搜档网
当前位置:搜档网 › 齿轮泵常见问题分析

齿轮泵常见问题分析

齿轮泵常见问题分析
齿轮泵常见问题分析

遇事询问:班次、何人、数量、那几台机床、目前状况。

齿轮泵提高容积效率的方法

增加容积效率对于齿轮泵而言就是增大供油量与内泄的比例。

方法有两方面。1 增大流量2减小内泄。

具体方法有

1增大模数、减少齿数、增加转速、使卸荷槽适当偏向排油一侧。

2压力较高时用间隙补偿结构就是加浮动侧板、提高加工精度主要是减小齿轮端面跳动。

液压齿轮泵扭矩大是哪的原因?

齿轮中心距偏小,或者配合面粗糙度不高,配合尺寸偏紧。

齿轮泵容积效率

增加容积效率对于齿轮泵而言就是增大供油量与内泄的比例。方法有两方面。1 增大流量 2减小内泄。具体方法有 1增大模数、减少齿数、增加转速、使卸荷槽适当偏向排油一侧。 2压力较高时用间隙补偿结构就是加浮动侧板、提高加工精度主要是减小齿轮端面跳动。

工艺改进齿轮泵效率容积和性能的讨论

文章热度:105

齿轮泵容积效率较低,主要是端面泄漏较大,约占总泄漏量的70~80%.所以,提高齿轮泵的端盖和壳体之间的配合精度,提高泵的容积效率和性能是技术人员努力的方向。齿轮泵端面和壳体的加工基本上是定位销来保证其加工和配合精度。但是由于定位销孔的孔径尺寸较小,仅为φ8mm,而且加工精度、内表面粗糙度等要求较高,我们以前经过多方努力,

采用各种加工方法,质量仍难以保证,对此,我们进行了一定的研究,改进了加工和装配工艺,取得了一定的效果。

齿轮泵端盖与壳体配合误差对泵的性能和效率的影响

主动齿轮回转轴线与前盖定位止口同轴度误差大,齿轮旋转阻力大,甚至卡死,造成泵的机械性能大大下降。零件的动配合不好,磨损加快,缩短了齿轮泵的使用寿命,并且浮动轴套轴向移动阻力较大,使齿轮泵端面与轴套之间的间隙不能及时消除,甚至不能移动,导致齿轮泵容积效率下降。另外,由于主动轮轴与传动轴受其自身同轴度的影响,加大了泵的振动和噪声。

定位销孔加工工艺比较及试验

一、定位销加工工艺比较

(1)采用钻、铰(钻模)工艺,虽然保证了2-φ8mm孔径尺寸精度和内径表面粗糙度,但销孔孔距误差大,而且不太稳定。

(2)采用钻、成型(模具挤压)工艺,虽然保证了两销孔加工精度、孔径精度,并且稳定可靠,但是又带来销孔表面粗糙、部分孔径不圆度增大的问题。

(3)在两个+13mm紧固螺钉孔口部添置套管销,去掉原来2-φ8mm销孔,采用钻、铰、镗工艺,保证了各方面的精度,但是工艺复杂,成本较高。针对以上情况,我们进行了分析研究,认为解决定位销问题是关键所在,改进加工工艺是解决问题的路子。

二、对比试验分析

我们采用一个定位销和主动轮轴作为定位加工、装配,去掉另一个定位销,然后再随机抽取六台齿轮泵分三组按不同的组装方式在齿轮泵全性能试验台上做性能试验,检测它们在试验前和试验后主动轮轴线与前盖定位止口同轴度的误差变化,从而选取最佳方案。具体情况如表1。

从表1上对比情况可见,第三种方法径向跳动变化最小,证明采用这种工艺方案是成功可行的。为了提高齿轮泵的装配精度,我们又专门设计制造了以主动齿轮轴为基准的定位夹具,在装配时利用该夹具将前盖位置精确地控制后,再拧紧四只紧固螺钉。

4结束语

实践证明,采用新的工艺以后,较好地解决齿轮泵的端盖和壳体之间的配合及加工问题,保证了泵的各项技术指标,提高了泵的容积效率和机械性能,取得了较为满意的效果,并且较为经济实用。

油泵常见故障排除方法

影响齿轮泵容积效率的因素:

齿轮泵启动后不排液或排液不足的原因:

齿轮泵

一、外啮合齿轮泵的工作原理

图3-4

二、外啮合齿轮泵的排量,流量计算及流量脉动

近似计算时,认为齿间的容积等于轮齿的体积,齿轮每转一周,排出的液体体积等于其中一个齿轮的所有齿间工作容积及其所有轮齿体积之和

式中Z——齿轮齿数;

m——齿轮模数;

B——齿轮齿宽。

乘以系数1.06~1.12(齿数多时取小值,齿数小时取大值)加以修正。

齿轮泵的实际流量为

式中ηpv——齿轮泵的容积效率。

三、流量不均匀系数δq

齿数越少,δq越大,流量脉动会直接影响到系统工作的平稳性,引起压力脉动,使系统产生振动和噪声。齿轮泵装配图动画

四、外啮合齿轮泵存在的结构问题及其解决方法

1、困油现象见困油现象动画图

1)闭死容腔,如图3-5所示。

2)危害:当闭死容腔由大变小时,使齿轮轴承承受周期性的压力冲击,导致油液发热,振动和噪声,降低了齿轮泵平稳性和寿命。当闭死容腔由小变大时使闭死容腔形成局部真空,产生气蚀现象,引起振动和噪声。

3)消除困油现象办法

在泵的前后盖板或浮动轴套(浮动侧板)等零件上开卸荷槽,如图3-6所示。

2、齿轮泵内泄漏途径

见图3-7

(1)端面间隙泄漏

齿谷部分的高压油经端面间隙泄漏到齿轮轴颈处,再流入轴承后进入吸油腔(有对轴承润滑、冷却的作用)。

通过齿轮端面和泵壳之间的运动配合间隙从高压油腔泄漏到吸油腔。

(2)径向间隙泄漏压油腔的油液经径向间隙向吸油腔泄漏。

(3)齿面啮合处的泄漏通过啮合处泄漏量将更小,一般不予考虑。

(4)减小内泄漏的措施

1) 端面间隙的自动补偿

①浮动轴套式补偿装置如图3-8 、图3-9 (采用偏心“8”字形的浮动轴套)。

②浮动侧板式补偿装置如图3-10所示,

③弹性侧板式补偿装置图3-11所示

2) 径向间隙的补偿图3-12所示

3、径向不平衡力及其减小措施

作用在齿轮泵轴承上的径向力F是由沿齿轮圆周液体压力产生的径向力F1和由齿轮啮合产生的径向力F2所组成。如图3-13所示

(1)缩小压油口大小

(2)扩大排油腔到吸油腔一侧如图3-14所示

(3)扩大吸油腔到排油腔一侧如图3-12所示,这种结构即减小了径向力,又补偿了径向间隙,使容积效率提高。

如图3-15所示,

五、内啮合齿轮泵简介

1、渐开线内啮合齿轮泵的工作原理,如图3-16所示

内齿轮泵工作原理图

2、摆线内啮合齿轮泵

工作原理如图3-17所示。

齿轮泵安装计划成本

齿轮泵安装计划成本,是通过一对参数和结构相同的渐开线齿轮的相互滚动

啮合,将油箱内的低压油升至能做功的高压油的重要部件。是把发动机的机械能转换成液压能的动力装置。东方红-75拖拉机和东方红-60、70T推土机机构采用CB46齿轮泵。东方红-802/802K拖拉机和东方红-802KT推土机采用CBN-E450或CBTI-E550型齿轮泵,该泵流量大,可靠性好。在其使用过中容易出现以下故障。

