搜档网
当前位置:搜档网 › 换热器计算程序+++

换热器计算程序+++

换热器计算程序+++
换热器计算程序+++

换热器计算程序

2.1设计原始数据

表2—1

名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / / 壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB150

2.2管壳式换热器传热设计基本步骤

(1)了解换热流体的物理化学性质和腐蚀性能

(2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。

(3)确定流体进入的空间

(4)计算流体的定性温度,确定流体的物性数据

(5)计算有效平均温度差,一般先按逆流计算,然后再校核

(6)选取管径和管内流速

(7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核

(8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍

l

(9)选取管长

N

(10)计算管数

T

(11)校核管内流速,确定管程数

D和壳程挡板形式及数量等

(12)画出排管图,确定壳径

i

(13)校核壳程对流传热系数

(14)校核平均温度差

(15)校核传热面积

(16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据

2.3.1定性温度

由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。

对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为:

t=420295

357.5

2

+

=℃(2-1)

管程流体的定性温度:

T=310330

320

2

+

=℃

根据定性温度,分别查取壳程和管程流体的有关物性数据。

2.3.2 物性参数

管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】

表2—2

密度ρ

i-

=709.7 ㎏/m3

定压比热容c

pi

=5.495 kJ/㎏.K

热导率λ

i

=0.5507 W/m.℃

粘度μ

i

=85.49μPa.s

普朗特数Pr=0.853

壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】

表2—3

密度 ρo =28.8 ㎏/m 3

定压比热容 c po =3.033 kJ/㎏.K 热导率 λo =0.0606 W/m.℃ 粘度 μo =22.45 μPa.s 普朗特数

Pr=1.122

2.4估算传热面积 2.4.1热流量

根据公式(2-1)计算:

p Q Wc t =? 【化原 4-31a 】 (2-2)

将已知数据代入 (2-1)得:

111

p Q WC t =?=60000×5.495×310 (330-310)/3600=1831666.67W

式中: 1W ——工艺流体的流量,kg/h ;

1p C ——工艺流体的定压比热容,kJ/㎏.K ;

1t ?——工艺流体的温差,℃;

Q ——热流量,W 。

2.4.2平均传热温差

根据 化工原理 4-45 公式(2-2)计算:

12

12

ln m t t t t t ?-??=

?? (2-3) 按逆流计算将已知数据代入 (2-3)得:

()()()()

121242033031029541.86420330ln ln 310295m t t t t t ---?-??=

==?-?-℃

式中: m t ?——逆流的对数平均温差,℃;

1t ?——热流体进出口温差,℃; 2t ?——冷流体进出口温差,℃;

可按图2-1中(b )所示进行计算。

图2-1 列管式换热器内流型

2.4.3传热面积

根据所给条件选定一个较为适宜的K 值,假设K =400 W/m 2.K 则估算传热面积为:

m

t K Q

S ?=

(化工原理 式4-43) (2-4) 将已知数据代入 (2-3)得: 2m 39.10986

.4140067

.1831666t =??=m K Q S

式中:——估算的传热面积,2m ;

K ——假设传热系数,W/m 2.℃;

m t ?——平均传热温差,℃。

考虑的面积裕度,则所需传热面积为:

28.12515.188.11215.1'm S S =?=?= (2-5)

2.4.4热流体用量

根据公式(2-4)计算:由化工原理热平衡公式

S

p Q

W c t

=

? 将已知数据代入 (2-4)得: kg/h 68

.17392)

295420(033.367

.1831666222=-?=?=

t C Q W p (2-6)

式中Q ——热流量,W ;

2p c ——定压比热容,kJ/㎏.

℃;

2t ?——热流体的温差,℃; 2W ——热流体的质量流量,kg /h 。

2.5 工艺尺寸 2.5.1管数和管长

1.管径和管内流速

根据红书 表3-2 换热管规格

表2-4

材料

钢管标准

外径?厚度 /(mm ?mm )

外径偏差 /mm

壁厚偏差

碳钢 GB8163

25?2.5

20

.0±

%

10%12-+

根据 红书 表3-4 取管内流速s m i /1u = ⒉管程数和传热管数 依红书3-9式 u

n d

q

v 2

=

,可根据传热管内径和流速确定单管程传热管数

758.74102.04

7.70967

.164n 2

2

≈=??=

=

ππ

u d q

i

i v

s (根) (2-7) 式中

——管程体积流量,s

3

m

q

v

n ——单程传热管数目; i d ——传热管内径,mm ;

u ——管内流体流速,s m 。

按单管程计算,依红书3-10,所需的传热管长度为 ()m n

d A s

o

p 3.2175

025.08

.125L =??=

=

ππ (2-8)

式中 L ——按单程管计算的传热管长度,m ——传热面积,2m ;

——换热管外径,m 。

按单管程设计,传热管过长,则应采用多管程,根据本设计实际情况,采用非标准设计,现取传热管长m l 6=,则该换热器的管程数为 456.36

3.21≈===

l L N p (管程) (2-9) 传热管总根数 300475=?=?=N n N p s T (根) (2-10) 式中, 0d ——管子外径,m ;

'

T N ——传热管总根数,根;

0d ——管子外径,m ;

3.换热器的实际传热面积,依据红书3-12,

203.1413006025.014.3m lN d A T =???==π (2-11)

式中,

换热器的实际传热面积换热器的总传热管数;

----A N T

2.5.2平均传热温差校正及壳程数

选用多管程损失部分传热温差,这种情况下平均传热温差校正系数与流体进出口温度有关,其中按红书3-13a 3-13b

12

21

T T R t t -=

=-热流体的温差冷流体的温差 (2-12)

2111

t t P T t -=

=-冷流体的温差

两流体最初温差 (2-13)

A p d

o

将已知数据代入(2-12)和(2-13)得:

1221420295

0.75330310

T T R t t --=

==-- 2111330310

0.22420310

t t P T t --=

==-- 按单壳程,四管程结构,红书图3-7,查得校正系数[1]:

图2-2 温差校正系数图

0.96t ε?=;

平均传热温差 按式(2-9)计算:

m t t t ε??=?塑 (2-14)

将已知数据代入(2-9)得:

