搜档网
当前位置:搜档网 › 基于CATIA的零件的参数化设计

基于CATIA的零件的参数化设计

基于CATIA的零件的参数化设计
基于CATIA的零件的参数化设计

基于CATIA的零件的参数化设计

作者:ee

(ee)

指导老师:ee

【摘要】:介绍了在CATIA环境下渐开线圆柱齿轮的参数化设计、运动仿真以及常见滚动轴承零件库的建立方法。着重描述了渐开线圆柱齿轮齿廓的绘制、深沟球轴承、圆锥滚子轴承的建模过程。设计人员通过改变有关参数或从库中直接调用零件,就可达到设计要求,缩短设计周期、减少重复工作、提高设计效率。

【关键词】:CATIA; 参数化设计;渐开线;圆柱齿轮;轴承;零件库

Parametric design of parts based on CATIA

Author: ee

(ee)

Tutor: ee

[Abstract]:In this paper, a method to complete the parametric design, simulation of involute cylindrical gear and establish the common rolling bearing parts library by CATIA is introduced. The drawing of tooth profile of involute cylindrical gear and the process of modeling of deep groove ball bearings, tapered roller bearing is emphatically described. By changing related parameters or call directly from the parts library, it can achieve the requirements of design, shorten the design cycle, reduce duplication of work and improve the efficiency of design.

[Key word]: CATIA; parametric design; involute; cylindrical gear; bearing; parts library

目录

引言 (1)

1.CATIA软件简介 (2)

2.齿轮参数化设计 (3)

2.1齿轮建模综述 (3)

2.1.1齿轮建模分析 (3)

2.1.2渐开线方程的推导 (3)

2.2齿轮参数化建模 (5)

2.2.1建立齿轮基本参数 (5)

2.2.2 渐开线方程的生成 (6)

2.2.3 直齿轮实体建模 (7)

2.2.4 斜齿轮实体建模 (11)

2.3齿轮装配和运动仿真 (13)

2.3.1 齿轮装配 (13)

2.3.2 运动仿真 (14)

3. 滚动轴承建库 (16)

3.1滚动轴承概述 (16)

3.1.1滚动轴承组成 (16)

3.1.2滚动轴承分类 (16)

3.1.3滚动轴承的代号 (17)

3.1.4滚动轴承类型的选择 (18)

3.2轴承参数化建模 (19)

3.2.1深沟球轴承 (19)

3.2.2 圆锥滚子轴承 (21)

3.3轴承库的建立 (24)

4. 总结 (27)

致谢 (28)

参考文献 (29)

引言

渐开线圆柱齿轮是现代机械中最常见的一种传动机构, 广泛应用于机床传动装置、各种减速器以及车辆的变速箱等, 是最具代表性的一种齿轮。圆柱直齿轮用于平行轴传动,齿轮啮合与退出时沿着齿宽同时进行,容易产生冲击,振动和噪音。圆柱斜齿轮除可用于平行中传动,还可用于交叉轴传动(螺旋齿轮机构),其特点是重合系数大,传动平稳,齿轮强度高,适于重负载。齿轮设计的基本参数有:齿数,模数,压力角,齿顶高系数,顶隙系数,螺旋角。

轴承是机械工业和民用器具使用广泛、要求严格的配套基础件。品种多样复杂,性能要求严格,是一种精密标准机械部件。而其中滚动轴承是标准化、系列化程度最高的一种。一般来讲,滚动轴承由内圈,外圈,滚动体,保持架四部分组成。

由于齿轮和轴承的标准化、系列化,我们就可以通过参数化建模,零件建库来提高设计效率,缩短设计周期。CATIA软件不仅提供了大量常用的参数化特征体,而且用户可以根据产品特点和开发需要,建立自己的参数化特征库。本文以渐开线圆柱齿轮,深沟球轴承,圆锥滚子轴承为例,探讨利用CATIA的知识顾问模块,建立产品的参数化知识库,实现产品参数造型设计、建库的方法[1]。

1.CATIA软件简介

CATIA( Computer Aided Tri-Dimensional Interface Application)是法国达索公司的产品开发旗舰解决方案。作为PLM协同解决方案的一个重要组成部分,它可以帮助制造厂商设计他们未来的产品,并支持从项目前阶段、具体的设计、分析、模拟、组装到维护在内的全部工业设计流程。它是世界上一种主流的CAD/CAE/CAM 一体化软件。模块化的CATIA系列产品旨在满足客户在产品开发活动中的需要,包括风格和外型设计、机械设计、设备与系统工程、管理数字样机、机械加工、分析和模拟。广泛应用于汽车、航空航天、船舶制造、厂房设计、电力与电子、消费品和通用机械制造业中。