Ⅰ、油泵内部零件磨损

齿轮泵内部零件磨损会造成内漏。其中浮动轴套与齿轮端面之间泄漏面积大,是造成内漏的主要部位。这部分漏损量占全部内漏的50%~70%左右。磨损内漏的齿轮泵其容积效率下降,油泵输出功率大大低于输入功率。其损耗全部转变为热能,因此会引起油泵过热。若将结合平面压紧,因工作时浮动轴套会有少量运动而造成磨损,结果使农具提升缓慢或不能提升,这样的浮动轴套必须更换或修理。

Ⅱ、油泵壳体的磨损

主要是浮动轴套孔的磨损(齿轮轴与轴套的正常间隙是0.09~0.175mm,最大不得超过0.20mm)。齿轮工作受压力油的安全阀作用,齿轮尖部靠近油泵壳,磨损泵体的低压腔部分。另一种磨损是壳体内工作面成圆周似的磨损,这种磨损主要是添加的油液不净所致,所以必须添加没有杂质的油液。

Ⅲ、齿轮泵油封磨损,胶封老化

卸荷片的橡胶油封老化变质,失去弹性,对高压油腔和低压油腔失去了密封隔离作用,会产生高压油腔的油压往低压油腔,称为“内漏”,它降低了油泵的工作压力和流量。齿轮泵它的正常工作压力为100~110kg/平方厘米,正常输油量是46L/min,标准的卸荷片橡胶油封是57×43。自紧油封是PG25×42×10的骨架式油封,它减压阀的损坏或年久失效,空气便从油封与主轴轴颈之间的缝隙或从进油口接盘与油泵壳体结合处被吸入油泵,经回油管进入油箱,在油箱中产生大量气泡。会造成油箱中的油液减少,发动机油底槽中油液增多现象,使农具提升缓慢或不能提升。必须更换油封才可排除此故障。

Ⅳ、机油泵供油量不足或无油压

现象:工作装置提升缓慢,提升时发抖或不能提升;油箱或油管内有气泡;提升时液压系统发出“唧、齿轮泵唧”减压阀声音;拖拉机刚启动时工作装置能提升,工作一段时间油温升高后,则提升缓慢或不能提升;轻负荷时能提升,重负荷时不能提升。

浅谈齿轮泵内部泄露的原因与对策

外啮合齿轮泵,它具有结构简单,制造方便,价格低廉,自吸能力强,维修容易和对油液的污染不敏感等特点。尤其是低压齿轮泵,被许多大型船舶用作滑油泵,为船舶柴油发电机原动机的自带滑油泵,船舶主机凸轮轴滑油泵及燃油泵等等。但在使用上发现了故障多,寿命低,引起了我们的关注。

我们都知道齿轮泵的寿命是由其轴承的寿命决定的,即轴承是齿轮泵中最先损坏的零件。而我们在修理齿轮泵的过程中大部分故障并不发生在轴承上,常常是内部各零件配合间隙发生了较大的变化,即泵的容积发生了变化,内部产生了泄漏。径向间隙泄漏(齿顶与泵体内表面的间隙)。轴向间隙泄漏(齿轮端面与端盖的间隙),两齿轮啮合线处的泄漏,以及填料处的泄漏,然而又以轴向间隙泄漏最为严重,约占总泄漏量的75%~80%左右,这就是齿轮泵容积效率变低的原因。就说明齿轮端面或端盖出了问题(主要是擦伤,磨损过大),导致泵的容积效率显著降低,使相关的系统不能正常的工作,严重影响了机器的使用寿命,甚至于导致机器的损坏,所以说齿轮泵工作时的状况直接影响到使用效率及自身的寿命。

根据以往修理泵的体会,简要论述齿轮和端盖损失的原因,填料泄漏的原因及防止。

1 损伤的原因

在谈低压齿轮泵之前,有必要先介绍一下中高压齿轮泵,它主要用于工程机械上。中高压齿轮泵为减少其轴向泄漏,在齿轮的两端处设有侧板,挠性侧板和固定侧板浮动式侧板是将泵的出口压力油引到浮动式侧板后,使之紧贴于齿轮泵的端面用以补偿间隙,浮动轴套的原理与浮动侧板原理类似。挠性侧板是将压力油引到侧板的背后,靠侧板自身的变形来补偿轴向间隙的,固定式侧板是指侧板与齿轮端面轴向间隙不能自动补偿。而低压齿轮泵则比较简单,无须另设侧板,齿轮的端面直接与端盖来形成间隙,类似于中高压齿轮泵中的固定侧板。但是,无论中高压齿轮泵还是低压齿轮泵,它们的侧板或端盖的平面度要求都较高,与齿轮的端面间隙(轴向间隙)都很小。如果齿轮泵在使用中不当,端盖或齿轮端面就会出现磨伤、划伤和烧蚀现象。

划伤

一般在齿轮端面或端盖的表面有划槽,其主要原因是油液中进入了铁屑,沙粒登硬质颗粒。这些颗粒一有机会便嵌在齿轮端面与端盖之间,随齿轮的转动滚动边滑动,在齿轮端面或端盖上划出沟槽,当沟槽出现后,不但增加了齿轮泵的泄漏量,而且有可能使颗粒杂质沿沟槽进入间隙,使端盖上的沟槽越划越深,泄漏量越来越大。因此,齿轮泵的端盖上一旦出现划伤,其损坏速度就要加快,从而降低泵的使用效率,系统的性能特性就会变坏。

磨伤

一般在端盖上出现齿轮磨伤的痕迹,呈半圆形或圆形。其主要原因有:轴承损坏使齿轮径向跳动量大,驱动泵的机械轴向窜动量大,定位销偏斜等等。

烧蚀

出现在端盖表面上的烧浊现象是气蚀造成的,出现在齿轮端面对应端盖上的烧蚀,是齿轮端面与端盖摩擦力很大时,其表面温度升高,油膜破裂,表面金属软化,接触点产生粘着,撕脱,再粘着的过程,构成烧蚀。烧蚀是端盖最严重的损伤,端盖上出现了划伤和磨伤发展

到烧蚀。因此,当发现齿轮泵流量不足时,应及时停泵检查,找出故障原因,以避免由小故障变为大故障。端盖上出现了划伤,如沟槽较浅的可以磨平,可以用较细的研磨砂(约600#以上)研磨,以至于达到平面度要求,也可以使用相应的设备(如磨床)达到平面度要求,如沟槽较深或端盖上的磨伤,烧蚀难以修复时,则应更换端盖。

2填料泄露的原因

①盘根密封

这种密封材料由于使用性很差,容易泄漏,而且对轴的磨损也较大,现在使用比较少。

②机械轴封

由于其使用性能很好,密封效果好,不容易泄露,对轴的磨损也不是很大,所以现在泵浦使用的很多,不光是齿轮泵,离心泵,螺杆泵等等基本上都用上了机械轴封作为密封元件。但引起其泄漏的原因也很多,主要是使用时间过长,接触面磨损过度引起泄漏。再就是密封表面由于杂质出现划伤,还有由于驱动机械与泵中心线不好,泵振动过大引起密封面出现裂纹等等。

3防止措施

解决端盖的损伤问题,主要以预防为主,其方法有:

应当保持滑油系统中油液清洁,不使用脏油,劣质油或与要求标号不相符的滑油。油液污染是引发端盖损坏的原因,即使很小的颗粒,嵌在端盖与齿轮端面之间,也会使端盖划伤,引起零件的不正常磨损,增大泄漏量。为保证油液的清洁,应做到拆卸滑油泵或其它元件之前,应将周围污染物清除干净,并将拆下泵的油口以及管路用闷板堵好。解体滑油泵应在清洁的工作台上进行,待清洁干净,使用压缩空气吹过,确认无异物后方可组装。补充油液时,必须经过滤油器过滤后加入油箱,应根据机器使用说明书或且根据实际使用情况,更换油液,在更换油液时,应注意检查进油滤器是否有腐蚀破损的现象,以防杂质进入油箱中。

