

Hypermesh使用技巧总结 1、hypermesh划分的网格其中一部分单元的节点连接顺序是顺时针的,导致计算不能进行, 请问大侠如何在hypermesh中改变节点连接的顺序呢?谢谢! if is shell element, reverse the element normal! if 1-D element, you will need to recreat it 2、面上网格分不同的comp划分,但划分后所有网格并不是连续的,只有同一个comp的网 格连续,和临近的comp相邻的网格不连续,就是存在重叠的单元边和结点,如何合并为连 续的单元 (1)Tool ->edges 下找出并合并面单元的自由边和找出并删除重节点 (2)Tool ->faces 下找出并合并体单元的自由面和找出并删除重节点 3、hypermesh中如何将网格节点移动到指定的线或者面上。 project. 4、偶很想知道OI mesh定义是什么,和普通的mesh有什么区别 普通mesh的网格经过clean up 或QI 调整后就跟QI mesh划分的网格效果差不多,QI的具 体参数可以自行设定。QI主要目的是为了节省时间,QI就是Quality Index——质量导引 HM最强调的就是网格质量的概念,有限元计算的精度取决于网格质量,再好的求解器如果 网格质量不好,计算的精度也不会好。 5、hypermesh中,我想提取一个面的线,映射到另外的面上,然后用那个线来分面,该怎么做呢?如果是几何面,但是没有你需要的边界线的话,你可以在几何面上已有的边界线上create nodes,然后利用这些nodes --〉lines /create,建立你需要的线,再project;或者最简单的办法,选择surf edit/line from surf edge 如果是网格面,你可以geom/fea->surface,再project,或者直接project nodes,利用nodes可以直接划分面 6、我的模型画出六面体单元了,但是是8节点的,想变成20节点的,怎么变?我用的是solidmap 功能生成六面体单元的? 1D or 2D or 3D下面的order change 7、直接在已分网的体表面上,create elements through nodes,这个要在哪个菜单实现?我找不着edit/element中不是有个create吗?那就是通过node建单元 8、对灰线构成的区域划分2D网格,网格后发现灰线变成了红线,是怎么回事呢?对计算结果有影响么? 灰色的是lines,至于为什么画完网格后会变成红色,是因为生成了surface,surface的自由边会由红色来表示。请注意为什么会生成surface,是因为你选择了mesh/keep surface这个选项 9、有两个闭合的园,一上一下,如何在两个园间创建曲面?使形成圆柱面? ruled 或选择line方式。记住选择surface only。 10、下面的图为只划分了一半的网格,另外一半与之对称。我想copy 过去,但只发现有reflect 命令。求助! 在hm中用3D->organize->cpoy然后再reflect 或选择单元,先duplicate,但记住只能点duplicate一次。然后reflect。 如果对称过去的单元与原先的单元是连在一体的,别忘了在check edges中将节点equilance。11、我在用hypermesh划分二个物体,在接触面的地方,上下面的节点号码都一样,如何做才能使第一个物体和第二个物体的接触部份的节点号码不一样呢。多谢了。 采用2D=>detach可以将单元或节点分开 继续问:好像只能分单元啊,没看到有节点选择啊。我试用了你介绍的办法,好像没用啊。很急请多指教

HyperMesh 10.0 学习笔记—Teelon

目录 ☆选择边线上的点 (1) ☆定义方向 (1) ☆Organize管理集合器 (1) ☆删除面、实体、网格等 (1) ☆删除空部件 (1) ☆删除重复的面 (2) ☆压缩点 (2) ☆压缩边界 (2) ☆删除小孔 (2) ☆删除面圆角 (2) ☆删除倒圆角 (2) ☆由封闭边线创建面 (3) ☆在圆心处创建节点 (3) ☆设置全局清理精度 (3) ☆equivalence缝合曲面 (3) ☆toggle合并相邻的自由边 (4) ☆替换边 (4) ☆替换点 (4) ☆提取中性面 (4) ☆用垂直于边界的线分割面 (4) ☆unsplit surf补面 (5) ☆处理圆孔周围的网格 (5) ☆调整网格密度 (6) ☆自动划分网格 (6) ☆spline划网格 (7) ☆skin划网格 (7) ☆line drag延伸网格 (8) ☆ruled扩展网格 (8) ☆shrink wrap (8) ☆降低comp.Q1值 (9)

