搜档网
当前位置:搜档网 › 常见内参基因

常见内参基因

常见内参基因
常见内参基因

β-A c t i n

Actin即“肌动蛋白”,是细胞的一种重要骨架蛋白。同时Actin在细胞分泌、吞噬、

β-Actin

移动、胞质流动和胞质分离等过程中起重要作用。Actin在不同物种之间高度保守,以至于很难获得较好的针对actin的抗血清。Actin大致可分为六种,其中四种是不同肌肉组织特异性的,包括α-skeletalmuscleactin,α-cardiacmuscleactin,α-smoothmuscleactin,和

γ-smoothmuscleactin;其余两种广泛分布于各种组织中,包括β-actin(β-non-muscle)和

γ-non-muscleactin。不同的actin之间同源性大于90%,但在N-terminal同源性仅50%-60%,因此N-terminal常被用作actin的抗原。β-Actin是横纹肌肌纤维中的一种主要蛋白质成分,也是肌肉细丝及细胞骨架微丝的主要成分。具有收缩功能,分布广泛。

β-Actin用途

β-Actin是PCR常用的内参,β-Actin抗体是WesternBlot很好的内参指数。内参即是内部参照(InternalControl),对于哺乳动物细胞表达来说一般是指由管家基因编码表达的蛋白。它们在各组织和细胞中的表达相对恒定,在检测蛋白的表达水平变化时常用它来做参照物。常用的蛋白质内参有细胞骨架蛋白beta-actin或beta-tubulin和GAPDH

(glyceraldehyde-3-phosphatedehydrogenase)等。因此β-Actin抗体、β-Tubulin抗体以及GAPDH抗体成为最常见的三个动物细胞内参抗体。β-Actin作为内参是得到了公认的,这是针对大多数组织和细胞来说的,它广泛分布于细胞浆内,表达量非常丰富。Beta-actin 由375个氨基酸组成,分子量大小为42-43kDa左右。

β-actin的蛋白水平通常不会发生改变,因此被广泛用于Western时上样量是否一致的参照,也常被用于免疫染色观察细胞的微丝结构。在用作Western的参照时,Actin抗体和Tubulin抗体的主要不同之处在于两者所识别蛋白的分子量不同,这样可以选择合适的参照在同一块胶同一张膜上实现同时检测目标蛋白和参照蛋白。

GAPDH

GAPDH或G3PDH是甘油醛-3-磷酸脱氢酶

(glyceraldehyde-3-phosphatedehydrogenase)的英文缩写。该酶是糖酵解反应中的一个酶,由4个30-40kDa的亚基组成,分子量146kDa。该酶基因为管家(housekeeping)基因,几乎在所有组织中都高水平表达,在同种细胞或者组织中的蛋白质表达量一般是恒定的,且不受含有的部分识别位点、佛波脂等的诱导物质的影响而保持恒定,故被广泛用作抽提totalRNA,poly(A)+RNA,Westernblot等实验操作的标准化的内参。

GAPDH结构图

常用的内参有,ACTB(β-actin、β-肌动蛋白)、GAPDH或18S等。目的是在于避免RNA 定量误差、加样误差以及各PCR反应体系中扩增效率不均一、各孔间的温差等所造成的误差、这些都是管家基因,在各个组织中的表达量相对稳定,其中18S同整个基因谱有关(负责装配),它在总RNA中占的比例最高。

转染了GAPDHsiRNA.jpg

转染了GAPDHsiRNA的Hela细胞

转染了GAPDH相关siRNA的HeLa细胞在转染后48小时后不断增殖。红:被标记的siRNA;蓝:被染色的细胞核;绿色:GAPDH蛋白;(这些siRNA锐博生物均可提供)阴性对照(scrambledsiRNA)的导入(左)对GAPDH蛋白的表达没有影响,不过若转入一个以GAPDH(右)为靶标的siRNA,则会导致GAPDH蛋白表达水平的急剧下降。GAPDH作为内参

GAPDH(甘油醛-3-磷酸脱氢酶)是参与糖酵解的一种关键酶,由4个30-40kDa的亚基组成,分子量146kDa,检测条带大约在36kDa。GAPDH基因几乎在所有组织中都高水平表达,广泛用作Westernblot蛋白质标准化的内参。因为GAPDH作为管家基因在同种细胞或者组织中的蛋白质表达量一般是恒定的,因此在使用GAPDH内参抗体时,将每个样品测得的目的蛋白含量与本样品的GAPDH含量相除,得到每个样品目的蛋白的相对含量,然后才进行样品与样品之间的比较。

GAPDH的分子量约为37ku.