CATIA 核心技术:CATIA先进的混合建模技术,CATIA所有模块具有全相关性,并行工程的设计环境使得设计周期大大缩短,CATIA覆盖了产品开发的整个过程。

CATIA独特的曲面设计模块:1.Generic Shape Design, GSD,创成式造型。2.Free Style Surface, FSS, 自由风格造型。3.Automotive Class A,汽车A级曲面。4.FreeStyle Sketch Tracer,FST,自由风格草图绘制。5.Digitized Shape Editor,DSE,数字曲面编辑器。6.Quick Surface Reconstruction, 快速曲面重构。7.Shape Sculpter, 小三角片体外形编辑。8.Automotive BIW Fastening,汽车白车身紧固。9.Image & Shape。

10.Healing Assistant,曲面缝补工具。

CATIA V5版本是IBM和达索系统公司长期以来在为数字化企业服务过程中不断探索的结晶。围绕数字化产品和电子商务集成概念进行系统结构设计的CATIA V5版本,可为数字化企业建立一个针对产品整个开发过程的工作环境。在这个环境中,可以对产品开发过程的各个方面进行仿真,并能够实现工程人员和非工程人员之间的电子通信。CATIA V5版本具有特点: 1.重新构造的新一代体系结构。2.支持不同应用层次的可扩充性。3.与NT和UNIX硬件平台的独立性。4.专用知识的捕捉和重复使用。5.给现存客户平稳升级[2]。

目前常用的参数化设计CAD软件中,主流的应用软件有Pro/Engineer、UGNX、CATIA 和Solidworks四大软件,四大软件各有特点并在不同的领域分别占据一定的市场份额。Pro/Engineer是参数化设计的鼻祖,参数化设计的实现最先就是由Pro/Engineer实现,目前主要应用于消费电子、小家电和日用品、发动机设计等行业;UG和CATIA在传统的制造行业比如汽车、航空航天等行业上两个软件占据绝对的市场份额[3]。

2.齿轮参数化设计

齿轮机构是在各种机构中应用最为广泛的一种传动机构。它依靠轮齿齿廓直接接触来传递任意两轴之间的运动和动力,并具有传递功率范围大、传动效率高、传动比准确、使用寿命长、工作可靠等优点。但同时制造安装精度要求高,成本较高。

对于定传动比传动的齿轮来说,目前最常用的齿廓曲线是渐开线,其次是摆线和变态摆线。本文主要阐述说明渐开线圆柱直齿轮和渐开线圆柱斜齿轮的参数化建模方法[4]。

2.1齿轮建模综述

2.1.1齿轮建模分析

首先,对于压力角a=20°,齿顶高系数ha*=1的标准渐开线直齿圆柱齿轮来说,具有最小齿数的限制,齿轮齿数z的最小取值为17。又由于标准渐开线直齿圆柱齿轮是斜齿轮的特例,当斜齿轮螺旋角β为零即是直齿轮。

其次,对于齿根圆半径大于基圆半径和齿根圆半径小于基圆半径的两种情况(齿根圆半径等于基圆半径实际是不可能发生的),齿廓的曲线是不同的。当齿根圆半径rf<基圆半径rb,齿根圆与齿廓渐开线有一段过渡曲线,而当齿根圆半径rf >基圆半径rb 时,齿廓曲线完全是渐开线,所以实现参数化齿轮建模时要考虑这两种情况。对于标准渐开线直齿圆柱齿轮,计算可得当z<42时(即是rf=42,齿廓曲线完全是渐开线。为了提高渐开线圆柱齿轮零件的建模效率,这里采用统一的建模方法,即一个零件包罗上述的两种情况。当齿根圆半径rf<基圆半径rb时(齿根圆半径rf>基圆半径rb时,延伸与不延伸都一样,),在CATIA V5软件创成式外形设计中通过曲线外插延伸的指令功能,将渐开线向齿根圆方向延伸(延伸长度为0.2*m),然后与齿根圆进行圆角操作(圆角半径为0.38*m),再通过中值面镜像,就可得到一个齿廓的形状。最后,圆周阵列出整个齿轮齿廓,进入零部件设计界面,使用填充器命令完成建模[5]。