对于机械轴封,要轻拿轻放,装配前,首先检查动环和静环的表面光洁度是否达到要求,是否有划痕,裂纹等。装静环时,静环座要清洁干净,检查座上是否有止动螺钉,静环的“O”型圈上要涂牛油,使它能很容易地装入静环座,且不损坏“O”型圈,并使止动螺钉嵌入静环的卡口内,使静环起到较好的止动效果。同样,动环装在轴上之前,首先检查弹簧的旋向与泵的转向是否有冲突,泵轴是否磨损,如磨损则必须修复,具备装配条件,然后在“O”型圈上也要涂牛油,使其能很好的装在轴上,在调好最佳位置(动环的压缩量)后,拧紧动环座上的螺丝,使其固定。在动环与静环表面接触之前,要确保接触面无杂质,确保密封效果。齿轮泵在安装和组装时应注意:在船舶上使用的齿轮泵除了自带式齿轮泵,一般是通过联轴器驱动的,因此,在安装之后,应检查泵与驱动装置(多为马达)的同轴度,(齿轮泵一般要求同轴度在0.1mm之内,但我们通常却控制在0.05mm之内),且驱动装置不能轴向窜动,齿轮泵在组装时不能用手锤敲打配合零件,(如定位销等),一般也不允许用手锤敲打各零件即可组装。紧固泵盖和泵体的所有螺栓的上紧力矩要相同。

防止空气进入滑油系统中,装复后应将系统中的空气放掉,实际中最常见的是由于吸油管疲劳破裂或管接头处密封失效而漏气,使吸油管漏气不被发现。但检查的方法也比较简单,在吸油管接头处涂上一层肥皂水,齿轮泵工作中吸油管表面出现喇叭状的位置,即为漏气处,吸油管出现了漏气,会使齿轮泵吸空气,导致流量上不去,因此,应先对吸油管进行修复或更换。

总之,只要按上述方法使用,装配和安装齿轮泵,端盖的损伤,磨损,机械轴封的密封性能问题都是可以解决的,齿轮泵的寿命也是可以达到技术要求的。只要在工作过程中仔细对待每一个细小的环节,问题往往可以避免的。出现了问题后本着科学慎重的态度去查找原因,从小到大,从简到繁,各个击破,不轻易下结论,不草率行事,不放弃小故障,不带病运行,定期维护,将一些故障消灭在萌芽状态,以保证它的使用效率及使用寿命。

液压泵齿轮泵的工作原理

液压泵齿轮泵的工作原理: 1.齿轮泵是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。 外啮合双齿轮泵的结构。一对相互啮合的齿轮和泵缸把吸入腔和排出腔隔开。齿轮转动时,吸入腔侧轮齿相互脱开处的齿间容积逐渐增大,压力降低,液体在压差作用下进入齿间。随着齿轮的转动,一个个齿间的液体被带至排出腔。这时排出腔侧轮齿啮合处的齿间容积逐渐缩小,而将液体排出。齿轮泵适用于输送不含固体颗粒、无腐蚀性、粘度范围较大的润滑性液体。 泵的流量可至300米3/时,压力可达3×107帕。它通常用作液压泵和输送各类油品。齿轮泵结构简单紧凑,制造容易,维护方便,有自吸能力,但流量、压力脉动较大且噪声大。齿轮泵必须配带安全阀,以防止由于某种原因如排出管堵塞使泵的出口压力超过容许值而损坏泵或原动机。 高真空齿轮泵工作原理:高真空齿轮泵依靠主从动齿轮的相互啮合把泵体分成吸油腔和压油腔。吸油腔由于相互啮合的轮齿逐渐脱开,密封工作容积逐渐增大,形成部分真空,因此油箱中的油液在外界大气压力的作用下,经吸油管进入吸油腔,将齿间槽充满,并随着齿轮旋转,把油液带到左侧压油腔内。在压油区一侧,由于轮齿在这里逐渐进入啮合,密封工作腔容积不断减小,油液便被挤出去,从压油腔输送到压力管路中去。 电动机运转时,推进装置随着主轴一起高速运转本推进装置相似于一轴流泵,其排空(抽真空)的速率远远大于齿轮啮合排空的速率,随着推进装置的推进作用,齿轮啮合的反泄露被阻滞,其形成的极限真空自然得到了大大的提高,处于较低位置的油液则被迅速吸入泵腔内,然后经排油腔被压入出口排出。 当油路中的阻力(压力)超过所设定的安全压力时,安全阀就启动,使排油腔的油回到吸油腔,从而保持压力不再上升,安全阀起过载保护作用 外齿轮泵有两根相同尺寸的啮合齿轮轴。驱动轴连接电机或减速机(通过弹性联轴器)并带动另一根轴。在重载型工业齿轮泵内,齿轮通常与轴为整体(一个部件),轴颈的公差很小。外齿轮泵的运行原理很简单。液体进入泵吸入端,被未啮合的齿间空穴吸入,然后在齿间空穴内被带动,沿齿轮轴外缘到达出口端。重新啮合的齿将液体推出空穴进入背压处。有三种常用的齿轮形式:直齿、斜齿和人字齿。这三种形式各有利弊,CB—B齿轮泵的结构,有不同的应用。直齿是最简单的形式,在高压工况下为最优应用,因为没有轴向推力,且输送效率较高。斜齿在输送过程中的脉动最小,且在较高速度运行时更加安静,不锈钢保温泵,因为齿的啮合是渐进式的。但是,由于轴向推力的作用,轴承材质的选用可能会造成进出口压差有限、处理粘度较低。因为轴向力会将齿轮推向轴承端面而摩擦,所以只有选用硬度较高的轴承材质或在其端面作特殊设计,才能应对这种轴向推力。为使齿轮泵的承压能力最大化,这些配合部件之间的间隙必须愈小愈好以