0.9641.8640.2m t t t C ε??=?=?=。塑

式中 :m t ?——平均传热温差,℃; t ε?——校正系数;

t ?塑——未经校正的平均传热温差,℃。

由于平均传热温差校正系数大于0.8,同时壳程流量较大,故取单壳程合适。 传热管排列方式:采用正三角形排列

每程各有传热管75根,其前后官箱中隔板设置和介质的流通顺序按 化工设计 3-14 选取

取管心距:

01.28t d = (2-15) 则管心距:

mm 322528.1d 28.1o =?=?=t

根据标准选取为 32mm : 隔板中心到离其最近一排管中心距

mm t s 22623262=+=+=

(2-16)

各程相邻传热管的管心距为2s=44mm 。

每程各有传热管75根,其前后管箱中隔板设置和介质的流通顺序按图2-4选取。

图2-3组合排列法

图2-4 隔板形式和介质流通顺序

⒌壳体内径

采用多管程结构,壳体内径可按式计算。正三角形排列,4管程,取管板利用率为

0.70.8~.60==ηη,取,则壳体内径为

)mm (5.6957

.03003205.105.1=??==ηN

T

t

D . (2-17)

式中:D ——壳体内径,m; t ——管中心距,m;

——横过管束中心线的管数

按卷制圆筒进级挡圆整,取为D=700mm 。

N

T

2.5.3 折流板

管壳式换热器壳程流体流通面积比管程流通截面积大,为增大壳程流体的流速,加强其湍动程度,提高其表面传热系数,需设置折流板。单壳程的换热器仅需要设置横向折流板。

采用弓形折流板,弓形折流板圆缺高度为壳体内径的20%~25%,取25%,取则切去的圆缺高度为:

0.25700175h =?=mm (2-18) 故可取h =180mm

取折流板间距D B 3.0=,则

)(2107003.0mm B =?= (2-19) 可取为B=250mm 。

折流板数 (块)折流板间距传热管长231-250

6000

1-===

N B (2-20)

折流板圆缺面水平装配。 化工设计 图3-15

图2-5 弓性折流板(水平圆缺)

2.5.4其它附件拉杆

拉杆数量与直径:由化工设计表4-7 表4-8 该换热器壳体内径为700mm ,故其拉杆直径为φ16拉杆数量为6个。

N

B

2.5.5接管

依据化工原理 式1-24 ,

壳程流体进出口接管:取接管内水蒸气流速为=u 1 4.42m /s ,则接管内径为 )(219.042

.48.28360017393

4V 4D 1

1

1m u =???=

=

ππ)( (2-21) 圆整后可取内径为=D 1150mm 。

管程流体进出口接管:取接管内液体流速为=u 21m /s ,则接管内径为

)(173.01

7.709360060000

4V 4D 2

2

2m u =???=

=

ππ)( 圆整后取管内径为D 2=180mm 。 式中:D ——接管内径,m ;

u ——流速,/m s ;

V ——热、冷流体质量流量,kg/s 。

2.6换热器核算 2.6.1 热流量核算

2.6.1.1 壳程表面传热系数

壳程表面传热系数用克恩法计算,见式 红书3-22

14

.0)

(Pr

31Re

55

.01

36

.0o ηηλαw

d e

= (2-22) 当量直径,依式红书 3-32b 计算:

d d t o

o e ππ)

423(4d 2

2-=

(2-23)

将已知数据代入 (2-23)得 :

)(020.0025

.0)025.04032.023(4)423(4d 2

222m d d t o o

e =??-?=-=

ππππ 式中 e d —当量直径,m ; t —管心距,m ; 0d —管外径,m 。

壳程流通面积依红书式3-25计算

)1(S t

BD d o o

-=

)(038.0)032.0025.01(7.025.0)1(2m t BD d S o o =-??=-=22(1)d s BD t =- (2-24) 式中 B —折流板间距,m ;

D —壳体内径,m ; —管心距,m ; —管径,m ;

—壳程流通面积,2m 。

依据红书计算步骤,壳程流体流速及其雷诺数 分别为

415.4038

.0)

8.283600(17393S u o o =?==V o (m /s ) (2-25)

72.1132751045.228

.28415.402.0u d Re 6

=???==-μρe o (2-26)

普朗特数

122.1=P

r

黏度校正 1)(14

.0≈η?

η 壳程表面传热系数

t d o S o

℃)(?=???

==23155

.01

o W/m 5.6821122.111327602

.00606.036.014.0)

(Pr 31

Re

55

.036

.0η

ηλαw

e

d

(2-27) 式中 2u —壳程流体流速,/m s ;

2s —壳程流通面积,2

m ; ρ—密度,3

/kg m

m —热流体的质量流量,/kg h 。 2.6.1.2 管内表面传热系数 管程流体流通截面积 )(0236.07502.04

n d 4

22i m N T i S =??=?

?=

π

π

(2-28) 管程流体流速

1=u i (m /s )

雷诺数 1.1660311049.851

02.07.709R 6

=???=

-i i i i i

u d e μρ (2-29)

普朗特数 853.0r =P

按化工原理 式 4.08.0Pr Re 23.0d

i

i i λα= 得

℃)(?=???

==24.08.04

.08

.0W/m 5.562853.01.16603102

.05507

.023.0Pr Re

23

.0d

i

i i λα (2-30)

式中:Re ——雷诺数;

e d

——当量直径,m ;

i u

——管程流体流速,/m s ;

i ρ——密度,3

/kg m ;

i μ——粘度,Pa.s 。

Pr ——普朗特数;

pi

c ——定压比热容,kJ/㎏.℃;

i μ——粘度,Pa.s ; i λ——热导率,W/m.℃。

2.6.1.3 污垢热阻和管壁热阻

污垢热阻和管壁热阻可取[1]:化工原理附录20

管外侧污垢热阻 4108598.0-?=R o (2m ·℃/W ) 管内侧污垢热阻 4108598.0-?=R o (2m ·℃/W ) 管壁热阻按红书 式计算,[1]查表

可得碳钢在该条件下的热导率为40/(.)W m K :

λ

w

w b

R =

(2-31)

将已知数据代入 (2-31)得:

)/(10240

002

.024W K m b

w

w R ??==

=

式中:

w

R ——管壁热阻,2

./m K W ;

b ——传热管壁厚,m ; w λ——管壁热导率,W/m.℃。

2.6.1.4传热系数c K 按红书3-21计算:

因为值更小,故按Ki 计算

α

αi

o

i

1

1

++++=

R

d d R d d R d d K i

m

i

w

i

C (2-32)

将已知数据代入(2-32)得:

αi

)5

.5621108598.002.002.0102025.002.0108598.0025.05.62802.0(1

444+?+??+??+?=

---K

C

1.346=

2.6.1.5传热面积裕度 红书3-35 )(42.12686

.411.3461831666.67

2m Q t K A m C C =?=?=

(2-33)

该换热器的实际换热面积A

)(3.1413006025.014.32m l A N d T o =???==π (2-34)

依红书 式3-36 该换热器的面积裕度为 %79.11%10042

.12642

.1263.141%100=?-=

?-=

A

A C

C

A H (2-35)

该换热器的面积裕度合适,该换热器能够完成生产任务。

2.6.2壁温核算

2.6.2.1 温差计算

由于工作条件是高温高压,与四季气温相差特别大。因此进出口温度可以取原操作温度。另外,由于传热管内侧污垢热阻较大会使传热管壁温降低,降低了传热管和壳体之间的温差。但操作初期时,污垢热阻较小,壳体和传热管间壁壁温差可能很大。计算中因按最不利的因素考虑,因此,取两侧污垢热阻为零计算传热管壁温。

由 红书3-42式计算:

R R R t R T h

h

c c

h h

m c c

m w ++

++++=

α

α

α

α

1

1

)

1

()1

(

t (2-36)

液体的平均温度 按红书 3-44 和3-45式

t t m 126.04.0t +=

K

m W ?2/

计算有:

3183106.03304.0=?+?=t m (℃) (2-37)

6.682==h h o c

(W/2

m ·℃)

5.562h

==h h i

(W/2

m ·℃)

代入2-36式 传热管平均壁温

336.85

.56216.68215.5623186.6825.35711T =+

+=

++=

h

h h t h T

h

c

h

m

c m

w (℃) (2-38) 式中: 1T ——热流体进口温度,℃; 2T ——热流体出口温度,℃; 1t ——冷流体进口温度,℃;

2t

——冷流体出口温度,℃。

壳体壁温,可以近似取为壳程流体的平均温度,即t=357.5℃。 传热管壁温和壳体壁温之差为

7.208.3365.357=-=?t (℃) (2-39)

该温差较大,需设温度补偿器。由于水和水蒸气不容易结垢,不需要经常清洗,因此选用U 型管换热器较为适宜。

2.6.2.2 管程流体阻力 依式(2-29)

12()i p t p p p N F ?=?+? (2-36)

其中 4p =N 1.5t F = 式中 :

p N

——管程数;

i p ?——管程总阻力,Pa ;

t F ——管程结垢校正系数,对mm 5.225?φ的管子,取1.5;

2

2

i i i l u p d ρλ?= (2-37)

由Re=166031 查化原表1-2

传热管绝对对粗糙度 02.0=ξ

传热管相对对粗糙度

查化工原理 图1-27 莫狄 e R —λ图

得 021.0i =λ

s m m /1u /kg 7.7093==,ρ ,将已知数据代入(2-37)得:

i p ?=2

2

i

i l u d ρλ a 5.22352

17.70902.06021.02

P =???

= 式中: i λ——摩擦系数;

l ——管长,m ;

i d

——传热管内径,m ;

ρ——冷流体密度,3

/kg m ; u ——管内流速,/m s ;

i p

?——单程直管阻力,Pa 。 局部阻力按式(2-37)计算,

2

2

r u p ρξ

?= (2-38)

将已知数据代入(2-31)得:

Pa u r 8.15962

17.70932p 2

2

=??==?ρξ

式中:

r

p ?——局部阻力,Pa ;

ξ——局部阻力系数; ρ——冷流体密度,3

/kg m ;

001.020

02.0=

u ——管内流速,/m s ; 管程总阻力为:

a 6.459875.142)8.15965.2235(p P t =???+=? (2-39) 管程流体阻力在允许范围之内。

2.6.2.3壳程阻力

按式红书 式 3-50 ~ 3-54计算:

''

12()o s s p p p F N ?=?+? (2-40)

其中 1s N =, 1s F = 式中 o p ?——壳程总阻力,Pa ; '1p ?——流体流过管束的阻力,Pa ;

'

2p ?——流体流过折流板缺口的阻力,Pa ; s F ——壳程结垢校正系数;

s N ——壳程数; 流体流经管束的阻力按(2-41)计算

2'0

1

0(1)

2

c B u p Ff n N ρ?=+ (2-41)

将已知数据代入(2-340)得:

a 1011.12

108.28)123(05.19352.05.0p 52

P o ?=??+???=?

式中 '1p ?——流体流过管束的阻力,Pa ;

F ——管子排列方式为正三角形,所以0.5F =; 0f ——壳程流体的摩擦系数,

352.01.1660315Re 0.5228.0228.0=?==--o o

f

c n ——横过管束中心线的管子数 05.19300

.11N .11.5

00.5T =?==n C ; B N ——折流挡板数23=B N ; ρ——热流体密度,3/kg m ;

0u ——按壳程流通面积计算的流速 s /m 415.4u o =;

流体通过折流板缺口的阻力 依式(2-34)计算:

2

'0

2

2(3.5)

2B u B p N D ρ?=- (2-34) m 25.0=B ,m 7.0=D

将已知数据代入(2-35)得:

a 3.922

108.287.025.025.323p 2

KP i =???-?=?)(

式中 B N ——折流板板数; B ——折流板间距,m ; D ——壳体内径,m ; ρ——热流体密度,3/kg m ; 0u ——壳程流体流速,/m s ;

i p ?——流体流过折流板缺口的阻力,Pa ; 总阻力:

Pa KP KPa 51003.2a 3.922.111p ?=+=?