2.1.2渐开线方程的推导

由机械原理可知,渐开线的形状仅取决于基圆(即齿轮的渐开线形状仅取决于模数

m、齿数z以及压力角a),基圆内无渐开线,发生线沿基圆滚过的长度,等于基圆上被滚过的圆弧长度,渐开线上任一点的法线恒与基圆相切等性质。

如图2.1所示,其中XOY构成标准直角坐标系,O为坐标原点,半径为rb的圆为基圆,即渐开线的发生圆,直线KN为渐开线的发生线,圆弧AKB即是渐开线。OK为渐开线K点的矢径,垂直于矢径OK的直线KV为速度矢量,连接KO。渐开线过K点的法线KN 交基圆于N点,由渐开线的性质可知,KN相切于基圆。过N点向X轴作垂线交X轴于Q 点,过K点向直线NQ作垂线,垂足为P。∠KOA称为展角,记为θ(即角b),∠NOA称为滚动角,记为Φ(即角c),KV与KN的夹角称为压力角,记为a。由几何关系可以看出∠NOK=a[6]。

图2.1 渐开线形成结构示意图

在极坐标系中,渐开线方程可写为:

rk=rb/cos(a),θ=Φ-a=tan(a)-a。

x y),则得

在直角坐标系下,∠KNP=∠NOA=Φ(弧度)。记点K的坐标为( ,

k k

x=OQ+PK=ON*cos(Φ)+NK*sin(Φ)

k

= ON*cos(Φ)+AN*sin(Φ) //( AN表示圆弧AN的长)

=rb*cos(Φ)+rb*Φ*sin(Φ),

y=NQ-NP=ON*sin(Φ)-NK*cos(Φ)

k

= ON*sin(Φ)-AN*cos(Φ)

=rb*sin(Φ)-rb*Φ*cos(Φ)。

2.2齿轮参数化建模

齿轮建模中用到的齿轮参数及其计算公式如表1.1:

2.2.1建立齿轮基本参数

打开catia软件,依次点击开始——机械设计——零部件设计,新建零件,将其命名为gear。然后点击按钮 f(x),创建齿轮参数。如图2.2所示:

图2.2 建立齿轮基本参数

通过选择参数单位(实数,整数,长度,角度…),点击按钮“新建参数类型”输入参数名称,设置初始值(只有这个参数为固定值时才用)可以建立齿轮参数:m,z,a,b,ha*,c*等固定参数。

再通过按钮“添加公式”,编辑公式即可添加参数:d,da,df,db等。建好之后,零件树看起来如图2.3示:

图2.3 参数建立之后零件树结构图

2.2.2 渐开线方程的生成

上面我们已经定义了计算参数的公式,现在我们需要定义出能得到齿廓渐开线上的点的{X,Y}坐标的公式。在这里,CATIA提供了一个方便的工具来完成它:变量规则。

点击按钮“fog”,输入规则名称,然后就可以给渐开线上的X和Y坐标编辑两条规则公式:xd= db/2 * ( cos(t * PI*1rad) +sin(t * PI*1rad) * t * PI )

yd= db/2 * (sin (t * PI*1rad)-cos(t * PI*1rad) * t * PI ) 如图2.4:

图2.4 定义渐开线方程

2.2.3 直齿轮实体建模

点击开始——形状——创成式外形设计。

1.在xy平面上插入7个点。其位置由xd(t)和yd(t)规则函数来定义。点击“插入点”,在H输入栏中单击鼠标右键,选择编辑公式。在“字典”栏中选择“参数”,然后在“参数成员”栏中选择“Law”,双击“关系\x”,然后再在“字典”栏中选择“规则”,在“参数成员”栏中选择“Law.Evaluate(实数):实数”,输入0,表示当t取0时对应的x 取值。同理在V输入栏中设置“关系\y.Evaluate(0),此时完成点1的建立。类似地,分别取t=0.1,0.2,0.25,0.3,0.35,0.4,完成另外6个点的创建[7]。如图

2.5所示:

图2.5 建立渐开线上的点

2.做一条包含上面7个渐开线点的样条曲线。

3.朝齿轮的中心外插样条曲线(由经验公式,外伸长度=2*m),如图2.6所示:

图2.6 外插样条曲线

4.定义接触点:(渐开线曲线与分度圆的相交点)。由于此点的极坐标角度等于压力角,可让变量参数t=a/180deg,来创建它。

5.定义接触面:(齿轮轴线和接触点来确定)