齿轮泵使用寿命的影响原因及预防措施

X 收稿日期:2009-06-15 作者简介:张昌福(1980)),男,福建龙岩人,工程师,主要从事战车底盘监制研究. 齿轮泵使用寿命的影响原因及预防措施 X 张昌福,胡清远,陈 伟,高德雪 (驻107厂军代室,重庆 401321) 摘要:某产品使用双联齿轮泵作为液压驻锄和左右支腿的动力源,在使用过程中有许多因素影响其使用寿命,为了提高可靠性和延长其使用寿命,对影响齿轮泵使用寿命的原因进行分析,并采取相应预防措施,以延长齿轮泵的使用寿命. 关键词:齿轮泵;使用寿命;影响原因;预防措施中图分类号:TH137文献标识码:A 文章编号:1006-0707(2009)09-0102-02 某产品液压系统的动力源采用某双联齿轮泵,结构如图1所示.齿轮泵的动力输入为汽车分动箱取力器,取力器输出法兰盘与传动轴法兰盘连接,传动轴输出端为花键套,与齿轮泵输入花键连接.产品使用过程中,多次出现齿轮泵故障,需要分析原因采取措施,提高可靠性 . 图1 双联齿轮泵结构 1 原因分析及措施 齿轮泵的使用寿命是指泵体内零部件(密封件除外)损坏或者磨损而使齿轮泵丧失使用功能前的运转时间.影响齿轮泵使用寿命的原因很多,有齿轮泵设计、制造、安装和保养等多方面的原因[1-3].1.1 齿轮泵安装使用问题1.1.1 联轴器的装配要求. 齿轮泵的输入轴不能承受径向力和轴向力,通常采用联轴器联接动力输入.在齿轮泵的安装过程中要注意联轴器安装的精确度. 1)刚性联轴器:两轴的同轴度误差不得大于0.05mm.2)弹性联轴器:两轴的同轴度误差不得大于0.1mm.3)两轴的角度误差不得大于1b . 如果装配精度可靠,则齿轮泵在工作时产生的离心力就在设计允许范围内,可以保证齿轮泵的正常使用.反之就将使齿轮泵承受超出设计规定的外力,致使泵体经常磨 损,缩短齿轮泵的使用寿命.1.1.2 联轴器使用要求 泵轴与联轴器装配过程中的偏差随着齿轮泵转速的提高,离心力加大,使联轴器的变形加大,而联轴器的变形加大又使离心力再加大,形成恶性循环,最终导致齿轮泵的泵轴摆转,振动和噪声加大,从而影响齿轮泵的使用寿命.因此设计和制造时,对泵轴与联轴器的同轴度要求要有严格的规定,对采用传动轴作为动力的传递结构形式,中间必须增加支撑,将径向力消除在齿轮泵外.另外,在使用过程中应经常检查联轴器销是否松动,随时紧固,对磨损的橡胶圈要及时进行更换. 1.2 负载情况下突然启动或停止 当液压系统有负载时,如果齿轮泵突然启动或停止,在控制系统开启的瞬间,由于负载的作用,液压系统中会形成相当大的压力,该压力反作用在齿轮泵上.由于液压系统的溢流阀的反应时间与压力作用在齿轮泵上的时间基本相同,不能形成保护,而该反方向压力的作用时间极短,对齿轮形成1个冲击,给齿轮泵轴造成较大伤害.所以液压系统有载荷时要避免突然启动或停止,使用前要检查溢流阀的开启情况,严禁在溢流阀关闭的情况下启动齿轮泵.1.3 冷液压系统加负载运行[4-6] 液压油在低温条件下,流动性较差,加载后会使齿轮泵内缺油,产生抽空现象(空气被吸入),在液压油中产生大量的气泡,而油中的气泡对液压系统的危害是相当大的.1.3.1 系统工作不良 液压油是液压传动系统中的动力传动介质.纯净的液压油,其压缩率约为(5~7)@10-3m 3/N,即压缩10Mpa 时,体积仅被压缩0.625%,因此在一般情况下,液压系统中的油可以认定为非压缩性流体,从而不考虑其压缩性.但是当液压油中吸入空气产生气泡后,其压缩率就会大幅度增加,使液压油增加了很高的体积弹性系数,危害系统工作的可靠性,严重时可使控制系统失灵、工作机构产生间歇性运动等.由气泡引起的作业装置误动,还会发生机械事 第30卷 第9期四川兵工学报2009年9月

齿轮泵常见故障原因分析及其消除方法

齿轮泵常见故障原因分析及其消除方法 齿轮泵常见故障的排除摘要:加工汽车淬硬钢零件用涂层PCBN刀具数控电火花线切割在内花键孔加工中的应用SinamicsG110在需要快速改变电机的旋转方向场合的应探索中国机械产品的创新设计与开发微小孔加工技术现状及存在的问题切削液的选用及维护可 转位铣刀的合理选用主轴高速化关键技术的动向刀具刃口的强化加工及其最新发展CVD金刚石修整刀具中国数控机床行业将迎来15年黄金发展期刀具厂商向工艺改进者转变成都工具研究所两项科研项目通过鉴定带门式上下料系统的机床国内首创自行锚杆六头钻机问世 德国Engelhardt(恩格哈)公司F33三轴数控系统借PDM生“蛋”安徽叉车成功研制出4.5t 液力带泵变速箱低压电器可靠性概况及其发展焊接教学改革的思考者和实践者[标签:tag] 目前,CB-B型齿轮泵在自卸汽车与工程机械操纵机构中运用较多,现将其常见故障及排除方法介绍如下,供参考。1、产生振动与噪声的原因与排除(1)吸入空气①CB-B型齿轮泵的泵体与两侧端盖为直接接触的硬密封,若接触面的平面度达不到规定要求,则泵在工作时容易吸入空气. 目前,CB-B型齿轮泵在自卸汽车与工程机械操纵机构中运用较多,现将其常见故障及排除方法介绍如下,供参考。 1、产生振动与噪声的原因与排除 (1)吸入空气 ①CB-B型齿轮泵的泵体与两侧端盖为直接接触的硬密封,若接触面的平面度达不到规定要求,则泵在工作时容易吸入空气;同样,泵的端盖与压盖之间也为直接接触,空气也容易侵入;若压盖为塑料制品,由于其损坏或因温度变化而变形,也会使密封不严而进入空气。排除这种故障的方法是:当泵体或泵盖的平面度达不到规定的要求时,可以在平板上用金钢砂按8字形路线来回研磨,也可以在平面磨床上磨削,使其平面度不超过5μm,并需要保证其平面与孔的垂直度要求;对于泵盖与压盖处的泄漏,可采用涂敷环氧树脂等胶粘剂进行密封。 ②对泵轴一般采用骨架式油封进行密封。若卡紧唇部的弹簧脱落,或将油封装反,或其唇部被拉伤、老化,都将使油封后端经常处于负压状态而吸入空气,一般可更换新油封予以解决。 ③油箱内油量不够,或吸油管口未插至油面以下,泵便会吸入空气,此时应往油箱内补充油液至油标线;若回油管口露出油面,有时也会因系统内瞬间负压而使空气反灌进入系统,所以回油管口一般也应插至油面以下。 ④泵的安装位置距油面太高,特别是在泵转速降低时,因不能保证泵吸油腔有必要的真空度造成吸油不足而吸入空气。此时应调整泵与油面的相对高度,使其满足规定的要求。 ⑤吸油滤油器被污物堵塞或其容量过小,导致吸油阻力增加而吸入空气;另外,进、出油口的口径较大也有可能带入空气。此时,可清洗滤油器,或选取较大容量、且进出口径适当的滤油器。如此,不但能防止吸入空气,还能防止产生噪声。

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

水环式真空泵的常见故障分析

水环式真空泵的常见故障分析 一、水环式真空泵的故障分析 1.真空泵机械密封泄露原因 1.1.机械密封装配不当 更换非动力端机封时,拆卸过程中发现动环上的密封O型圈没有安装好。O型密封圈本应装到动环座上的密封槽里面,而拆卸检查发现O型圈没有如此安装,而是错装于弹簧定位片里面,致使弹簧变形,完全起不到轴向静密封的作用,致使泄露。 1.2.机封冷却水压力过大 机封动静环密封面的贴合力是由动环上的弹簧施加的。当冷却水压力过大时,水压会作用在动静环上,由于静环是固定不动的,所以水压会推动动环,向静环相反的方向压缩弹簧,从而削弱或者抵消动静环面的贴合力,导致密封面泄露。检修完毕后给动力端机封通进冷却水试漏,进水阀打开2/3以下,机封完好无漏,当水阀打开超过2/3以上时,机封出现渗漏。三方(检修方、氧化铝机动科、四川大宇机封制造厂)初步判断是由于水压过大的原因造成的,建议待电机维修完后开机运行使用,进一步跟踪查明其渗漏的真正原因。 1.3.动静环密封面破裂 这是造成前几次更换该泵机封泄露的主要原因。 动力端和非动力端机封是装配于同一轴上的,叶轮安装在轴的中间,轴的两端安装轴承支撑固定。当单独更换动力端或非动力端机封