由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。

2.7 换热器主要结构尺寸和计算结果

换热器主要结构尺寸和计算结果见表2-5。

表2-5 换热器主要结构尺寸和计算结果

参数管程壳程

流量/(kg/h)600000 17393 进/出口温度/℃310/330 420/295 压力/MP a28 7.22

物性

定性温度/℃320 357.5 密度/㎏/m3709.7 28.8 定压比热容/[kJ/(㎏/℃)] 5.495 3.033黏度/p a·s 5

10

85.49-

?5

10

45

.

22-

?

导热率/[W/m·℃] 0.5507 0.0606 普朗特数0.853 1.122

备结

构参数

形式U型管台数 1 壳体内径/mm 700 壳程数 1 管径/mm Φ25 2.5管心距/mm 32 管长/mm 6000 管子排列?管数目/根300 折流板个数/个23 传热面积/m2126.4 折流板间距/mm 210 管程数 4 材质碳素钢主要设计结果管程壳程

流速/(m/s) 1 4.42

表面传热系数/[W/(m2·℃)] 562.5 682.6

污垢热阻/(m2·℃/W)

阻力/MP a111.2 KPa 92.3 KPa 热流量/kW 1831.67

传热温差/℃22.7

传热系数/[W/(m2·℃)] 346.1

裕度/% 11.79

?

4

10

8598

.0-

?4

10

8598

.0-

?

换热器计算步骤

第2章工艺计算 2.1设计原始数据 表2—1 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 (10)计算管数 N T (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。

对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3 2.4估算传热面积 2.4.1热流量

空气压缩热利用热管换热器的设计计算(互联网+)

空气压缩热利用热管换热器的设计计算 杨宝莹 摘 要: 热管技术以其独特的技术在很多领域得到了广泛的应用,在压缩热领域热管技术也逐渐受到重视,除了理论研究热管技术在压缩热领域的应用外,设计出合适的换热设备对热管在压缩热领域的应用也及其重要。热管换热器的计算内容主要有热力计算和校核计算。其中热力设计计算大致可分为常规计算法,离散计算法和定壁温计算法。空气压缩热利用热管换热器一般为气-气型换热器,文章主要针对气-气型热管换热器的常规计算法进行介绍,并给出了一个具体实例的计算结果,以进一步促进热管换热器在空气压缩热利用领域的应用研究。 关键词: 热管 压缩热 热力计算 1 引言[1][2][4] 热管换热技术因其卓越的换热能力及其它换热设备所不具有的独特换热技术在航空,化工,石油,建材,轻纺,冶金,动力工程,电子电器工程,太阳能等领域已有很广泛的应用,空气压缩热利用领域冷热流体温差小,因此热管技术也逐渐受到重视。根据实际需要设计出合理的热管换热器对于空气压缩热利用领域来说也极为重要。 同常规换热器计算一样,热管换热器的计算内容主要有两部分:热管换热器的热力计算和校核计算。在这里主要对热管换热器的热力计算做个介绍。热管换热器的热力设计计算目前大致可分为三类:常规计算法,离散计算法,定壁温计算法。常规计算法将整个热管换热器看成一块热阻很小的间壁,然后采用常规间壁式换热器的设计方法进行计算。离散计算法认为热量从热流体到冷流体的传递不是通过壁面连续进行的,而是通过若干热管进行传递,呈阶梯式变化,不是连续的。定壁温计算法是针对热管换热器在运行中易产生露点腐蚀和积灰而提出的,计算时将热管换热器的每排热管的壁温都控制在烟气露点温度之上。从而避免露点腐蚀及因结露而形成的灰堵。 压缩热利用系统要处理的对象压缩机排气或吸干机排气,都属于气态介质,因此空气压缩热利用热管换热设备为气-气热管换热器。本文将对空气压缩热利用气-气热管换热器的常规计算法的热力计算做个简要介绍,文中的一次空气是压缩机排气,二次空气是吸干机排气。 2 热管换热器的设计计算[3][4] 2.1已知设计参数 一次空气质量流量M h , 进出口温度T 1,T 11,二次空气质量流量M c , 进出口温度T 2,T 21。一般六个已知量中,只要给定5个即可,另一个参数可由热平衡方程算出,如需要,还需给出一、二次空气的允许压降,二次空气出口温度未知时的计算过程为: ①一次空气定性温度 T h = 2 ' 11T T + (1) 查定性温度下的一次空气物性参数:定压比密度h p C 导热系数h λ粘度h μ 普兰德数h r P ②一次空气放出热量)(' 11T T C M Q h p h h -= (2)

管壳式换热器设计计算用matlab源代码

%物性参数 % 有机液体取69度 p1=997; cp1=2220; mu1=0.0006; num1=0.16; % 水取30度 p2=995.7; mu2=0.0008; cp2=4174; num2=0.62; %操作参数 % 有机物 qm1=18;%-----------有机物流量-------------- dt1=78; dt2=60; % 水 t1=23; t2=37;%----------自选----------- %系标准选择 dd=0.4;%内径 ntc=15;%中心排管数 dn=2;%管程数 n=164;%管数 dd0=0.002;%管粗 d0=0.019;%管外径 l=0.025;%管心距 dl=3;%换热管长度 s=0.0145;%管程流通面积 da=28.4;%换热面积 fie=0.98;%温差修正系数----------根据R和P查表------------ B=0.4;%挡板间距-----------------自选-------------- %预选计算 dq=qm1*cp1*(dt1-dt2); dtm=((dt1-t2)-(dt2-t1))/(log((dt1-t2)/(dt2-t1))); R=(dt1-dt2)/(t2-t1); P=(t2-t1)/(dt1-t1); %管程流速 qm2=dq/cp2/(t2-t1); ui=qm2/(s*p2);