基因工程中限制酶的选择及的筛选方法

基因工程中限制酶的选择及的筛选方法 摘要:基因工程是现代生物科技专题的重要内容,基因工程四部曲中的核心内容是基因表达载体的构建,在构建表达载体过程涉及的限制酶的种类以及筛选方法成为考试的热点内容。本文结合三道例题将限制酶的选择和筛选方法结合在一起进行比较分析。 关键词:限制酶筛选 1 单酶切及筛选 若用同一种限制酶切割质粒和目的基因形成相同的四个黏性末端,因而可能出现多种连接方式如①质粒和质粒②目的基因和目的基因③质粒的自身环化,目的基因的自身连接④质粒与目的基因的连接。质粒与目的基因的连接又会出现正向连接和反向连接两种。若启动子在质粒上,目的基因与质粒的反向连接则导致三联体密码顺序改变,起始密码子和终止密码子位置改变,使得翻译不能正常进行而无法得到正常的表达产物。 例1: (2012江苏生物高考33题部分)图2表示一种质粒的结构和部分碱基序列。现有Msp I、BamH I、Mbo I、Sma I4种限制性核酸内切酶,它们识别的碱基序列和酶切位点分别为 C↓CGG、G↓GATCC、↓GATC、CCC↓GGG。请回答下列问题 若将图2中质粒和目的基因D通过同种限制酶处理后进行连接,形成重组质粒,那么应选用的限制酶是。在导入重组质粒后,为了筛选出含重组质粒的大肠杆菌,一般需要用添加的培养基进行培养。经检测,部分含有重组质粒的大肠杆菌菌株中目的基因D不能正确表达,其最可能的原因是。答案: BamH I 抗生素B 同种限制酶切割形成的末端相同,部分目的基因D与质粒反向链接 笔者认为可通过免疫学方法检测目的基因的表达产物排除反向连接的重组质粒,或分别在质粒和目的基因上设计相同的限制酶识别位点,然后用该酶去切割重组质粒,正向连接和反向连接便会得到不同长度的DNA片段,再根据已知的限制酶在目的基因的位置进行比对,找到正确连接的重组质粒。 2 双酶切及筛选 因为用单酶切会出现质粒与目的基因的任意连接,所以在实际操作中多使用双酶切。双酶切可以避免质粒的自身环化,目的基因的自身连接和目的基因和质粒的反向连接,而目的基因与目的基因的连接因为没有抗生素抗性基因所以可以在含有该抗生素的培养基上去除,故只剩下质粒与质粒,以及质粒与目的基因的重组体。 2.1插入失活筛选法 例2:(苏锡常镇2012届高三教学调研测试)MseI,EcoRI,PstI识别的碱基序列和切割位点分别为GAAT↓TAATTC,G↓AATTC,C↓TGCAG。请回答下列问题:

内参基因βActin简介

内参基因βA c t i n简介标准化管理部编码-[99968T-6889628-J68568-1689N]

内参基因β-Actin简介 日期:2012-05-03来源:未知作者:周慕云点击:次 β-Actin 内参即是内部参照,它们在各组织和细胞中的表达相对恒定,在检测基因的表达水平变化时常用它来做参照物。常用的PCR内参有GAPDH 、β- actin 、18sRNA、28sRNA 、B2M、ACTB、SDHA、HPRT1、ARBP内参基因等。 β-Actin简介 Actin即“肌动蛋白”,是细胞的一种重要骨架蛋白。同时Actin在细胞分泌、吞噬、移动、胞质流动和胞质分离等过程中起重要作用。Actin在不同物种之间高度保守,以至于很难获得较好的针对actin的抗血清。Actin大致可分为六种,其中四种是不同肌肉组织特异性的,包括α-skeletal muscle actin,α-cardiac muscle actin,α-smooth muscle actin,和γ-smooth muscle actin; 其余两种广泛分布于各种组织中,包括β-actin(β-non-muscle)和γ-non-muscle actin。不同的actin之间同源性大于90%,但在N-terminal同源性仅50%-60%,因此N-terminal常被用作actin的抗原。β-Actin是横纹肌肌纤维中的一种主要蛋白质成分,也是肌肉细丝及细胞骨架微丝的主要成分。具有收缩功能,分布广泛。 β-Actin用途 β-Actin是PCR常用的内参,β-Actin抗体是Western Blot很好的内参指数。内参即是内部参照(Internal Control),对于哺乳动物细胞表达来说一般是指由管家基因编码表达的蛋白。它们在各组织和细胞中的表达相对恒定,在检测蛋白的表达水平变化时常用它来做参照物。常用的蛋白质内参有细胞骨架蛋白beta-actin或beta-tubulin和GAPDH(glyceraldehyde-3-phosphate dehydrogenase)等。因此β-Actin

基因筛选

SSiCP:一种新的基于支持向量机的递归特征消除算法 多类癌症分类 癌症的诊断极其重要的一步是选择少量的 的基因准确的分类。这个问题已成为一个热点集中在数据 挖掘基因表达的概要文件。特别是对于数据和大量的癌症类型, 许多传统的分类方法显示很差的性能。在这里,我们提出了一个 新方法用于基因选择和multi-cancer分类基于循序渐进 改善分类性能(SSiCP)。SSiCP基因选择算法 评价NCI60和GCM基准数据集,精度96.6%, 分别95.5% 10倍交叉验证。此外,SSiCP表现 最近发表的两multi-cancer算法应用到另一个数据集。 计算证据表明SSiCP可以有效避免过度拟合。相比 各种基因选择算法,实现SSiCP很简单,许多 所选择的基因由SSiCP癌症密切相关。 关键词:多级癌症分类;基因表达谱;机器学习; 数据挖掘;基因的选择 Introduction 癌症分类是一个极其关键的一步癌症的诊断和治疗。 没有正确的癌症类型的识别,它是几乎不可能实现 令人满意的治疗效果。基于DNA微阵列技术对癌症 识别和分类,很多深入的研究已经完成(1、2)。至于 分类与两类,如分类之间的正常和肿瘤组织[3],或 分类之间的一个亚型,另一个肿瘤[4],分子分类使用 微阵列数据获得了相当高的精确度。对多个分类 然而肿瘤类型,精度有待提高(5 - 8)。因为高特征空间的维度,过量的噪音和相对较小的样本大小 DNA微阵列数据,这个问题正在积极研究数据挖掘的基因 表达式配置文件。特别是对于数据和大量的癌症类型,很多 传统分类方法显示非常贫穷的性能[9],比如NCI60数据 集(9类型的癌症)[5],和GCM数据集(14类型的癌症)[6]。 许多研究人员提出了一些新的方法(10到16)。然而,获得更高的 分类精度选择更少的基因可能通过使用更强大的数据 挖掘算法。在本文中,我们提出了一个新的基因的选择和方法 多级癌症分类的基础上逐步改善分类 性能(SSiCP)。SSiCP,既不支持向量机递归特性 消除(SVM-RFE)算法和扩张SVM-RFE[17],是一个新的支持 向量机基于递归特性消除(RFE)功能的实现 选择方法。结果表明,我们的策略是非常有效的,快速的 计算过程。 NCI60数据集[5]。数据集可以在下载:http://wwwgenome。 https://www.sodocs.net/doc/256375609.html,/mpr/NCI60/NCI_60.expression.scfrs.txt。有60个样本在这个数据集, 这7129个基因表达在九个类型。因为它只包含两个样品,前列腺