时,相应端的轴承(轴承座)必须先拆卸下来才能取出旧机封,装上新机封,而此时因为轴和叶轮重力,失去一端轴承支撑的叶轮和轴必然往下塌,轴往无轴承端倾斜。由于未拆一端的静环是用螺栓在泵端盖上固定不动的,而动环是固定在轴上与轴一起旋转,另外由于静环内圈与轴配合间隙很小,当轴下塌倾斜时,会造成: a、未拆一端的动静环相对位移,从而使动静环密封面互相非法挤压,引起碎裂; b、轴直接压在未拆端静环内圈上,造成静环密封面断裂或者破碎。 通过对前几次更换工作的了解分析,致使一端更换好而另一端的机封就泄露的原因都是上述因素引起的。我们的作业人员其实也已考虑到了这个问题,只是采取的方法不对而已:前几次更换都是使用葫芦吊住拆装端的轴来防止轴的上下左右摆动,实际操作中证明这种吊装方法是存在很大的失误的,特别不适用于此类大型的真空泵机封安装。原因是吊点、葫芦的拉力难以完全控制好,很难避免轴的上下左右摆动。 2、真空泵盘车困难原因分析 1)泵两端定位轴承间隙没有调整好。 该泵两端的轴承都是采用双列圆锥滚子轴承,双列圆锥滚子轴承两列内圈与外圈是锥面接触,内圈是可以从外圈中分离取出来的。两列内圈之间有一个轴承间隙调整隔环,也就是轴承的原始游隙是靠两列内圈之间的隔环来控制的,一般轴承出厂时其间隙就已经调整好。

齿轮泵常见问题分析

遇事询问:班次、何人、数量、那几台机床、目前状况。 齿轮泵提高容积效率的方法 增加容积效率对于齿轮泵而言就是增大供油量与内泄的比例。 方法有两方面。1 增大流量2减小内泄。 具体方法有 1增大模数、减少齿数、增加转速、使卸荷槽适当偏向排油一侧。 2压力较高时用间隙补偿结构就是加浮动侧板、提高加工精度主要是减小齿轮端面跳动。 液压齿轮泵扭矩大是哪的原因? 齿轮中心距偏小,或者配合面粗糙度不高,配合尺寸偏紧。 齿轮泵容积效率 增加容积效率对于齿轮泵而言就是增大供油量与内泄的比例。方法有两方面。1 增大流量 2减小内泄。具体方法有 1增大模数、减少齿数、增加转速、使卸荷槽适当偏向排油一侧。 2压力较高时用间隙补偿结构就是加浮动侧板、提高加工精度主要是减小齿轮端面跳动。 工艺改进齿轮泵效率容积和性能的讨论 文章热度:105 齿轮泵容积效率较低,主要是端面泄漏较大,约占总泄漏量的70~80%.所以,提高齿轮泵的端盖和壳体之间的配合精度,提高泵的容积效率和性能是技术人员努力的方向。齿轮泵端面和壳体的加工基本上是定位销来保证其加工和配合精度。但是由于定位销孔的孔径尺寸较小,仅为φ8mm,而且加工精度、内表面粗糙度等要求较高,我们以前经过多方努力,

采用各种加工方法,质量仍难以保证,对此,我们进行了一定的研究,改进了加工和装配工艺,取得了一定的效果。 齿轮泵端盖与壳体配合误差对泵的性能和效率的影响 主动齿轮回转轴线与前盖定位止口同轴度误差大,齿轮旋转阻力大,甚至卡死,造成泵的机械性能大大下降。零件的动配合不好,磨损加快,缩短了齿轮泵的使用寿命,并且浮动轴套轴向移动阻力较大,使齿轮泵端面与轴套之间的间隙不能及时消除,甚至不能移动,导致齿轮泵容积效率下降。另外,由于主动轮轴与传动轴受其自身同轴度的影响,加大了泵的振动和噪声。 定位销孔加工工艺比较及试验 一、定位销加工工艺比较 (1)采用钻、铰(钻模)工艺,虽然保证了2-φ8mm孔径尺寸精度和内径表面粗糙度,但销孔孔距误差大,而且不太稳定。 (2)采用钻、成型(模具挤压)工艺,虽然保证了两销孔加工精度、孔径精度,并且稳定可靠,但是又带来销孔表面粗糙、部分孔径不圆度增大的问题。 (3)在两个+13mm紧固螺钉孔口部添置套管销,去掉原来2-φ8mm销孔,采用钻、铰、镗工艺,保证了各方面的精度,但是工艺复杂,成本较高。针对以上情况,我们进行了分析研究,认为解决定位销问题是关键所在,改进加工工艺是解决问题的路子。 二、对比试验分析 我们采用一个定位销和主动轮轴作为定位加工、装配,去掉另一个定位销,然后再随机抽取六台齿轮泵分三组按不同的组装方式在齿轮泵全性能试验台上做性能试验,检测它们在试验前和试验后主动轮轴线与前盖定位止口同轴度的误差变化,从而选取最佳方案。具体情况如表1。 从表1上对比情况可见,第三种方法径向跳动变化最小,证明采用这种工艺方案是成功可行的。为了提高齿轮泵的装配精度,我们又专门设计制造了以主动齿轮轴为基准的定位夹具,在装配时利用该夹具将前盖位置精确地控制后,再拧紧四只紧固螺钉。 4结束语 实践证明,采用新的工艺以后,较好地解决齿轮泵的端盖和壳体之间的配合及加工问题,保证了泵的各项技术指标,提高了泵的容积效率和机械性能,取得了较为满意的效果,并且较为经济实用。 油泵常见故障排除方法

齿轮油泵工作原理和注意事项

齿轮油泵工作原理和注意事项 2009-12-25 0:49:00 发布者:泊头八方油泵制造厂 齿轮油泵是通过一对参数和结构相同的渐开线齿轮的相互滚动啮合,将油箱内的低压油升至能做功的高压油的重要部件。是把发动机的机械能转换成液压能的动力装置。发动机在其使用过程中容易出现以下故障。 1、油泵内部零件磨损 油泵内部零件磨损会造成内漏。其中浮动轴套与齿轮端面之间泄漏面积大,是造成内漏的主要部位。这部分漏损量占全部内漏的50%~70%左右。磨损内漏的齿轮泵其容积效率下降,油泵输出功率大大低于输入功率。其损耗全部转变为热能,因此会引起油泵过热。若将结合平面压紧,因工作时浮动轴套会有少量运动而造成磨损,结果使农具提升缓慢或不能提升,这样的浮动轴套必须更换或修理。 2、油泵壳体的磨损 主要是浮动轴套孔的磨损(齿轮轴与轴套的正常间隙是0.09~0.175mm,最大不得超过0.20mm)。齿轮工作受压力油的作用,齿轮尖部靠近油泵壳体,磨损泵体的低压腔部分。另一种磨损是壳体内工作面成圆周似的磨损,这种磨损主要是添加的油液不净所致,所以必须添加没有杂质的油液。 3、油封磨损,胶封老化 卸荷片的橡胶油封老化变质,失去弹性,对高压油腔和低压油腔失去了密封隔离作用,会产生高压油腔的油压往低压油腔,称为“内漏”,它降低了油泵的工作压力和流量。CB46齿轮泵它的正常工作压力为100~110kg/平方厘米,正常输油量是46

L/min,标准的卸荷片橡胶油封是57×43。自紧油封是PG25×42×10的骨架式油封,它的损坏或年久失效,空气便从油封与主轴轴颈之间的缝隙或从进油口接盘与油泵壳体结合处被吸入油泵,经回油管进入油箱,在油箱中产生大量气泡。会造成油箱中的油液减少,发动机油底槽中油液增多现象,使农具提升缓慢或不能提升。必须更换油封才可排除此故障。 4、机油泵供油量不足或无油压 现象:工作装置提升缓慢,提升时发抖或不能提升;油箱或油管内有气泡;提升时液压系统发出“唧、唧”声音;拖拉机刚启动时工作装置能提升,工作一段时间油温升高后,则提升缓慢或不能提升;轻负荷时能提升,重负荷时不能提升。 故障原因: (1)液压油箱油面过低; (2)没按季节使用液压油; (3)进油管被脏物严重堵塞; (4)油泵主动齿轮油封损坏,空气进入液压系统; (5)油泵进、出油口接头或弯接头“O”形密封圈损坏,弯接头的紧固螺栓或进、出油管螺母未上紧,空气进入液压系统; (6)油泵内漏,密封圈老化; (7)油泵端面或主、从动齿轮轴套端面磨损或刮伤,两轴套端面不平度超差; (8)油泵内部零件装配错误造成内漏; (9)“左旋”装“右旋”油泵,造成冲坏骨架油封;