6.定义单个齿的中值平面和初始平面。将接触面分别绕齿轮轴线旋转90deg/z,-90deg/z便可以得到。三面的关系如图2.7(a)示,中值面建立如图2.7(b)所示:

图2.7(a)三面几何关系示意图图2.7(b)中值面的建立

7. 画齿根圆:首先在初始平面上确定齿根圆的初始点9(V=0,H=-df/2),然后用“中心与点”定义齿根圆。(中心点坐标为0,0, 0 ) 如图2.8所示:

图2.8 画齿根圆

8.插入齿根圆与外插样条线之间的圆角(rr=0.38*m),多余的曲线应被切除,如图2.9所示:

图2.9 倒圆角

9.画齿顶圆:(用中心和半径)中心为原点,半径为齿顶圆半径ra=da/2,如图2.10:

图2.10 画齿顶圆

10.将第8步修建的曲线沿中值面对称,得到齿轮齿廓的另一边。

11.修剪圆角、对称与齿顶圆得到单个齿的轮廓,如图2.11所示:

图2.11 单个齿廓

12.将所得单个齿廓阵列(圆周图样,实例为齿轮齿数),即可得整个齿轮齿廓,如图2.12所示:

图2.12 阵列单个齿轮齿廓

13.接合阵列与单个齿廓,如图2.13所示:

图2.13 接合齿廓

14.建立直齿轮实体模型:点击“开始”——机械设计——零部件设计,再点击“填充器”按钮(长度为齿轮壁厚),完成实体建模,如图2.14所示。改变相关参数(m,z,b,a),就可得到不同的齿轮模型。

图2.14 拉伸成实体模型

2.2.4 斜齿轮实体建模

根据斜齿轮的性质:若将斜齿轮分度圆柱面展开则螺旋线成为一条斜直线,它和轴线夹角即为分度圆上的螺旋角β。故绘制时可以,先在轴线的水平面上绘制一条斜直线,使其与轴线夹角为螺旋角β(调用f(x))。然后,将此直线投影至分度圆柱面上就可得到螺旋线[8]。

1.从直齿轮实体建模第14步开始:画分度圆(用中心和半径),如图

2.15:

图2.15 画分度圆

2.曲面拉伸分度圆,如图2.16所示:

图2.16 曲面拉伸分度圆

3.yz平面画斜直线:长度为b/cos(β),与z轴夹角为β,一端与原点相合。如图2.17所示:

图2.17 画斜直线

4.将斜直线投影至分度圆拉伸曲面上(按钮“插入”—“线框”—“投影”),如图2.18所示:

图2.18 投影斜直线

5.建立斜齿轮实体模型:点击“开始”——“机械设计”——“零部件设计”——“肋”,完成实体建模,如图2.19所示。改变相关参数(m,z,β,b,a),就可得到不同的齿轮模型。

图2.19 肋定义完成斜齿轮实体建模

2.3齿轮装配和运动仿真

2.3.1 齿轮装配

1.新建“product”,点击开始——机械设计——装配件设计,调入要装配的零件。施加合适的位置约束,完成两个齿轮的安装,并通过碰撞停止命令适当的调整使两个齿轮相互啮合。装配结果如图

2.20所示。

图2.20 装配结果

2.点击开始——数字模型——DMU kinematics ,用“旋转接合”命令分别定义齿轮1、齿轮2与齿轮盖的连接。

3.点击插入——固定零部件,固定齿轮盖。

2.3.2 运动仿真

1. 在已经装配好的两个齿轮间,选择刚才建立的两个旋转副,添加“齿轮接合”命令,在Rotation direction 中设定好齿轮的传动方向, 再施加一个角度驱动后, 系统就可以进行机构运动仿真,如图

2.21所示。在仿真过程中可以添加干涉分析和距离分析, 可以将分析设定为停止, 这样在发生干涉时设计者可以查看干涉的具体情况[9]。

图2.21 齿轮接合定义大小齿轮

2.然后点击“使用命令进行模拟”,两个齿轮就能运动起来了。如图2.22所示:

图2.22 模拟运动

ee 3.视频录制,如图2.23所示:

图2.23 视频录制

3. 滚动轴承建库

滚动轴承是现代机器中广泛应用的部件之一,它是依靠主要元件间的滚动接触来支承转动零件的。滚动轴承绝大多数已经标准化,并由专业工厂大量制造及供应各种常用规格的轴承。滚动轴承具有摩擦阻力小,功率消耗少,起动容易等优点。