常见内参基因

β-A c t i n Actin即“肌动蛋白”,是细胞的一种重要骨架蛋白。同时Actin在细胞分泌、吞噬、 β-Actin 移动、胞质流动和胞质分离等过程中起重要作用。Actin在不同物种之间高度保守,以至于很难获得较好的针对actin的抗血清。Actin大致可分为六种,其中四种是不同肌肉组织特异性的,包括α-skeletalmuscleactin,α-cardiacmuscleactin,α-smoothmuscleactin,和 γ-smoothmuscleactin;其余两种广泛分布于各种组织中,包括β-actin(β-non-muscle)和 γ-non-muscleactin。不同的actin之间同源性大于90%,但在N-terminal同源性仅50%-60%,因此N-terminal常被用作actin的抗原。β-Actin是横纹肌肌纤维中的一种主要蛋白质成分,也是肌肉细丝及细胞骨架微丝的主要成分。具有收缩功能,分布广泛。 β-Actin用途 β-Actin是PCR常用的内参,β-Actin抗体是WesternBlot很好的内参指数。内参即是内部参照(InternalControl),对于哺乳动物细胞表达来说一般是指由管家基因编码表达的蛋白。它们在各组织和细胞中的表达相对恒定,在检测蛋白的表达水平变化时常用它来做参照物。常用的蛋白质内参有细胞骨架蛋白beta-actin或beta-tubulin和GAPDH (glyceraldehyde-3-phosphatedehydrogenase)等。因此β-Actin抗体、β-Tubulin抗体以及GAPDH抗体成为最常见的三个动物细胞内参抗体。β-Actin作为内参是得到了公认的,这是针对大多数组织和细胞来说的,它广泛分布于细胞浆内,表达量非常丰富。Beta-actin 由375个氨基酸组成,分子量大小为42-43kDa左右。 β-actin的蛋白水平通常不会发生改变,因此被广泛用于Western时上样量是否一致的参照,也常被用于免疫染色观察细胞的微丝结构。在用作Western的参照时,Actin抗体和Tubulin抗体的主要不同之处在于两者所识别蛋白的分子量不同,这样可以选择合适的参照在同一块胶同一张膜上实现同时检测目标蛋白和参照蛋白。 GAPDH GAPDH或G3PDH是甘油醛-3-磷酸脱氢酶 (glyceraldehyde-3-phosphatedehydrogenase)的英文缩写。该酶是糖酵解反应中的一个酶,由4个30-40kDa的亚基组成,分子量146kDa。该酶基因为管家(housekeeping)基因,几乎在所有组织中都高水平表达,在同种细胞或者组织中的蛋白质表达量一般是恒定的,且不受含有的部分识别位点、佛波脂等的诱导物质的影响而保持恒定,故被广泛用作抽提totalRNA,poly(A)+RNA,Westernblot等实验操作的标准化的内参。 GAPDH结构图

卡那霉素筛选基因植株的技术研究

卡那霉素筛选基因植株的技术研究 如今的花卉育种工作虽然还是以传统育种为主 ,但不断成熟的基因工程技术解决了传统育种工作中不能突破的问题。花卉基因工程育种的优点在于可有目的的改变花卉的某一性状而不影响其它性状 ,并缩短育种周期。目前的花卉基因工程已在植物花期、花色、花型、株型等方面取得了重要进展。着重介绍国内外花色基因工程 ,与花色基因工程有关调控机理已日益清楚 ,分离到大量相关酶和基因 ,获得了一批转基因花卉。 同时简单评述了花色基因工程研究中存在的问题并展望其应用前景。花卉市场的不断扩大及市场竞争的日趋激烈 ,要求不断的扩大花卉的种类 ,迫切需要花卉新品种的出现。花色是花卉最重要的质量性状之一 ,但是一些重要的花卉花色却有限 ,现如今人们正在不断努力来丰富花色 ,蓝色玫瑰等稀有的花卉均已出现 ,在花色育种领域取得了瞩目的进展。从抗体及动物疫苗在转基因植物中的表达,阐述了植物医药基因工程的进展及意义.植物抗体的表达,在研究植物的代谢和发育、抗病植株的获取以及巴科医药规模化生产抗体等方面有着广泛的用途.动物疫苗在植物中的表达,简化了疫苗的生产过程,并能使人体获得持久性的疾病防御能力。罗汉果植物提取物、红景天植物提取物、玫瑰茄植物提取物等植物基因工程是近20年来随着DNA重组技术、基因遗传转化技术及植物组织培养技术的发展而兴起的生物技术.利用植物基因工程技术,改良作物蛋白质成分,提高作物中必需的氨基酸含量,培育抗病毒、抗虫害、抗除草剂工程植株及抗盐。 胡萝卜素的生物合成途径和影响植物类胡萝卜素生物合成的因素,途径中的主要酶及其基因研究的进展,植物类胡萝卜素是镶嵌于叶绿体和有色体膜中的脂溶性色素。它们是许多花、果实及胡萝卜根呈现黄色、橙红色至红色的原因。不少类胡萝卜素具有VA原和抗癌活性,因而是人和动物食物中不可缺少的成分。类胡萝卜素也是植物生存所必不可少的。它可保护叶绿素免受强光导致的光氧化。