液压系统故障原因分析

液压系统故障原因分析 一、液压系统好长时间没有用,这次开机后,震动、噪音大。 可能是长时间放置,蓄能器氮气泄露,没起到减少脉动的作用。检查氮气的压力,补压或者更换皮囊。噪音是由于振动太大而产生的,没有了震动,就会消除。 二、油缸工作不正常,只能出不能回。 检查油缸的另一端是否出油,电磁阀是否换向,油缸内泄是不是特别严重。回油管路是否被异物堵死。 三、油缸启动压力高。 油缸启动压力高和油缸的制造质量(如活塞杆弯曲、缸筒弯曲等)、密封的形式和安装等因素有关。对于伺服油缸,启动压力高会影响其的动态特性。 对于普通油缸,启动压力的要求没有伺服油缸那样严格,但是也不能太高。一旦发现启动压力高,需要认真对油缸的零件进行尺寸复测,并检查密封的安装质量。 1、内部阻力过大。 2、外部执行部分有机械故障。 油缸的启动压力与油缸的设计结构有关,油口与活塞接触的受力面积,如油口的大小即活塞初始启动的受力面积,启动压力就高,油口与活塞接触间加工受力面积腔(启动压力腔)启动压力就很小。 四、液压系统油缸要求同步。 在支管路上加单向节流阀,价格比较便宜。要求比较高就加个分流节流阀,造价高,但效果较好。 五、液压系统维修率特别高。 主要原因是环境恶劣,液压系统是比较精密的设备,平常要多注意保养,油质要好,加油时要过滤,系统密封要好。各类检测设备要完善,需要有专业的人员对系统的工作情况进

行记录和维护。 六、液压缸动作不规则。 1、电磁阀换向不规则,需要检查电炉部分 2、电液伺服、比例阀的放大器失灵或调整不当。 3、也有就是油缸磨损严重,需修理或者更换。 4、可能是液压管路混杂有空气,需要找出混入空气的部位,然后清洗检查,重新安装和更换元辅件。

齿轮泵工作原理及结构

齿轮泵工作原理及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿轮 泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,

这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积 中〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图 3-5(b) 〕,封闭容积为最小,齿轮再继续转动时,封闭容积又 逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由 于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气 泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。

真空泵常见问题与解答

真空泵常见问题与解答 问题原因解决方法 真空管路或系统内返油1.油蒸汽返流至真空管路或系统中 2.油蒸汽压不对 3.停泵时,油返流 4.截流阀板上的密封件损坏 5.抽气管路底部密封件腐蚀或损坏 1.清洗泵后换符合要求的油 2.清洗泵后换符合要求的油 3.检查并更换截流阀 4.更换截流阀板 5.更换抽气管路,修理密封件 系统工作时温度过高1.缺油 2.抽气口与排气口错误连接 3.供油管线堵塞 4.油泵出现问题 5.油泵中外来物堵塞 6.环境温度达到或超过油蒸汽压 7.油蒸汽压低于指标 8.工作气体温度过高 1.加油 2.抽气管线与抽气口连接 3.断开泵连接,清洗并更换符合要求 的油 4.修理或更换油泵 5.清理油泵 6.降低环境温度并注意空气流通 7.更换符合要求的泵油 8.更改工艺或加冷却系统 排出废气在泵附近泄漏1.排气口O型密封圈损坏 2.油箱表面密封垫损坏 3.泵体表面密封垫损坏 1.更换新型密封圈 2.更换油箱表面密封垫 3.更换泵体表面密封垫 烟尘或油雾过重1.油量过多 2.气镇阀开启 3.滤油网损坏 1.减少油量 2.关闭气镇阀 3.更换滤油网 油颜色变深或浑浊1.油在肮脏工艺过程中受到污染 2.油不合适 3.油不足 4.真空漏率过大 5.惰性保护气体不足 1.更换泵油或清洗 2.清洗后用规定的泵油 3.加注足量泵油 4.修理泄漏处,或更换泵油 5.工艺过程中含有腐蚀性、危险性或 放射性气体时必须加足量保护气体 停泵时系统中 出现空气 1.系统泄漏 2.密封阀损坏 1.修理部件2.修理密封阀 异常噪音1.连接件损坏 2.缺油 3.油泵磨损或损坏 4.叶片损坏 5.排气阀板上无滤网 6.电机轴承出现问题 1.更换连接件 2.加油 3.修理或更换油泵 4.拆下油泵,更换叶片 5.加滤网 6.修理电机 泵油消耗过多1.出油口密封圈磨损 2.油封损坏或安装错误 3.油套损坏或腐蚀 1.更换密封圈 2.更换新油封,检查进油管线 3.更换油套

齿轮泵的常见故障及处理措施分解

重庆交通大学应用技术学院 2010届航运工程系毕业论文 论文题目:齿轮泵的常见故障及处理措施 班级:10级轮机工程技术7班 姓名:蒋选马 指导老师:谭显坤 日期:2013年5月19号 重庆交通大学应用技术学院航运工程系

毕业论文(设计)开题报告 专业10级轮机工程技术班级轮机七班 姓名蒋选马学号0811******** 论文(设计)题目:齿轮泵的常见故障及处理措施 论文(设计)纲目 1齿轮泵的工作原理及特点 2齿轮泵的常见故障及其产生的原因 3处理措施 4齿轮泵的管理注意事项 论文(设计)开始日期2013 年05月19日指导教师谭显坤

毕业论文(设计)评语专业10级轮机工程技术班级轮机七班 姓名蒋选马学号0811******** 题目:齿轮泵的常见故障及处理措施 论文(设计)篇幅: 图纸0 张 其他附件0 指导教师评语: 论文成绩 指导教师 年月日

毕业论文(设计)交叉评语一、交叉评阅评语 二、评阅成绩的评分 论文评阅成绩参考标准 论文设计 内容正确性,方案可行性,论证严密性和独创性;数据处理能力,计算能力,分析解决问题能力;文字表达能力及附件质量。工艺及过程论证、计算的正确性和严密性,方案可行性、创新性;数据处理能力,计算机应用能力、分析解决问题能力;设计图纸的质量,文字水平及其他附件质量。 给定成绩: 交叉评阅教师签字 年月日

题目名称齿轮泵的常见故障及处理措施指导教师谭显坤 承担人姓名蒋选马航运系轮机工程技术 专业 7班 摘要 通过简单的介绍齿轮泵工作原理,齿轮泵的特点和一些比较常见的故障,来分析故障产生的原因,以及解决这些故障的处理措施,并且一些齿轮泵的管理。 签名:年月日 指导教师意见 是否能参加毕业设计(论文)答辩: 指导教师签名:年月日注:本页一式两份,分别完成中、英文摘要。

液压系统故障诊断

第十一章液压系统故障诊断 第一节概述 液压系统的故障诊断是指在不拆卸液压设备的情况下,凭观察和仪表测试判断液压设备的故障所在和原因。液压设备的故障是指液压设备的各项技术指标偏离了它的正常状态,如管路和某些元件损坏、漏油、发热、致使设备的工作能力丧失,功率下降,产生振动和噪声增大等。 在使用液压设备时,液压系统可能出现的故障是多种多样的。即使是同一个故障现象,产生故障的原因也不一样,它是许多因素综合影响的结果。特别是新装置的液压设备,在试车时产生的故障现象,其原因更是多方面的。液压系统是一个密闭的系统,各元件的工作状态是看不见,摸不着的。因此,在进行故障诊断时,必须对引起故障的因素逐一分析,注意到其内在联系,找出主要矛盾,这样才能比较容易地排除故障。 液压系统的故障主要是由构成回路的液压元件本身产生的动作不良、系统回路的相 少液压设备出现故障的有力措施。 当然,液压系统的故障除由元件本身和工作油液的污染引起的以外,还因安装、调试和设计不当等原因引起的也较多。 液压系统的故障诊断,过去一般凭经验,随着液压测试技术的发展,国内外正研制和应用专用的测试仪和设备。如手提式测试器、液压故障诊断器和液压故障检修车等。应用这些专用仪器和设备能在现场很快查出液压元件及系统的故障,并进行排除。 近年来,在液压系统故障诊断与状态监测技术方面取得了较大进展。如利用振动信