☆由封闭的曲面创建实体 (9) ☆创建圆柱体 (9) ☆用节点分割实体 (10) ☆用线分割实体 (10) ☆用面分割实体 (10) ☆实体的布尔运算 (10) ☆volume tetra四面体网格 (11) ☆tetra mesh由2D封闭网格生成3D网格 (12) ☆tetra remesh优化 (12) ☆elems offset拉伸网格 (13) ☆spin旋转网格 (13) ☆faces在3D网格表面上提取2D网格 (14) ☆linear solid在两个2D网格之间生成线性的3D网格 (14) ☆沿边线扫掠网格 (14) ☆剖切视图 (15) ☆缝合网格中相近的节点 (15) ☆one volume生成3D网格 (16) ☆Mappable视图 (17) ☆multi solids多个实体同时生成3D网格 (18) ☆smooth调节网格 (18) ☆拆分网格 (18) ☆合并网格 (19) ☆动态移动节点 (19) ☆显示网格的法向量 (19) ☆检查模型 (20) ☆penetration检查穿透 (20) ☆检查网格质量 (21)

hypermesh梁壳单元混合建模实例

HyperMesh梁单元与壳单元的混合建模 本文根据工程实例,应用有限元软件HyperMesh 11、0进行梁单元与壳单元的混合建模,并在其中详细论述,梁单元在与壳单元混合建模的过程中如何对梁单元进行偏置处理,保证梁单元与壳单元的所有节点完全耦合。 在焊接工艺中,梁单元与壳单元的使用可以大大提高整体焊接结构的抵抗变形能力,避免单独使用壳单元时强度与刚度的不足。HyperMesh软件中提供了大量标准梁的截面,也可以通过实际应用需求单独创建梁截面。 在1D面板中点选HyperBeam选项,如图1所示。 图1 1D面板中的HyperBeam选项 HyperBeam中提供了大量的梁截面,如图2所示。 图2 HyperBeam下的各种梁截面 图2中红色箭头所指的就是各种标准梁截面的属性,包括H型梁,L型梁,工型梁等等。可以根据实际需求进行选择,而且可以自己独立进行尺寸编辑。图2中的shell section可以建立独立的壳截面,solid section可以建立独立的实体截面。在建立完成各种梁的截面属性之后,可以通过edit section进行梁截面属性的修改。

以上主要介绍了1D梁单元的使用情况,下面将根据工程实例对壳单元与梁单元的混合建模进行详细的介绍。图3就是梁单元与壳单元焊接之后的三维图,图4就是图3中梁单元以1D显示的情况。二者之间的切换功能键如图5所示。 图3 梁单元与壳单元焊接之后梁单元以3D显示 图4 梁单元与壳单元焊接之后梁单元以1D显示 图5 梁单元1D与3D之间的切换功能键

下面介绍梁单元的具体创建方法,不再讲述壳单元的建立方法。首先建立Beam Section,在软件左侧右键create--Beam Section,在出现的对话框窗口中对Bean进行命名。具体的过程如图6所示。 图6 Beam的建立过程 之后进入1D--HyperBeam面板,选择Standard section选择Standard Channel面板,打开面板后对各个参数进行修改,如图7所示。左侧的红色框内的区域就是进行具体尺寸的修改,修改的结果会以直观的形式显示在图形界面中,右侧的红色方框就是梁界面的各个力学参数。注意梁的方向,梁的长度方向就是X 轴,图形中的就是梁的Y轴与Z轴。在梁的方向的选取过程中Y轴为第一方向。 图7 梁的各个参数的修改 之后建立梁的属性,同样在软件左侧位置右键创建属性,弹出属性创建的选项卡片,在Type中选择1D,在Card image中选择PBEAM,单击确定按钮,如图8所示。

Hypermesh运用小常识

Hypermes运用小常识 1.如何在体表面提取面单元 HM->TOOL->faces->find faces 2.在Hypermesh中使用OptiStruct求解器的重力、离心力、旋转惯性力施加方法 在HyperMesh中采用定义loadcols组件(colletors)的方式定义重力、离心力以及惯性力。 1、重力 重力的施加方式在的card image中选择GRAV,然后create/edit,在CID中输入重力参考的坐标系,在G中输入重力加速度,在N1、N2、N3中输入重力方向向量在重力参考坐标系中的单位分量,然后返回即可 2、离心力 离心力的施加方式在的card image中选择RFROCE,然后create/edit,在G 中输入旋转中所在节点编号,在CID中输入离心力所参考 的坐标系,在A中输入旋转速度,在N1、N2、N3中输入离心力方向向量在离心力所参考坐标系中的单位分量,返回即可创建离心力;如果需要定义旋转惯性力,在RACC中输入旋转加速度即可,二者可以同时创建,也可单独创建。 如果在一个结构分析中,需要同时考虑结构自身的重力和外界施加的外载荷,那么你可以按照楼主wjsgkz介绍的第一条建立重力load collector,但是外部载荷的load collector你怎么建立???是同时建立在重力的load collector 中吗???如果是,那边有一个十分混淆的问题:在你建立重力的load collector的时候,你选择了GRAV卡片,那么你凡是建立的该重力 load collector之中的力都带有GRAV卡片属性,这显然是不对的。但是,如果你重新建立一个新的load collecotr,然后把外部载荷建立在其中,那么就有重力和外部载荷两个load collectors,但是在你建立subcase的时候你只能选择一个load collector,那么你无论选择哪一个都必将失去另外一个,这就与我们的本意相矛盾了,我们是希望同时考虑结构自重和外部载荷的联合作用下进行分析的,这个时候应该怎么办???????????怎么获得结构同时在自身重力和外部载荷作用下的变形和应力???谁知道??? 方法1:工况组合; 使用"LOAD"卡片叠加重力载荷和其他载荷;创建一个load collector;card image选LOAD;点击create/edit;把下面的load_num_set改成你所要组合的载荷的数目;然后在上面L1,L2,L3....选中你要组合的项,前面的s1,s2,s3,,,,是载荷组合时候的权重系数。一般默认为1;