关于内参基因的选择

关于内参基因的选择 实验内参,即是在检测细胞内分子表达变化时选择的参照物,其在细胞内的表达相对恒定,在处理因素作用条件下不会发生表达改变的基因。内参同样可以校正上样量、上样过程中存在的实验误差,保证实验结果的准确性。 1、管家基因 最普通的内参是内源性参照基因,也就是管家基因(持家基因,house keeping gene)。 管家基因是一类始终保持着低水平的甲基化并且一直处于活性转录状态的基因,高度保守并且在大多数情况下持续表达。其表达水平受环境因素影响较小,而且是在个体各个生长阶段的大多数,或几乎全部组织中持续表达,或变化很小,因此常存在于生物细胞核的常染色质中。它的表达只受启动序列或启动子与RNA 聚合酶相互作用的影响,而不受其他机制调节。 管家基因维持细胞最低限度功能所不可少的基因, 如编码组蛋白基因、编码核糖体蛋白基因、线粒体蛋白基因、糖酵解酶的基因等。这类基因在所有类型的细胞中都进行表达,因为这些基因的产物对于维持细胞的基本结构和代谢功能是必不可少的。

2、内参基因选择的条件 1、不存在假基因,以免基因组DNA的扩增; 2、高度或中度表达,避免太高或太低的丰度; 3、稳定表达于不同类型的细胞和组织中,表达量无明显差异; 4、表达水平与细胞周期、活化等无关; 5、不受外源性或内源性因素的影响。 3、不同管家基因 在选择管家基因作为内参时,首先要按不同类型的分子选择正确的内参。曾看到有人用检测miRNA时选择了GAPDH作为内参呢。 a、检测mRNA时的内参 通常使用的是GAPDH、beta-actin、tubulin GAPHD

GAPDH GAPDH是糖酵解反应中的一个酶,由4个30-40kDa的亚基组成,分子量 146kDa。该酶基因为管家(house keeping)基因,几乎在所有组织中都高水平表达,在同种细胞或者组织中的蛋白质表达量一般是恒定的,且不受含有的部分识别位点、佛波脂等的诱导物质的影响而保持恒定,故被广泛用作抽提total RNA,poly(A)+ RNA,Western blot等实验操作的标准化的内参。 beta-actin β-Actin是PCR常用的内参,β-Actin抗体是Western Blot很好的内参指数。β-Actin是横纹肌肌纤维中的一种主要蛋白质成分,也是肌肉细丝及细胞骨架微丝 的主要成分,具有收缩功能,分布广泛。

内参基因1

内参基因 内参即是内部参照,它们在各组织和细胞中的表达相对恒定,在检测基因的表达 水平变化时常用它来做参照物。其作用是校正上样量、上样过程中存在的实验误差, 保证实验结果的准确性。借助检测每个样品内参的量就可以用于校正上样误差,这样 半定量的结果才更为可信。一般要选择一个在处理因素作用的条件下不会发生表达改 变的基因作内参。 在进行基因研究的过程中,实时反转录 PCR也和传统的mRNA定量方法如 Northern b lot技术等一样, 要求使用参照基因以校正转录效率和 cDNA用量, 弥补制备过程中样本 纯度和浓度的差别, 使不同样本之间目的基因的比较成为可能,以期获得真实可靠的结果。大多数分析方法中这些差别可通过与内参照比较处理消除。最普通的内参照是内 源性参照基因,也叫管家基因。 管家基因:又称持家基因(house-keeping genes)生物体各类细胞中都表达,其产物 是对维持细胞基本生命活动所必需的蛋白质编码的基因。如微管蛋白基因、糖酵解 酶系基因与核糖体蛋白基因等。是为维持细胞基本生命活动所需而时刻都在表达的 基因。 管家基因表达水平受环境因素影响较小,而是在个体各个生长阶段的大多数、 或几乎全部组织中持续表达,或变化很小。它的表达只受启动序列或启动子与RNA 聚合酶相互作用的影响,而不受其他机制调节。管家基因高度保守并且在大多数 情况下持续表达,因此管家基因常被用于分子技术--多位点基因分析。 内参基因通常是各种看家基因,在细胞内组成稳定性表达,有助于保持细胞的 功能。理想的内参基因应该满足以下条件:1, 不存在假基因(Pseudogene),以 避免基因 DNA的扩增; 2,高度或中度表达,排除低表达; 3,稳定表达于不同类型 的细胞和组织(如正常细胞和癌细胞),而且其表达量是近似的,无显着性差别; 4,表达水平与细胞周期以及细胞是否活化无关;5, 其稳定的表达水平与目标基因 相似;6, 不受任何内源性或外源性因素的影响,如不受任何实验处理措施的影响. 近年来的研究发现:这些常用内参基因均存在缺陷,在不同类型的细胞和组织 细胞增殖和器官发育的不同阶段体外培养各种实验条件等情况下它们的表达量通 常变异较大。正确的选择内参基因, 很大程度上依赖所研究的细胞或组织, 不同的试验 需要寻找适合各自试验体系的特异性稳定表达的内参基因。然而,合适内参基因的选择, 需要在各种类型的细胞或组织和各种试验条件下进行比较选择。理想的内参基因应在 各种试验条件下,各种类型的组织和细胞中均恒定表达,而且其表达量是近似的,无显着 性差别。另外要求不存在假基因以避免基因组的扩增。