号、油液光谱分析、油液铁谱分析、超声波泄漏指示器、红外线测试仪等来进行检测的技术,利用微机进行分析处理信号和预报故障的技术等的应用已有不少报道。而在港口工程机械液压系统中,普遍使用这些技术来进行故障诊断及状态监测,则还需经过有关各方面的努力才可能逐步实现。 第二节液压系统的故障预兆 液压系统产生故障以前,通常都有预兆。如压力失调、噪声过大、振动过大、温升过高,泄漏过大等等。如果这些现象能及时发现,并加以适当控制或排除,系统的故障就可以减少或避免发生。 一、液压系统的工作压力失调 压力失调常表现为压力不稳定、压力调不上去或调不下来、压力转换滞后、卸荷压力较高等。产生压力失调的原因主要有以下几个方面: 1.液压泵引起的压力失调 1)液压泵的轴向、径向间隙由于磨损而增大; 2)泵的“困油”未得到圆满解决; 3)泵内零件加工及装配精度较差; 4)泵内个别零件损坏等。 2. 液压控制阀引起的压力失调 1)在压力控制阀中: ①先导阀的锥阀与阀座配合不良; ②调压弹簧太软或损坏; ③主阀芯的阻尼孔被堵塞,滑阀失去控制作用; ④主阀芯被污物卡住在开口位置或闭口位置; ⑤溢流阀作远程控制用时,其远程连接通道过小或泄漏; ⑥溢流阀作卸荷阀用时,其控制卸荷的换向阀失灵等。 2)在方向控制阀中: ①油路切换过快而产生液压冲击; ②电磁换向阀换向推杆过长或过短等。 3.辅助元件引起的压力失调 1)油滤器堵塞; 2)液流通道过小,回油不畅; 3)油液粘度太稠或太稀等。 4.其他 1)机械部分未调整好,摩擦阻力过大; 2)空气进入系统; 3)油液污染; 4)电机功率不足或转速过低;

齿轮泵不打油故障浅析

姓名:贾兆征 部门:检修部风机班 二○○七年八月

摘要 国内300MW电站锅炉风机主电机轴瓦配套的供油装置较常见为XYZ-16稀油站,该装置的核心设备为两台互为备用的CB2-16型齿轮泵,其能否安全稳定运行直接关系风机的可靠性。 我公司#5、#6机组送、引、一次风机主电机轴瓦润滑设备2006全年共发生16次齿轮泵切换后启动的备用泵不打油故障,而且均先后发生在两批次新更换的齿轮泵上,每次检修人员解体检查油泵及系统管路均未见宏观异常,该缺陷一度困扰我们,生产局面较为被动。针对该装置的深入分析和故障排除成为摆在我们面前的课题。 经过对泵体解体检查齿轮各部间隙符合要求,齿轮啮合正常,但测量齿轮端面和泵盖的间隙不符合标准值。对系统管路进行研究,经过试验发现齿轮泵出口至单行阀管段进入空气也可导致油泵启动后不打油。而油泵出口压力表显示无压力的缺陷,在不改变原有系统和运行方式的情况下,最佳解决方案就是在油泵出口管段加装常开排空门及管路。 经过现场试验,验证了加装排空门的方案简单有效,对加装了排空门的#5、#6锅炉12台风机油站24台油泵跟踪记录,至2007年6月未发生齿轮泵不打油的缺陷。 齿轮油泵不打油的缺陷在转动机械上有普遍性,该类缺陷的彻底解决具有重要实践意义。

目录 一、设备简介 4 二、相关设备规范 4 三、选题理由 5 四、现状调查 5 五、原因分析 6 (一)油泵入口管道堵塞或泄漏 6 (二)联轴器脱开 6 (三)油泵及其出口管道存空气 6 (四)油泵各部间隙是否规范 6 (五)泵压试验 7 六、改造计划 7 七、效果验证 8

一、设备简介 我公司#5、#6机组锅炉送、引、一次风机主电机轴瓦润滑设备选用西安润滑设备厂制造,型式为XYZ-16稀油站,油箱容积63m3,工作压力0.4MPa,油泵流量16L/min,齿轮油泵型号CB2-16,装置相关参数如下表。 二、相关设备规范

齿轮泵常见故障及排除方法介绍

齿轮泵常见故障及排除方法介绍 目前,CB-B型齿轮泵在自卸汽车与工程机械操纵机构中运用较多,现将其常见故障及排除方法介绍如下,供参考。 1、产生振动与噪声的原因与排除 (1)吸入空气 ①CB-B型齿轮泵的泵体与两侧端盖为直接 目前,CB-B型齿轮泵在自卸汽车与工程机械操纵机构中运用较多,现将其常见故障及排除方法介绍如下,供参考。 1、产生振动与噪声的原因与排除 (1)吸入空气 ①CB-B型齿轮泵的泵体与两侧端盖为直接接触的硬密封,若接触面的平面度达不到规定要求,则泵在工作时容易吸入空气;同样,泵的端盖与压盖之间也为直接接触。 空气也容易侵入;若压盖为塑料制品,由于其损坏或因温度变化而变形。 也会使密封不严而进入空气。排除这种故障的方法是:当泵体或泵盖的平面度达不到规定的要求时,可以在平板上用金钢砂按"8"字形路线来回研磨,也可以在平面磨床上磨削。 使其平面度不超过5μm,并需要保证其平面与孔的垂直度要求;对于泵盖与压盖处的泄漏,可采用涂敷环氧树脂等胶粘剂进行密封。 ②对泵轴一般采用骨架式油封进行密封。若卡紧唇部的弹簧脱落,或将油封装反,或其唇部被拉伤、老化,都将使油封后端经常处于负压状态而吸入空气,一般可更换新油封予以解决。 ③油箱内油量不够,或吸油管口未插至油面以下,泵便会吸入空气,此时应往油箱内补充油液至油标线;若回油管口露出油面。 有时也会因系统内瞬间负压而使空气反灌进入系统,所以回油管口一般也应插至油面以下。 ④泵的安装位置距油面太高,特别是在泵转速降低时。 因不能保证泵吸油腔有必要的真空度造成吸油不足而吸入空气。此时应调整泵与油面的相对高度,使其满足规定的要求。 ⑤吸油滤油器被污物堵塞或其容量过小,导致吸油阻力增加而吸入空气;另外,进、出油口的口径较大也有可能带入空气。此时,可清洗滤油器。