%管程给热系数计算 rei=(d0-2*dd0)*ui*p2/mu2; pri=cp2*mu2/num2; ai=0.023*(num2/(d0-2*dd0))*rei^0.8*pri^0.4; %管壳给热系数计算 %采用正三角形排列 Apie=B*dd*(1-d0/l);%最大截流面积 u0=qm1/p1/Apie; de=4*(sqrt(3)/2*l^2-pi/4*d0^2)/(pi*d0);%当量直径 re0=de*u0*p1/mu1; pr0=cp1*mu1/num1; if re0>=2000 a0=0.36*re0^0.55*pr0^(1/3)*0.95*num1/de; else a0=0.5*re0^0.507*pr0^(1/3)*0.95*num1/de; end %K计算 K=1/(1/ai*d0/(d0-2*dd0)+1/a0+2.6*10^(-5)+3.4*10^-5+dd0/45.4); %A Aj=dq/(K*dtm*fie); disp('K=') disp(K); disp('A/A计='); disp(da/Aj); %计算管程压降 ed=0.00001/(d0-2*dd0); num=0.008; err=100; for i=0:5000 err=1/sqrt(num)-1.74+2*log(2*ed+18.7/(rei*sqrt(num)))/log(10); berr=err/(1/sqrt(num)); if berr<0.01 break; else num=num+num*0.01;

气气热管换热器计算书

热管换热器设计计算 1确定换热器工作参数 1.1确定烟气进出口温度ti,t3,烟气流量V,空气出口温度頁,饱和蒸汽压力 Pc?对于热管式换热器,ti范圉一般在250°C?600°C之间,对于普通水- 碳钢热管的工作温度应控制在300°C以下.t2的选定要避免烟气结露形成 灰堵及低温腐蚀,一般不低于180°C.空气入口温度的.所选取的各参数值如下: 2确定换热器结构参数 2.1确定所选用的热管类型 烟气定性温度:f 宇_4沁;2沁=310比 在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的 半均值所得出: 烟气入口处:q =如+営=420?c+严z = 18O°C 烟气出口处:. t2+tiX4 200°C+20°Cx4 l° 5 5 C 选取钢-水重力热管.其工作介质为水.工作温度为30OC~250°C?满足要求.其相容壳体材料:铜.碳钢(内壁经化学处理)。

2.2确定热管尺寸 对于管径的选择,由音速极限确定所需的管径 d v = 1.64 Qc t J厂9必)2 根据参考文献《热管技能技术》,音速限功率参考范闱,取Qc=4kW,在 10 = 56吃启动时 p v = O.1113k^/7H3 p v = 0.165 X 105pa r = 2367.4幼/kg 因此d v = 1.64 I ! = 10.3 mm yr(p v p v)l 由携带极限确定所要求的管径 d _ I 1.78 X Qent P Ji (P L"1/4+P V~1/4)_2^(P L -Pv]1/4 根据参考文献《热管技能技术》,携带限功率参考范围,取Q ent=4kw 管内工作温度t t = 180°C时 P L = 886.9kg/m3 pv = 5.160/c^/m3 r = 20\3kJ/kg J = 431.0xl0^N/m 178x4 因此 nx20L3x(8Q6.^i/4+SA6^i/4)-2 [gX431.0xl0-4(886.9-5.160)]1/4 =13.6nun 考虑到安全因素,最后选定热管的内径为 4 = 22111111 管売厚度计算由式 Pv4 20qcr] 式中,Pv按水钢热管的许用压力28.5kg /nmr选取,由对应的许用230°C來选 取管壳最大应力乐朋=14kg/nim2,而 [

换热器设计指南汇总

换热器设计指南 1总贝!I i.i目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1. 2范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号 (版次)的引用文件,其最新版本适用于本规定。 GB150-1999钢制压力容器 GB151-1999管壳式换热器 HTRI设计手册 Shell & tube heat exchangers ------- JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ---------- SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection -------- HEVRON COP. (1989)

HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers ------- TOTAL (2002) 管壳式换热器工程规定——SEI (2005) 2设计基础 2. 1传热过程名词定义 2.1.1无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2沸腾过程 在传热过程中存在着相的变化一液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3冷凝过程 部分或全部流体被冷凝为液相,热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2换热器的术语及分类 2.2.1术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器; 位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分;

换热器计算程序+++

换热器计算程序 2.1设计原始数据 表2—1 名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / / 壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB150 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 N (10)计算管数 T (11)校核管内流速,确定管程数 D和壳程挡板形式及数量等 (12)画出排管图,确定壳径 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 密度ρ i- =709.7 ㎏/m3 定压比热容c pi =5.495 kJ/㎏.K 热导率λ i =0.5507 W/m.℃ 粘度μ i =85.49μPa.s 普朗特数Pr=0.853 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

板式换热器计算程序说明

上海化工机械二厂 板式换热器计算程序V6.0使用说明 一、概述 1、板式换热器是一种高效紧凑型热交换设备。它具有传热效率高,阻力损失小,结构紧凑,拆装方便,操作灵活等优点。目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域。 2、在以往工程设计中,板式换热器设计计算均采用手算,方法有以下两种: ⑴简易算法:假定理论传热系数,求出换热面积,选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及流阻,经过反复校核得出满足工艺条件的结果,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。 ⑵标准算法:选定厂家,根据角孔流速确定换热器型号,从手册查出在设计工况下冷、热介质的各种物理参数,根据厂家样本提供的传热经验公式及流阻经验公式进行热工计算,求出传热系数及流阻,经过反复校核得出满足工艺条件的结果,最终确定换热器型号及换热面积大小。这种算法的优点是计算结果准确;缺点是计算复杂,步骤多,时间长。 3、利用计算机进行板式换热器设计计算,充分发挥了计算机运算速度快的特长,一个计算在微机上几秒钟内就能完成,且结果的准确性是手算难以达到的。另一个主要特点是程序中存贮了计算所需的不同水温时水的各种物理参数及板式换热器定型设备的所有参数,设计人员在计算机上进行计算时只需输入工艺条件(如水量、水温、流阻等)就能马上得出计算结果,这为设计人员提供了极大的方便。计算人员还可以输入不同的工艺条件(如水量、水温相同,流阻不同等)得出不同的计算结果,或更换换热器型号以得出不同的计算结果,通过对结果的比较、优化,最终选定既经济合理又性能可靠的板式换热器。 二、编制依据 《板式换热器的设计计算》张治川著; 《热交换器设计手册》〔日〕尾花英朗著; 《换热器》邱树林、钱滨江著; 《换热设备的污垢与对策》杨善让、徐志明著; 《换热器设计手册》钱颂文主编; 三、应用范围 程序仅用于计算上海化工机械二厂生产的板式换热器。 四、使用方法 1、打开显示器、打印机、计算机主机电源开关,操作系统应为WIN98或更高版本,文字处理采用OFFICE97或更高版本,打印纸选择A4 2、将带有板式换热器计算程序的安装盘插入光盘驱动器,执行安装命令SETUP.EXE,按屏幕提示进行。若复制文件发生访问冲突时,选择“忽略”,直至安装完毕。 3、单击“开始”按钮,执行“程序”菜单中的“板式换热器计算程序”,开始运算。整个运算过程全部采用人机对话,操作者只需按照屏幕的提示进行操作即可得到满意的计算结果。