内参基因

何为内参基因 1、我记得常用的就是[color=magenta]GAPDH[/color](3-磷酸甘油醛脱氢酶)和actin,至于什么是内参,可以打个比方,比如我们要比较两个不一样大的西瓜的含糖量,不好直接比较,那就找他们都有的东西来比较,就拿西瓜子嘛,假设西瓜子是均匀分布的,而且随着西瓜的变大,糖分的增多,西瓜子也变多,那么这个西瓜子就可以作为内参了! 不知比方准确否,请高手指教,共同进步! 2、内参基因一般会选管家基因,是维持细胞基本代谢活动所必须的基因,在各组织和细胞中的表达相对恒定,如:GAPDH、Actin、18S rRNA等 3、内参基因,表达稳定,通常用的有GAPDH,beta-actin,18s rRNA等 内参即是内部参照,它们在各组织和细胞中的表达相对恒定,在检测基因的表达水平变化时常用它来做参照物。其作用是校正上样量、上样过程中存在的实验误差,保证实验结果的准确性。 借助检测每个样品内参的量就可以用于校正上样误差,这样半定量的结果才更为可信。 一般要选择一个在处理因素作用的条件下不会发生表达改变的基因作内参。 4、半定量RT-PCR和qPCR都需要内参,简单的说内参就是在你的那个培养条件下恒定表达的某个基因。做内参就是以内参引物PCR扩增该内参基因,看在你选定的几个时间点是不是都恒定表达,如果恒定才能说明你做PCR选的RNA(一部发RT-PCR)或cDNA(两步法RT-PCR)的量是等量的,这样比较你的目的基因的丰度才有意义。 内参是相对的,不是绝对的,因为内参基因有时会受到影响。 量PCR问题--绝对定量与相对定量有什么区别? 绝对定量的目的是测定目的基因在样本中的分子数目,即通常所说的拷贝数。相对定量的目的是测定目的基因在两个或多个样本中的含量的相对比例,而不需要知道它们在每个样本中的拷贝数。举例来说,如果研究项目中包括处理过的和未经处理的对照样本,通常可以将未经处理的样本指定为基准,规定其目的基因浓度为100%,将经处理的样本的定量结果除以对照样品的定量结果,就可以计算各个处理样本的基因含量相对于未处理样品的百分比。 绝对定量实验必须使用已知拷贝数的绝对标准品,必须做标准曲线。相对定量可以做标准曲线,也可以不做标准曲线。 相对定量实验有两种方法:标准曲线法和CT值比较法。如果使用标准曲线法,可以使用绝对标准品,也可以使用相对标准品,而且相对标准品在实验操作上更为简便易行。相对标准品是只知道样品中DNA或RNA的稀释比例而不需要知道其分子数目的标准品,典型的做法是将一个已知pg数的样品做一系列梯度稀释。 CT值比较法是利用CT值与起始DNA浓度的对数成反比的数学关系,来计算不同样本之间的相对百分比,其计算公式是 绝对定量的数据易于理解,但是绝对标准品的制备和测定其DNA含量比较困难。有许多商业性的标准品试剂盒供选购,可以解决这种困难。相对定量的标准品容易在实验室里自己制备,但是数据处理比较麻烦,对实验数据的解释有一定难度。

基于TCGA数据库的肝癌发生关键基因筛选

Hans Journal of Surgery外科, 2015, 4, 1-8 Published Online January 2015 in Hans. https://www.sodocs.net/doc/256375609.html,/journal/hjs https://www.sodocs.net/doc/256375609.html,/10.12677/hjs.2015.41001 Identification Key Genes of Hepatocellular Carcinoma Base on TCGA Database Junjun Jia, Ning He, Jing Zhang, Li Jiang, Yanfei Zhou, Lin Zhou, Shusen Zheng Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou Email: jiajunjun1987@https://www.sodocs.net/doc/256375609.html, Received: Nov. 3rd, 2014; revised: Nov. 20th, 2014; accepted: Dec. 5th, 2014 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.sodocs.net/doc/256375609.html,/licenses/by/4.0/ Abstract Objective: Hepatocellular carcinoma (HCC) is a common cancer of the digestive system, is the third cause of death worldwide and the second cause of death in China. The Cancer Genome Atlas (TCGA) aims to better understand the molecular mechanisms of cancer by using a large-scale genome se-quencing-based analysis techniques and extensive cooperation. This study introduces TCGA data-base to find key genes of HCC events. Materials and Methods: The data from TCGA were processed, integrated according to the standard procedure of TCGA, data types and levels were carefully as-sessed. Bioinformatics analysis was done using the DESeq and edgeR package of R language (3.1.1 version). Results were showed as pheatmap, VennDiagram, hist, PlotMA etc. Differences were de-fined as follows: expression increased more than two folds; P <0.05; gene ranked in the top 10%. Results: 17 mRNA chips of HCC and 9 mRNA chips of normal tissue were collected from TCGA data- base. Hist figure reflected the number of different gene was large. PLotMA map showed the distribu-tion of gene expression, suggesting most genes of different expression were increased. 719 diffe-rentially expressed genes were found by DESeq, while 4413 by edger, among which 713 were com-mon different genes. Conclusion: Compared to conventional microarray, TCGA method has its own advantages such as larger number of samples, less cost and easier for analyzing, offering opportuni-ty for large-scale genomic studies of HCC and subsequent functional genomics-based research. Keywords Hepatocellular Carcinoma, TCGA, Chip 基于TCGA数据库的肝癌发生关键基因筛选 贾俊君,何宁,张静,姜骊,周燕飞,周琳,郑树森