液压齿轮泵的工作原理

液压齿轮泵的工作原理 一、什么是液压齿轮泵呢? 一般计算公式 泵是指运输液体或让液体增多压力的机械元件。它把原动机的机械元件能或别的外部能量输送给液体,让液体能量增多。 泵主要用来运输水、油、酸碱液、乳化液、悬乳液与液态金属等液体,也可以运输液、气混合物及含悬浮固体物的液体。 泵一般可以按工作原理分为容积式泵、动力式泵与别的类型泵三类。除了按工作原理分类外,还可以以按别的方法分类与命名。如,按驱动方法可以分为电动泵与水轮泵等;按结构可以分为单级泵与多级泵;按用途可以分为锅炉给水泵与计量(度量衡)泵等;按运输液体的性质可以分为水泵、油泵与泥浆泵等。 泵的各个性能参数之间存在着一定的相互依赖变化关系,可以以画成曲线来表示,叫做泵的特性曲线,每一台泵都有自己特定的特性曲线。 二、泵的定义与历史来源 运输液体或让液体增多压力的机械元件。广义上的泵是指运输流体或让其增多压力的机械元件,包括某些运输气体的机械元件。泵把原动机的机械元件能或别的能源的能量传给液体,让液体的能量增多。 水的提升对于人类生活与生产都十分重要。古代已有各种提水器具,如埃及的链泵(前17世纪)、中国的桔槔(前17世纪)、辘轳(前11世纪)、水车(公元1世纪),以及公元前3世纪古希腊阿基米德发明的螺旋杆等。公元前200年左右,古希腊工匠克特西比乌斯发明了最原始的活塞泵-灭火泵。早在1588年就有了关于4叶片滑片泵的记载,以后陆续出现了别的各种回转泵。1689年,法国的D.帕潘发明了4叶片叶轮的蜗壳离心泵。1818年,美国出现了具有径向直叶片、半开式双吸叶轮与蜗壳的离心泵。1840~1850年,美国的H.R.沃辛顿发明了泵缸与蒸汽缸对置的蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。1851~1875年,带有导叶的多级离心泵相继发明,让发展高扬程离心泵成为可以能。随后,各种泵相继问世。随着各种先进技术的应用,泵的效率逐步提高,性能范围与应用也日渐扩大。 三、泵的分类依据 泵的种类繁多,按工作原理可以分为:①动力式泵,又叫叶轮式泵或叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,让液体的动能(为主)与压力能增多,随后通过压出室把动能转换为压力能,又可以分为离心泵、轴流泵、部分流泵与旋涡泵等。 ②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,让液体的压力增多至把液体强行排出,根据工作元件的运动形式又可以分为往复泵与回转泵。③别的类型的泵,以别的形式传递能量。如射流泵依靠高速喷射的工作流体把需运输的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是指让通电的液态金属在电磁力作用下产生流动而实现运输。另外,泵也可以按运输液体的性质、驱动方法、结构、用途等进行分类。 四、泵在各个领域中的应用 从泵的性能范围看,巨型泵的流量每小时可以达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可以从常压到高达19.61Mpa(200kgf/cm2)以上;被运输液体的温度最低达-200摄氏度以下,最高可以达800摄氏度以上。泵运输液体的种类繁多,诸如运输水(清水、污水等)、油液、酸碱液、悬浮液、与液态金属等。 在化工与石油部门的生产中,原料、半成品与成品大多是指液体,而把原料制成半成品与成品,需要经过复杂的工艺过程,泵在这些过程中起到了运输液体与提供化学反应的压力流量

几种真空泵的优缺点修订稿

几种真空泵的优缺点 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

几种真空泵的优缺点 化工行业常见的的几种真空泵及其优缺点: 1、化工行业经常使用的几种真空泵——化工行业上常见的真空泵可以简单的分为变容积式真空泵和喷射真空泵,变容积式真空泵是利用泵腔容积的周期变化来完成吸气和排气的装置,往复真空泵、旋片真空泵、滑阀真空泵、水环真空泵、罗茨真空泵就是属于变容积式真空泵。喷射真空泵是利用文丘里效应的压力降产生的高速射流把气体输送到出口的一种动量传输泵,水喷射真空泵、蒸汽喷射真空泵、汽水串联喷射真空泵、汽水组合喷射真空泵同属于喷射真空泵。 2、变容积式真空泵的工作原理和优缺点 (1)往复真空泵、旋片真空泵、滑阀真空泵、罗茨真空泵是靠活塞往复运动或旋转将气体吸入、压缩并排出。它们的优点是新投入使用的泵真空度相对比较高,但是活塞是运转部件,因此活塞的磨损是避免不了的,随着检修次数的增加工作真空度将不断下降,直至满足不了生产的要求。此类泵工作噪音大,耗油量大,故障率高也是其致命的缺点,一般都需要开一台备用一台,这无形中增加了设备投资与运行费用。另外如果用此类泵抽吸水蒸汽等可凝性气体,将使润滑油乳化,因此只能应用在抽吸不凝性(空气类)气体,也不能抽吸带有颗粒状的介质,这也就限制了其适用范围。 (2)水环真空泵是靠装在泵壳内的带有多叶片的偏心转子旋转,把水抛向泵壳形成与泵壳同心的水环,水环与转子叶片形成了容积周期变化从而将气体吸入、压缩并排出。它的优点是低真空时抽气量大、可以直接抽吸水蒸汽等可凝性气体。它的缺点是真空度低;不能抽吸带有颗粒状的介质;转子高速旋转不易做防腐处理,因此不能抽吸具有腐蚀性的介质。 3、喷射真空泵的工作原理和优缺点 喷射真空泵是利用文丘里效应的压力降产生的高速射流把气体输送到出口的一种动量传输泵。它分为水喷射真空泵、蒸汽喷射真空泵、汽水串联喷射真空泵、汽水组合喷射真空泵。喷射真空泵以其真空度范围广,可以直接抽吸水蒸汽等可凝性气体和带有颗粒状的介质,结构简单,操作方便,无运转部件维修量小,节能降耗等优点越来越广泛的应用在化工操作的各工艺中。

齿轮泵的常见故障及处理措施方案

容摘要 通过简单的介绍齿轮泵工作原理,齿轮泵的特点和一些比较常见的故障,来分析故障产生的原因,以及解决这些故障的处理措施,并且一些齿轮泵的管理。齿轮泵是很常见的回转式容积式泵,其主要的工作部件是互相啮合的齿轮。与其它同流量的泵相比较,齿轮泵体积最小。但是它的自吸性能很好,无论在高速还是低速,甚至是用手转动的时候,都能够可靠地实现自吸,又因为它的转速围大,不易咬死,所以广泛地应用在各种场合中,因此会出现各种各样的故障。 [关键词]:齿轮泵;故障;特点;处理措施;管理 1.齿轮泵的工作原理及特点 1.1外啮合齿轮泵的工作原理及特点 图一为外啮合齿轮泵的工作原理图。相啮合的轮齿A、B使吸口4相通的吸 入腔与排口5相通的排除腔彼此隔离。当齿轮泵按图示方向回转时,齿C逐渐退 出其所占据的齿间,该齿间的容积逐渐增大,该处形成低压,于是液体在吸入液 面上的压力作用下,经吸入管从吸口吸入。随着齿轮的回转,一个个吸满液体的 齿间转过吸入腔,沿泵体3壁转到排出腔,依次重新进入啮合,齿间的液体即将 被轮齿挤出,从排口排出。 外啮合齿轮泵每转的理论排量V是两个齿轮全部有效齿间工作容积之和。若 假设轮齿的有效工作体积与齿间的有效工作容积相等,则排量B近似为一圆环行 体积,即 V=πDhB=2πzm2B×10-6 L 式中:D—齿轮的节圆直径,mm; z—齿轮的齿数; B—齿轮的轮宽,mm; h—齿轮的有效齿高,mm,h=2m; m—齿轮的模数,m=D/z

图一外啮合齿轮泵的工作原理图 1-主动齿轮;2-从动齿轮;3-泵体;4-吸口;5-排口 1.2啮合齿轮泵的工作原理及特点 1.2.1转子泵的工作原理: 转子泵是一种有摆线齿形的啮合齿轮泵,如图二所示。其外转子2比转子1 多一个齿,两者的圆心O 2、O 1 偏心,转向相同,转速不同。转子相邻两齿的啮合 线与前盖5、后盖6形成若干个密封腔。转轴3带、外转子转动时,密封腔的溶解发生变化,通过前、后盖上的吸、排口即可吸、排油。 图二转子泵 1-转子;2-外转子;3-转轴;4-泵体;5-前盖;6-后盖 1.2.2转子泵的特点:

相关主题