板式换热器的换热计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

第1章 换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

192空调用热管换热器的设计计算全文

空调用热管换热器的设计计算 西安工程大学 王晓杰 黄翔 武俊梅 郑久军 摘 要: 热管技术以其独特的技术在很多领域得到了广泛的应用,在空调领域热管技术也逐渐受到重视,除了理论研究热管技术在空调领域的应用外,设计出合适的换热设备对热管在空调领域的应用也及其重要。热管换热器的计算内容主要有热力计算和校核计算。其中热力设计计算大致可分为常规计算法,离散计算法和定壁温计算法。空调用热管换热器一般为气-气型换热器,文章主要针对气-气型热管换热器的常规计算法进行介绍,并给出了一个具体实例的计算结果,以进一步促进热管换热器在制冷空调领域的应用研究。 关键词: 热管 空调 热力计算 1 引言[1][2][4] 热管换热技术因其卓越的换热能力及其它换热设备所不具有的独特换热技术在航空,化工,石油,建材,轻纺,冶金,动力工程,电子电器工程,太阳能等领域已有很广泛的应用,制冷空调领域冷冷热流体温差小,因此热管技术也逐渐受到重视。根据实际需要设计出合理的热管换热器对于空调领域来说也极为重要。 同常规换热器计算一样,热管换热器的计算内容主要有两部分:热管换热器的热力计算和校核计算。在这里主要对热管换热器的热力计算做个介绍。热管换热器的热力设计计算目前大致可分为三类:常规计算法,离散计算法,定壁温计算法。常规计算法将整个热管换热器看成一块热阻很小的间壁,然后采用常规间壁式换热器的设计方法进行计算。离散计算法认为热量从热流体到冷流体的传递不是通过壁面连续进行的,而是通过若干热管进行传递,呈阶梯式变化,不是连续的。定壁温计算法是针对热管换热器在运行中易产生露点腐蚀和积灰而提出的,计算时将热管换热器的每排热管的壁温都控制在烟气露点温度之上。从而避免露点腐蚀及因结露而形成的灰堵。 空调系统要处理的对象一般为室外新风或是室内排风,都属于气态介质,因此空调用热管换热设备为气-气热管换热器。本文将对空调用气-气热管换热器的常规计算法的热力计算做个简要介绍,文中的一次空气是待处理室外新风,二次空气可以是室内排风或室外新风。 2 热管换热器的设计计算[3][4] 2.1已知设计参数 一次空气质量流量M h , 进出口温度T 1,T 1’,二次空气质量流量M c , 进出口温度T 2,T 2’。一般六个已知量中,只要给定5个即可,另一个参数可由热平衡方程算出,如需要,还需给出一、二次空气的允许压降,二次空气出口温度未知时的计算过程为: ①一次空气定性温度T h =2 ' 11T T + (1) 查定性温度下的一次空气物性参数:定压比密度h p C 导热系数h λ粘度h μ 普兰德数h r P ②一次空气放出热量)(' 11T T C M Q h p h h -= (2)

换热器计算

热解工艺水-气换热装置(卧式)设计 摘要 城市生活垃圾是指城市居民日常生活中或为城市日常生活提供服务的活动中产生的固体废弃物。城市生活垃圾具有二重性,如果经过合理的资源化处理,可转化为可再生利用的能源,但是如果不加以利用和合理处置将造成环境的污染。随着城市化进程的加快和人民生活水平的提高,源源不断的城市生活垃圾将会产生出来。城市生活垃圾的收集、运输和处理过程会产生大量的有害成分,从而对大气、土壤、水等造成污染,不仅严重破坏城市景观,而且传播疾病,威胁人类的健康甚至生命安全。城市生活垃圾已成为社会公害之一,是我国和世界各大城市面临的重大环境问题。 本设计对环境污染概况和城市垃圾进行了详细的介绍,由城市垃圾处理引申出垃圾热解技术。并且针对垃圾碳化热解装置的配套换热装置进行设计。通过对换热器的规格要求,特性参数,设计出热解交换器,并且绘制出工艺流程图来简单化的展示垃圾热解的处理方式及流程。 关键词:城市垃圾垃圾热解技术换热器

Pyrolysis process water - gas heat exchanger unit (horizontal) Design ABSTRACT MSW is the daily life of urban residents in activities or providing services for the city everyday solid waste generated. MSW has a duality, if after a reasonable treatment resources, can be converted to the use of renewable energy, but if you do not take advantage and reasonable disposition will cause environmental pollution. With the acceleration of urbanization and people's living standards improve, a steady stream of municipal solid waste will be generated out. Municipal solid waste collection, transportation and treatment process will generate a lot of harmful ingredients, resulting in the pollution of air, soil, water, etc., not only seriously undermine the urban landscape, and the spread of disease, the threat to human health or safety. MSW has become one of the social nuisance, are major environmental problems facing the country and the world's major cities. The design overview of environmental pollution and urban waste carried out a detailed description, come out of the garbage from the municipal waste pyrolysis technology. And heat transfer device is designed for supporting garbage pyrolysis carbonization device. Through the heat exchanger specifications, parameters, pyrolysis exchanger design