内参基因的概念和作用.doc

内参基因的概念和作用 内参即是内部参照 ,它们在各组织和细胞中的表达相对恒定 ,在检测基因的表达水平变化时常用它来做参照物。其作用是校正上样量、上样过程中存在的实验误差 ,保证实验结果的准确性。借助检测每个样品内参的量就可以用于校正上样误差 ,这样半定量的结果才更为可信。一般要选择一个在处理因素作用的条件下不会发生表达改变的基因作内参。 在进行基因研究的过程中,实时反转录 PCR也和传统的mRNA定量方法如 Northern b lot技术等一样, 要求使用参照基因以校正转录效率和 cDNA用量, 弥补制备过程中样本纯度和浓度的差别, 使不同样本之间目的基因的比较成为可能,以期获得真实可靠的结果。大多数分析方法中这些差别可通过与内参照比较处理消除。最普通的内参照是内源性参照基因,也叫管家基因。 管家基因:又称持家基因(house-keeping genes)生物体各类细胞中都表达 ,其产物是对维持细胞基本生命活动所必需的蛋白质编码的基因。如微管蛋白基因、糖酵解酶系基因与核糖体蛋白基因等。是为维持细胞基本生命活动所需而时刻都在表达的基因。

管家基因表达水平受环境因素影响较小 ,而是在个体各个生长阶段的大多数、或几乎全部组织中持续表达 ,或变化很小。它的表达只受启动序列或启动子与RNA聚合酶相互作用的影响 ,而不受其他机制调节。管家基因高度保守并且在大多数情况下持续表达 ,因此管家基因常被用于分子技术--多位点基因分析。 内参基因通常是各种看家基因 ,在细胞内组成稳定性表达 ,有助于保持细胞的功能。理想的内参基因应该满足以下条件:1, 不存在假基因(Pseudogene) ,以避免基因 DNA的扩增; 2,高度或中度表达 ,排除低表达; 3,稳定表达于不同类型的细胞和组织(如正常细胞和癌细胞) ,而且其表达量是近似的 ,无显着性差别; 4,表达水平与细胞周期以及细胞是否活化无关;5, 其稳定的表达水平与目标基因相似;6, 不受任何内源性或外源性因素的影响 ,如不受任何实验处理措施的影响. 近年来的研究发现:这些常用内参基因均存在缺陷 ,在不同类型的细胞和组织细胞增殖和器官发育的不同阶段体外培养各种实验条件等情况下它们的表达量通常变异较大。正确的选择内参基因, 很大程度上依赖所研究的细胞或组织, 不同的试验需要寻找

肿瘤相关基因的筛选策略

肿瘤相关基因的筛选策略 核心提示:nbsp;nbsp;肿瘤的发生发展是一个涉及多因素(遗传、理化及感染因素)、多步骤的贯穿一系列分子事件(多基因参与)的复杂生物过程。细胞染色体的异常和基因的缺陷在肿瘤发生发展过程中起重要作用。1986年,美国麻省总医院的Thaddeusnbsp;Dryia和哈佛大学的Robe 刘复兴《咸宁学院学报(医学版)》2006 年4 月第19 卷第2 期 肿瘤的发生发展是一个涉及多因素(遗传、理化及感染因素)、多步骤的贯穿一系列分子事件(多基因参与)的复杂生物过程。细胞染色体的异常和基因的缺陷在肿瘤发生发展过程中起重要作用。1986年,美国麻省总医院的Thaddeus Dryia和哈佛大学的Robert Weinbergd 等成功克隆出第一个抑癌基因Rb并由WH Lee等完成全序列测定。自此肿瘤相关基因(癌基因和抑癌基因)的研究开始进入高潮期并延续至今,一百多种癌基因和二十多种抑癌基因被相继发现。目前有关肿瘤发病机制的研究方向有:①以研究基因环境交互作用为主攻方向,主效应基因与环境易感基因研究并重;②遗传机制与表遗传结合研究;③功能基因型(genotype)和表型(phenotype)的相互关系的研究等。肿瘤相关基因的筛选一直为研究者所重视,新方法不断出现。 1 用微卫星DNA多态性标记策略寻找肿瘤相关的候选抑癌基因 抑癌基因的丢失或者功能失活能够引起细胞的恶性转化而致肿瘤发生。可以采用微卫星DNA多态性标记策略去寻找肿瘤相关的抑癌基因。即首先运用微卫星分析的方法寻找具有高杂合性丢失频率的染色体区域,根据连锁分析可知该染色体区域或其临近区域可能存在肿瘤相关的抑癌基因;然后运用基因的分子内微卫星标志分析、甲基化状态分析、突变检测或候选片段的定位克隆等方法从高杂合性丢失的染色体区域筛选候选的抑癌基因。最后将目的基因转入动物观察其功能表型。 在肺癌、乳癌、子宫和卵巢癌、女性生殖道癌、睾丸癌、肾癌、口腔癌、头颈鳞癌以及食道癌等人类肿瘤中经常发生一些染色体区域的高杂合性丢失[1~9],提示这些区域可能存在候选的抑癌基因。通过微卫星分析已筛选到一些候选抑癌基因。在人类肿瘤中,3p14.2、3p21.3、9p1322和16q23.324.1等区域杂合性丢失频率较高。FHIT基因位于3p14.2。FHIT 蛋白是一种AP3A水解酶,可能参与DNA复制和细胞周期的调控。在诸如消化道肿瘤、肺癌、乳腺癌和头颈鳞癌中可以检测到FHIT基因的异常转录[10~12]。在肺癌、胃癌和乳癌中还检测到FHIT基因的点突变[13,14]。在肺癌和宫颈癌中观察到Fhit蛋白表达缺失[15,16]。H37和RPL14等基因位于3p21.3。免疫组化分析显示在非小细胞肺癌中H37基因表达水平降低[17]。细胞周期调控相关基因p16位于9p1322。在食管癌中p16可能通过甲基化、杂合性丢失或者突变等机制失活[18]。WWOX基因位于16q23.324.1。在食管癌中WWOX通过杂合性丢失机制失活[19,20]。上述研究提示FHIT、H37、RPL16、p16和WWOX是候选的抑癌基因,它们有可能在肿瘤的发生、发展过程中发挥重要作用。