3.1滚动轴承概述

3.1.1滚动轴承组成

滚动轴承基本结构由内圈,外圈,滚动体,保持架四部分组成。内圈用来与轴颈装配,外圈用来与轴承座孔装配。常见的滚动体有:球、圆柱滚子、圆锥滚子、球面滚子、非对称球面滚子、滚针等。轴承内、外圈上的滚道,有限制滚动体沿轴向位移的作用。保持架的主要作用是均匀地隔开滚动体。保持架有冲压和实体两种。冲压保持架一般用低碳钢板冲压而成,实体保持架通常用铜合金或铝合金等制造[10]。

滚动轴承的内圈、外圈、滚动体,一般是用高炭铬轴承钢或渗碳轴承钢制造的,热处理后的硬度一般不低于60HRC。通常轴承的工作温度不高于120℃。

3.1.2滚动轴承分类

滚动轴承按承受外载荷的不同可分为:向心轴承、推力轴承、向心推力轴承。

滚动轴承按照结构可分为:调心球轴承、调心滚子轴承、圆锥滚子轴承、推力球轴承、深沟球轴承、角接触球轴承、推力圆柱滚子轴承、圆柱滚子轴承、滚针轴承等。如图3.1所示:

图3.1 常见轴承结构图

在CATIA V5中建立零部件库的方法

在CATIA V5中建立零部件库的方法 CATIA作为当前一种主流的CAD三维设计软件,广泛应用于航空、汽车、船舶及其他制造业。它之所以如此多地受到越来越多企业的青睐,除了其所具备的强大的三维建模功能外,很大程度上由于其提供给用户的友好的二次开发接口,用户可以根据自己的需求开发出自身需要的界面,以及建立随时可以调用的模型库,方便设计者进行设计。在当前竞争日益加剧的形势下,谁先推出新的符合大众需求的产品,谁就占据了商机。对于设计者来说,从产品概念设计到产品的批量生产的过程中,经历了不断的设计、测试、更改;再设计、再测试、再更改的过程。而这种更改经常只是一些小的方面的更正,例如尺寸上的稍加改动,而总的产品外形是不变的,如果重复性地做这种更改,会带来设计时间上的浪费。为了减少这种时间上的浪费,提高设计效率,同时节约投入上的成本,对于一些标准件、常用件以及企业的一些同类型、尺寸不同的产品,有必要将其参数化,建立相应的零部件库,待到需要时,只需从库中调出所需的参数化零件,或者在定制的界面中输入用户所需的参数,就可以快速在CATIA环境中生成模型,这样很大程度上缩短了建模时间,提高了建模效率,而且方便了模型的更改。 基于当前为了提高建模效率,降低重复性建模次数的要求,本文讨论了关于CATIA 中建立参数化零件库的方法,以及它们相应的建立步骤。 一、CATIA中建立零件库的方法简介 作为一款成熟的CAD软件,CATIA拥有强大的建模功能,友好的界面,同时它也嵌入了装配建模时所需的一些标准件,如螺栓、螺母和垫圈等的参数化标准件库。但这些都不能满足不同企业生产过程中的要求,因为这些自带的标准件是CATIA软件开发公司根据通用零件标准建立的,不具备特殊性。一般的企业都有自己的一些常用件,这些常用件又是设计过程中经常用到的,并且很多情况下这些零件是同类不同尺寸,若反复建立这些模型,会导致时间上的浪费,因此CATIA提供了参数化零件库的二次开发功能。 目前,在CATIA中建立参数化零件库的方法主要有以下两种:①运用CATIA软件本身自带的智能工程模块建立零部件库;②运用编程的方式建立参数化零件库。第二种方法需要用户具备一定的计算机编程方面的知识,使用的方法可分为进程内和进程外的编程。进程内的开发主要是使用宏命令录制或编写,使用到的语言有VBScript、CATScript和