计算热管换热器

1. 《热工学》,《传热学》里面有计算公式和公式推导 2. 各种手册里有更为直接的工程计算方法和参数列表,比如机械类手册,热工类手册、暖通类手册,压力容器类手册。 3. 计算热管换热系数可以采用有限元方法,ansys 、abaqus 都可以,如果有流固耦合,也可以用fluent 和cfx ,甚至是基于workbench 的多物理场联合仿真。另外还有流程类仿真计算软件,如aspen 之类的,这个软件一般应用在石化领域, 计算换热器比较有优势。 热管换热器设计 一台锅炉排烟温度为160℃,要求设计一台热管换热器,用烟气余热加热进气以提高锅炉效率。已知参数:锅炉排烟量f V =189000m 3/h ,迎风面风速=f u 2.9m/s ,排烟温度=1f t 160℃,设定出口烟气温度=2f t 118℃。需要空气的流量V l =120000m 3/h ,进气温度℃251=l t ,空气风速为s m v f /9.2= 选取圆片翅片强化换热。翅片管材料选择碳钢(w C =1%)。热管参数:热管蒸发段长取l 0=3.16m ,管外径d 0=34mm ,管内径d i =29mm ,壁厚δ0=2.5mm , 翅片高度H=12mm ,翅片厚度δ=2mm ,翅片间距mm s f 4.6=,那么翅片的节距 mm s s f f 4.8'=+=δ,每根管肋片数为n f =3160/8.4=376片。管排选用叉排布置, 迎面横向管子距离设定为m S T 115.0=,翅片管纵向距离m S S T L 115.0==。由于烟气和空气的物性很相近,取相同的蒸发器和冷凝器结构参数。 1. 总换热量计算 定性温度t fm=℃1392 118 1602 t 21 =+= +f f t 查物性得: ) /(10473.3/10931.25682.0Pr )/(0793.1/8712.02 2 6 3 K m W s m K kg kJ c m kg f f f p f ??=?==?==--λνρ,,,,

列管式换热器的设计计算

列管式换热器的设计计算 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换 热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用 多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和 流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准; 单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度 差,水源丰富地区选用较小的温度差。 4. 管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm及φ19×mm两种 规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第五节中图4-25所示。等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。 管子在管板上排列的间距(指相邻两根管子的中心距),随管子与管板的连接方法不同而异。通常,胀管法取t=(1.3~1.5)do,且相邻两管外壁间距不应小于6mm,即t≥(d+6)。焊接法取t=1.25do。 5. 管程和壳程数的确定当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。为了提高管内流速,可采用多管程。但是程数过多,导致管程流体

管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3) 绿色版无需安装解压后启动 Thecal.exe 该软件是通用的管式换热器的工艺设计计算软件,其结构参数是以GB151-1999为基础,同时参照了JB/T 4174-92、JB/T 4175-92。尽管 THECAL遵守JB/T 4174-92、JB/T 4175-92 的规定,但用户可以自行修改有关的结构参数。 硬件环境: Thecal 对硬件环境没有特殊要求,建议采用486-DX66或以上的CPU。 请将显示卡的分辨率设置为800×600或以上。 软件环境: 该软件运行在中文Windows 9X环境下。推荐使用中文Windows 98。

软件安装: 运行系统盘上的 “..\THECAL\Setup.exe”,安装向导向到会引导用户顺利完成安装。 运行该软件后,首先进入数据输入界面,在管程与壳程这两个回路中,流量、进出口温度、及热负荷这七个数据中必须且仅须已知五个数据方可进行计算,也就是说需要有五个选择框被选中并填入合理的数据才能够进行计算。当选择框选择不对或数据不合理,将提示错误,可以参考右上角的图形来检查出错的原因,重新确定已知数据并输入合理的数据。 输入数据后,首先按<热平衡>按钮来建立热平衡,如果输入的数据不合理,软件即发出数据错误信息,您可以留意屏幕右上角的图形来检查数据错误的原因。 正确地建立好热平衡后,即可按<计算>按钮来进入下一个界面进行计算。 该软件提供验证、设计两种计算方式,使用<设计>时,软件会自动确定管壳式换热器的壳程内径、折流板数及间距、拉杆数、换热管根数、换热管长度及管间距等,自动计算将自动确定换热器的流程数,其结构参数一般是遵循JB/T 4174-92、JB/T 4175-92的规定。<验证>时,可以自行确定换热器的管程及壳程的所有结构参数。首先确定壳体内径,然后确定换热管的长度,再核实其他的结构参数,按<验证>来计算该换热器的传热及流阻性能情况。 按<返回>按钮返回数据输入界面, 按<打印>按钮打印计算结果,需要说明的是,该软件所输出的计算结果采用的是A4号纸,需要事先在Windows的打印机管理模块中设置好。 该软件除了提供了管式换热器工艺计算功能外,还提供了几个实用的小程序,他们是<计算器>、<万能单位换算>,这些功能可以在主菜单中的<实用程序>项下找到。 本软件没有换热器强度计算功能,而管板厚度会影响换热面积的,如果管板厚度修改后,需要重新验证该换热器的传热性能。有关管壳式换热器的强度计算可以采用化工部设备设计技术中心站的钢制压力容器设计计算软件包或其他软件。 Thecal 1.1有如下问题需要注意: 1. 换热管数会因为设计压力不同需要必要的调整。 2. 由于该版本不具备强度计算功能,同时管板的厚度会影响总换热面积(换热管的长度一定),软件中的管板厚度仅为假设值,因而当管板经过强度计算以后,需要重新核准传热面积。 3. 折流板的间距为最大的允许距离,针对不同的工艺可能需要的调整。 4. 折流板约定为切除25 %的圆缺型折流板。 5. 根据文献,管外冷凝时,不论时水平管还是垂直管,气体流速对冷凝液膜流动的影响都很小,文献中的管外冷凝的膜系数不含气体流动特性因素。 6. 软件中采用“设计”所得的结果并不一定是最佳的方案,比如,采用默认数据时,设计结果是450的壳体,2.5米的管长,管程为双流程,当然也可以采用“校核”来选择400的壳体,3米的管长,或者是500的壳体,2米管长,4流程等等。 7. “保存文件”保存的仅是设计条件,而计算的结果没有保存。