内参基因的概念

内参即是内部参照,它们在各组织和细胞中的表达相对恒定,在检测基因的表达水平变化时常用它 来做参照物。其作用是校正上样量、上样过程中存在的实验误差,保证实验结果的准确性。借助检测每 个样品内参的量就可以用于校正上样误差,这样半定量的结果才更为可信。一般要选择一个在处理因素 作用的条件下不会发生表达改变的基因作内参。 在进行基因研究的过程中,实时反转录 PCR也和传统的mRNA定量方法如 Northern b lot技术等一样, 要求使用参照基因以校正转录效率和 cDNA用量, 弥补制备过程中样本纯度和浓度的差别, 使不同样本之间目的基因的比较成为可能,以期获得真实可靠的结果。大多数分析方法中这些差别可通过与内 参照比较处理消除。最普通的内参照是内源性参照基因,也叫管家基因。 管家基因:又称持家基因(house-keeping genes)生物体各类细胞中都表达,其产物是对维持细胞基 本生命活动所必需的蛋白质编码的基因。如微管蛋白基因、糖酵解酶系基因与核糖体蛋白基因等。是 为维持细胞基本生命活动所需而时刻都在表达的基因。 管家基因表达水平受环境因素影响较小,而是在个体各个生长阶段的大多数、或几乎全部组织中持 续表达,或变化很小。它的表达只受启动序列或启动子与RNA聚合酶相互作用的影响,而不受其他机制 调节。管家基因高度保守并且在大多数情况下持续表达,因此管家基因常被用于分子技术--多位点基因分析。 内参基因通常是各种看家基因,在细胞内组成稳定性表达,有助于保持细胞的功能。理想的内参基 因应该满足以下条件:1, 不存在假基因(Pseudogene),以避免基因 DNA的扩增; 2,高度或中度表达, 排除低表达; 3,稳定表达于不同类型的细胞和组织(如正常细胞和癌细胞),而且其表达量是近似的,无 显着性差别; 4,表达水平与细胞周期以及细胞是否活化无关;5, 其稳定的表达水平与目标基因相似;6, 不受任何内源性或外源性因素的影响,如不受任何实验处理措施的影响. 近年来的研究发现:这些常用内参基因均存在缺陷,在不同类型的细胞和组织细胞增殖和器官发 育的不同阶段体外培养各种实验条件等情况下它们的表达量通常变异较大。正确的选择内参基因, 很大程度上依赖所研究的细胞或组织, 不同的试验需要寻找适合各自试验体系的特异性稳定表达的内参基 因。然而,合适内参基因的选择,需要在各种类型的细胞或组织和各种试验条件下进行比较选择。理想的内参基因应在各种试验条件下,各种类型的组织和细胞中均恒定表达,而且其表达量是近似的,无显着性差别。另外要求不存在假基因以避免基因组的扩增。 常用的内参基因包括GAPDH 、β- actin(BETA-actin) 、18sRNA、28sRNA 、B2M、ACTB、SDHA、HPRT1、ARBP内参基因等。

功能基因筛选方法的研究进展-精品文档

功能基因筛选方法的研究进展 摘要: 功能基因的筛选研究可为深入了解疾病的发生和发展过程,药物作用机制,建立新的疾病诊断、预防、治疗策略奠定基础,因而正在成为当今药物及药物靶点发现的重要途径。该领域的迅速发展很大程度上借助于技术方法的不断提高和发展。本文对功能基因筛选研究策略及主要技术方法,如表达谱分析法、高通量细胞筛选技术、反义核酸技术、转基因/ 基因敲除技术等的研究进展及应用进行了综述。 近年来,随着人类基因组计划的初步完成,后基因组时代蛋白质组学、功能基因组学等研究的深入开展给药物发现领域带来了革命。基因组庞大规模序列的可利用性、高通量基因表达检测方法的发展及大规模数据分析能力的提高,为药物发现展现了广阔的前景。然而,新基因不等于新药靶点或新药物。目前,药物发现的主要挑战之一,就是要快速估测和了解新基因的生物学功能,确定该基因是否能够成为药物靶点或直接作为治疗药物(基因药物或蛋白质药物) ,即进行功能基因的筛选研究。功能基因的筛选研究正在成为当今药物及药物靶点发现的重要途径,同时也为深入了解疾病的发生和发展过程、药物作用机制以及新的疾病诊断、预防、治疗策略的建立奠定了基础。这一领域的迅速发展很大程度上借助于众多技术方法的发展和应用,本文对其中一些主要方法及其研究进展进行了综述。 1、功能基因筛选的基本策略 目前,国内外进行功能基因筛选研究的基本策略包括: (1) 通过表达谱差异分析、生物信息学分析和基因克隆等途径获得候选基因; (2) 对候选基因进行功能评价(identification of function ,可在基因组、转录、蛋白质组和代谢产物等水平进行); (3) 基因功能确证(validation of function); (4) 决定开发战略。 1. 1 差异表达筛选功能基因 获得候选基因的研究路线之一是通过正常和疾病组织的表达谱差异分析 (expression profiling of normal and diseased tissues) 获得疾病的相关基因,进一步进行基因功能的筛选研究(图1) 。该筛选策略与疾病过程密切相关,较多地应用于新药及治疗靶点的发现[1~3 ] 。 1. 2 生物信息学分析 确定候选功能基因获得候选基因的另一研究路线是通过生物信息析 bioinformatic analysis) 预测、选定基因序列、克隆获得候选基因,进一步进行基因功能的筛选研究(图2) [4 ] 。该研究策略筛选范围广,多用于新基因的功能探索研究。