运用hypermesh进行模态分析

1 引言 系统的模态参数(模态频率、模态阻尼、振型)对系统的动态分析和优化设计具有实用价值。通常由试验模态分析和计算模态分析两种方法。但由于受实验条件和时间的限制,组织实施往往比较困难,而且在测量次数,测量数据的处理准确性方面也难以得到充分的保证,在设计阶段难以实现。基于虚拟样机技术的虚拟实验方法在履带车辆箱体类零部件模态参数测量方面在设计阶段就能为方案优化提供指导,缩短产品开发周期,节省费用。因此,开展在虚拟环境下测试箱体类零部件的模态参数研究与探讨并扩展其应用具有重要意义。本文以某型履带车辆传动箱设计为例,应用HyperMesh为前处理软件,对其进行了有限元网格的划分,进而对箱体的模态进行了分析。 2 箱体有限元模型的建立及模态分析 首先依据传动箱体的尺寸,建立箱体的三维实体模型。利用HyperMesh对传动箱体的实体模型进行有限元网格划分,箱体的材料为铝合金,其密度为 2.66e33kg/m3,泊松系数为0.31,杨氏模量为7.7e72N/m2,强度极限为176.4MPa。整个箱体共划分76151个4面体单元,22262个节点。在此过程中,还必须考虑到箱体有限元模型建立后与各传动轴之间的连接,即柔性体与刚体间的连接。传动箱各轴都是通过轴承与箱体连接的,笔者在有限元模型中应用多点约束(MPC,Multi-point Constraint)来模拟轴承的作用。所谓多点约束是将某节点的依赖自由度定义为其他若干节点独立自由度的函数。多点约束可以用于不相容单元间的载荷传递,表征一些特定的物理现象,比如刚性连接、铰接、滑动等。笔者在箱体有限元模型中各轴孔的中心点处建立一个虚拟杆单元,如图1所示。轴孔内表面各节点的自由度则依赖于对应的虚拟杆单元。各传动轴与箱体间的约束也是在对应的虚拟单元处建立,各传动轴上的作用力则通过相应的虚拟杆单元和多点约束作用于箱体之上。文中建立的包括轴承模型的传动箱箱体有限元模型如图2所示。

【HM内建模】Hypermesh典型例子了解HW

Hypermesh网格划分简单介绍。 这一章主要介绍hypermesh的流程,通过一个简单的例子让大家了解hypermesh的功能,使大家对hypermesh不再陌生。 这一章涉及到了几何建模,2D网格的生成,3D网格的生成,集合器collectors,删除等一些主要的功能。通过这一章,可以对hypermesh有一个基本的认识。 几何建模 1,启动hypermesh 2,点击Geom/create nodes面板,默认输入,点击create,在(0,0,0)处制作一个节点。3,点击永久菜单中的f键,观察所生成的节点,在屏幕中心处有一个黄色的小圆圈 4,点击Geom/circle ,选择center&radius子面板。点击制作的节点,选中之后黄色的圆圈变为白色。 5,选择z方向为法向,选择制作的节点,这个节点由白色变为紫色。 6,在后面的指针开关中选择circle 7,在radius=后面的输入框内,输入1,点击create,作一个半径为1的圆。 8,点击永久菜单中的f键,观察所生成的圆,按住ctrl键,同时按住鼠标左键,移动鼠标左键。旋转观察所生成的圆 9,点击return,退出这个面板。 2D网格的生成 1,点击2D/spline,选择创建的圆 2,选择keep tangentcy前面的方框,使其里面有一个对勾,

3,点击keep tangentcy上面的有一个三角形的键,选择mesh ,dele surf,点击create,出现一个选择,选择yes,生成2D网格。 4,在elem density=后面的输入框中,输入14,点击elem density=左面的最下面的那个绿色的set all to

相关主题