热管换热器实验

热管换热器实验 一、实验目的 1. 了解热管换热器实验台的工作原理; 2. 熟悉热管换热器实验台的使用方法; 3. 掌握热管换热器换热量Q和传热系数K的测量和计算方法。 二、实验台的结构及其工作原理 热管换热器实验台的结构如下图所示。实验台由翅片管(整体绕制)、热段风道、冷段风道、冷段和热段风机、电加热器(Ⅰ—450W,Ⅱ—1000W)、工况选择 —测温元件 7—温度数显仪表8—工况选择开关9—琴键开关10—支架11—热段风机热段中的电加热器使空气加热,热风经热段风道时,通过翅片管进行换热和传递,从而使冷段风道的空气温度升高。利用风道中的热电偶对冷、热段的进出口温度进行测量,并用热球风速仪对冷、热段的出口风速进行测量,从而可以计算换热器的换热量Q和传热系数K。

三、实验台参数 1.冷段出口内径:D=180mm 2.热段出口内径:D=180mm 3.冷段传热表面参数: 翅片管长280mm 钢管直径21mm 翅片直径40mm 翅片个数104个 4.热段传热表面参数: 翅片管长280mm 钢管直径21mm 翅片直径40mm 翅片个数104个 四、实验步骤 1.连接电位差计和冷热端热电偶(如无冰水条件,可不连接冷段热电偶,而将冷段热电偶的接线柱短路。这样,测出的温度应加上室温); 2.接通电源; 3.将工况开关按在“工况Ⅰ”位置(Ⅰ-450W),此时电加热器和风机开始工作; 4.用热球风速仪在冷、热段出口的测孔中测量风速(为使测量工作在风道温度不超过40℃的情况下进行,必须在开机后立即测量)。风速仪使用方法,请参阅该仪器说明书; 5.待工况稳定后(约20分钟后),按下琴键开关,切换测温点,逐点测量工况I的冷热段进口温度(参看实验台结构图); 6.将工况开关按在“工况Ⅱ”位置(Ⅱ-1000w),重复上述步骤,测量工况Ⅱ的冷热段进口温度; 7.验结束后,切断所有电源。 五、实验数据处理 将实验测得的数据填入下表中:表1 [附]将实验所用的仪器名称、规格、编号及实验日期、室温等填入上表中的备注栏。 计算换热量、传热系数及热平衡误差: 1.工况Ⅰ(Ⅰ-450W) 冷段换热量 Q L =ρL ___ L v·F L·C PL(t L2-t L1) [W]

列管式换热器的计算

四、列管式换热器的工艺计算 4.1、确定物性参数: 定性温度:可取流体进口温度的平均值 壳程油的定性温度为 T=(140+40)/2=90℃ 管程流体的定性温度为 t=(30+40)/2=35℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据煤油在定性温度下的物性数据: ρo=825kg/m3 μo=7.15×10-4Pa?S c po=2.22KJ/(Kg?℃) λo=0.14W/(m?℃) 循环冷却水在35℃下的物性数据: ρi=994kg/m3 C pi=4.08KJ/(kg.℃) λi=0.626W/(m.℃) μi=0.000725Pa.s 4.2、计算总传热系数: m o=[(15.8×104)×103]/(300×24)=21944Kg/h

Q o=m o c po t o=21944×2.22×(140-40)=4.87×106KJ/h=1353KW 4.2.1.2、平均传热温差 4.2.1.3、冷却水用量 W i=Q o/C piΔt=4.87×106/(4.08×(40-30))=119362 Kg/h 4.2.2、总传热系数K =0.023××× =4759W/(.℃﹚ 壳程传热系数:假设壳程的传热系数 污垢热阻 管壁的导热系数λ=45W/﹙m.℃﹚ 则总传热系数K为: 4.3、计算传热面积 S’=Q/(KΔt)= (1353×103)/(310×39)=111.9m2 考虑15%的面积裕度,S=1.15×S’=128.7 m2 4.4、工艺结构尺寸 选用φ25×2.5传热管(碳钢),取管内流速μi=1m/s 依据传热管内径和流速确定单程传热管数 =(119362/(994×3600) 0.785×0.022×1 =106.2≈107根 按单程管计算,所需的传热管长度为

换热器模拟实例教程

Aspen plus换热器模拟概述 换热器模块 Heater 加热器/冷却器确定出口物流的热和相态条件换热器,冷却器,阀门,与功有关的结果 不需要时的泵和压缩机 HeatX 双物流换热器在两个物流之间换热两股物流的换热器当知道几何尺寸时核 算管壳式换热器 MHeatX 多物流换热器在多股物流之间换热多股热流和冷流换热器两股物流的换热 器LNG换热器 Hetran 管壳式换热器 与BJAC 管壳式换热器的接口程序管壳式换热器包括釜式再沸器 Aerotran 空冷换热器 与BJAC 空气冷却换热器的接口程序错流式换热器包括空气冷却器

HeatX换热器 1. 概述 HeatX有两种简捷法和严格法计算模型。 简捷法(Shortcut)计算不需要换热器结构或几何尺寸数据,可以使用最少的输入量来模拟一个换热器。Shortcut模型可进行设计模拟两种计算,其中设计计算依据工艺参数和总传热系数估算出传热面积。 严格法(Detailed)可以用换热器几何尺寸去估算传热膜系数、总传热系数、压降、对数平均温差校正因子等。严格法核算模型对HeatX提供了较多的规定选项,但也需要较多的输入。Detailed模型不能进行设计计算。 可以将HeatX 的Shortcut和Detailed结合完成换热器设计计算。首先依据给定的设计条件用Shortcut 估算传热面积,然后依据Shortcut的计算结果用Detailed 进行核算。 在使用 HeatX 模型前,首先要弄清下面这些问题: (1)HeatX能够模拟的管壳换热器类型 逆流和并流换热器; 弓形隔板TEMA E, F, G, H, J和X壳换热器; 圆形隔板TEMA E和F壳换热器; 裸管和翅片管换热器。 (2)HeatX能够进行的计算 全区域分析; 传热和压降计算; 显热、气泡状气化、凝结膜系数计算; 内置的或用户定义的关联式。 (3)HeatX不能进行进行的计算 机械震动分析计算; 估算污垢系数。 (3)Hesttx需要的输入规定 必须提供下述规定之一  换热器面积或几何尺寸;  换热器热负荷;  热流或冷流的出口温度;  在换热器两端之一处的接近温度;  热流或冷流的过热度/过冷度;  热流或冷流的气相分率(气相分率为 0 表饱和液相);  热流或冷流的温度变化。

相关主题