内参基因β-Actin简介

内参基因β-Actin简介 日期:2012-05-03来源:未知作者:周慕云点击:次 相关专题 PCR内参:选还是不选? β-Actin 内参即是内部参照,它们在各组织和细胞中的表达相对恒定,在检测基因的表达水平变化时常用它来做参照物。常用的PCR内参有GAPDH 、β- actin 、18sRNA、28sRNA 、B2M、ACTB、SDHA、HPRT1、ARBP内参基因等。 β-Actin简介 Actin即“肌动蛋白”,是细胞的一种重要骨架蛋白。同时Actin在细胞分泌、吞噬、移动、胞质流动和胞质分离等过程中起重要作用。Actin在不同物种之间高度保守,以至于很难获得较好的针对actin的抗血清。Actin大致可分为六种,其中四种是不同肌肉组织特异性的,包括α-skeletal muscle actin,α-cardiac muscle actin,α-smooth muscle actin,和γ-smooth muscle actin; 其余两种广泛分布于各种组织中,包括β-actin(β-non-muscle)和γ-non-muscle actin。不同的actin之间同源性大于90%,但在N-terminal同源性仅50%-60%,因此N-terminal常被用作actin的抗原。β-Actin是横纹肌肌纤维中的一种主要蛋白质成分,也是肌肉细丝及细胞骨架微丝的主要成分。具有收缩功能,分布广泛。 β-Actin用途

β-Actin是PCR常用的内参,β-Actin抗体是Western Blot很好的内参指数。内参即是内部参照(Internal Control),对于哺乳动物细胞表达来说一般是指由管家基因编码表达的蛋白。它们在各组织和细胞中的表达相对恒定,在检测蛋白的表达水平变化时常用它来做参照物。常用的蛋白质内参有细胞骨架蛋白beta-actin或beta-tubulin和GAPDH(glyceraldehyde-3-phosphate dehydrogenase)等。因此β-Actin抗体、β-Tubulin抗体以及GAPDH抗体成为最常见的三个动物细胞内参抗体。β-Actin 作为内参是得到了公认的,这是针对大多数组织和细胞来说的,它广泛分布于细胞浆内,表达量非常丰富。Beta-actin由375个氨基酸组成,分子量大小为42-43kDa左右。 β-actin的蛋白水平通常不会发生改变,因此被广泛用于Western时上样量是否一致的参照,也常被用于免疫染色观察细胞的微丝结构。在用作Western的参照时,Actin 抗体和Tubulin抗体的主要不同之处在于两者所识别蛋白的分子量不同,这样可以选择合适的参照在同一块胶同一张膜上实现同时检测目标蛋白和参照蛋白。

常见内参基因

常见内参基因 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

β-Actin Actin即“肌动蛋白”,是的一种重要骨架蛋白。同时Actin在细胞分泌、吞噬、 β-Actin 移动、胞质流动和胞质分离等过程中起重要作用。Actin在不同物种之间高度保守,以至于很难获得较好的针对actin的抗血清。Actin大致可分为六种,其中四种是不同肌肉组织特异性的,包括α-skeletalmuscleactin,α-cardiacmuscleactin,α-smoothmuscleactin,和γ-smoothmuscleactin;其余两种广泛分布于各种组织中,包括β-actin(β-non-muscle)和γ-non-muscleactin。不同的actin之间同源性大于90%,但在N-terminal同源性仅50%-60%,因此N-terminal常被用作actin的。β-Actin是肌纤维中的一种主要成分,也是肌肉细丝及细胞骨架微丝的主要成分。具有收缩功能,分布广泛。 β-Actin用途 β-Actin是PCR常用的内参,β-Actin抗体是WesternBlot很好的内参指数。内参即是内部参照(InternalControl),对于表达来说一般是指由管家基因编码表达的蛋白。它们在各组织和细胞中的表达相对恒定,在检测蛋白的表达水平变化时常用它来做参照物。常用的蛋白质内参有细胞骨架蛋白beta-actin或beta-tubulin和GAPDH(glyceraldehyde-3-phosphatedehydrogenase)等。因此β-Actin抗体、β-Tubulin 抗体以及GAPDH抗体成为最常见的三个动物细胞内参抗体。β-Actin作为内参是得到了公认的,这是针对大多数组织和细胞来说的,它广泛分布于细胞浆内,表达量非常丰富。Beta-actin由375个氨基酸组成,分子量大小为42-43kDa左右。 β-actin的蛋白水平通常不会发生改变,因此被广泛用于Western时上样量是否一致的参照,也常被用于免疫染色观察细胞的微丝结构。在用作Western的参照时,Actin抗体和Tubulin抗体的主要不同之处在于两者所识别蛋白的分子量不同,这样可以选择合适的参照在同一块胶同一张膜上实现同时检测目标蛋白和参照蛋白。 GAPDH GAPDH或G3PDH是(glyceraldehyde-3-phosphatedehydrogenase)的英文缩写。该酶是糖酵解反应中的一个酶,由4个30-40kDa的亚基组成,分子量146kDa。该酶基因为管家(housekeeping)基因,几乎在所有组织中都高水平表达,在同种细胞或者组织中的蛋白质表达量一般是恒定的,且不受含有的部分识别位点、佛波脂等的诱导物质的影响而保持恒定,故被广泛用作抽提totalRNA,poly(A)+RNA,Westernblot等实验操作的标准化的内参。 GAPDH结构图 常用的内参有,ACTB(β-actin、β-肌动蛋白)、GAPDH或18S等。目的是在于避免RNA定量误差、加样误差以及各PCR反应体系中扩增效率不均一、各孔间的温差等所造成的误差、这些都是,在各个组织中的表达量相对稳定,其中18S同整个基因谱有关(负责装配),它在总RNA中占的比例最高。 转染了GAPDHsiRNA.jpg 转染了GAPDHsiRNA的Hela细胞

相关主题