CATIA非参数化设计详解

CATIA V5非参数化设计详解 徐伟雄(QQ:95356494 Email:Xuweixiong2001@https://www.sodocs.net/doc/268053444.html,) ?CATIA 简介 CATIA是法国Dassault System公司推出的CAD/CAE/CAM一体化软件,居世界CAD/CAE/CAM领域的领导地位,广泛应用于航空航天、汽车制造、造船、机械制造、电子\电器、消费品行业,它的集成解决方案覆盖所有的产品设计与制造领域。 ?CATIA V5非参数化设计 CATIA 作为一个强大设计平台,可以完成各种复杂的产品设计。其无与伦比的曲面设计能力和强大的知识工程及电子样机技术使其市场占有率一直居高不下,越来越多的企业选择CATIA作为其设计和制造工具。与同类产品相比,CATIA同时具备了全参数化设计和非参数化设计的能力,兼具了二者的共同优点。 CATIA的参数化设计能力,对于使用过CATIA和了解过CATIA的读者来说势必有非常清楚的认识和体会,此处不做赘述。CATIA的非参设计能力和处理方式也是非常适用和强大的。尤其是在汽车工程设计、复杂的产品的结构设计或外形修改时采用非参的设计方式会非常方便。同时非参方式在数据轻量化、模型交付、知识保护等方便也具备明显的优势。 本文主要针对CATIA V5,介绍一下对模型做非参数化处理时的几种方法。(注:文中所指参数模式和非参模式均是针对设计时几何元素之间的关联性而言) ●工具条切换 在零件设计过程中可以利用菜单命令或工具按钮随时切换参数方式和非参数的设计方式。切换工具按钮为(Create Datum)。鼠标左键单击该按钮,当其处于高亮状态时表示当前的设计方式是非参设计模式,再次单

基于CATIA的零件的参数化设计

基于CATIA的零件的参数化设计 作者:ee (ee) 指导老师:ee 【摘要】:介绍了在CATIA环境下渐开线圆柱齿轮的参数化设计、运动仿真以及常见滚动轴承零件库的建立方法。着重描述了渐开线圆柱齿轮齿廓的绘制、深沟球轴承、圆锥滚子轴承的建模过程。设计人员通过改变有关参数或从库中直接调用零件,就可达到设计要求,缩短设计周期、减少重复工作、提高设计效率。 【关键词】:CATIA; 参数化设计;渐开线;圆柱齿轮;轴承;零件库

Parametric design of parts based on CATIA Author: ee (ee) Tutor: ee [Abstract]:In this paper, a method to complete the parametric design, simulation of involute cylindrical gear and establish the common rolling bearing parts library by CATIA is introduced. The drawing of tooth profile of involute cylindrical gear and the process of modeling of deep groove ball bearings, tapered roller bearing is emphatically described. By changing related parameters or call directly from the parts library, it can achieve the requirements of design, shorten the design cycle, reduce duplication of work and improve the efficiency of design. [Key word]: CATIA; parametric design; involute; cylindrical gear; bearing; parts library

CATIA全参数化建模理念

CATIA参数化建模理念 1.CATIA参数化建模思路 1.1.逆向建模 现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。 1.2.骨架设计 在传统的三维设计包含两种设计模式: ①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。 ②自上而下设计的设计理念为先总体规划,后细化设计。 大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。 1.3.参数化模板设计 一、参数化设计基本原理 参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。 ①参数(Parameter)是作为特征定义的CATIA文档的一种特性。参数有值,能够用关系式(Relation)约束。 ②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则(rules)、检查(checks)和设计表(design tables)。 ③公式(formulas)是用来定义一个参数如何由其他参数计算出的。 ④零件设计表:设计表是Excel或文本表格,有一组参数。表格中的每列定义具体参数的一个可能的值。每行定义这组参数可能的配置。零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。 ⑤配置(Configuration)是设计表中相关的参数组的一组值。

catia教程:一步步教你如何建立catia标准件零件库

一步步教你如何建立CATIA标准件零件库 by 郑子聪 ——written 在CATIA的建模中,常常用到螺栓螺母等一系列的标准件,但目前CATIA中只有 很少的标准件供你选择。为了方便日后建模的工作,建立一个自己的标准库十分重要, 如GB零件库,下面一步一步教你如何建立CATIA零件库。 1.明确你要画的标准件,查阅相关国标,以GB9074.4-88十字槽盘头组合螺钉为例, 其技术条件引用的是十字槽盘头螺钉GB818、弹簧垫圈GB9074.26和平垫圈 GB9074.24。至于十字槽可以采用简化的画法,没必要深究到底。 2.打开CATIA,新建一个part,并命名为GB9074.4十字槽盘头组合螺栓M6×16。先 根据GB818十字槽盘头螺钉中的规定,画出M6×16的螺钉形状(你也可以画M5 ×16等其他的组合螺钉,这里以M6×16为例,然后利用公式直接可以建立其他螺 钉的数模)。 先根据GB818中的规定,建立如下参数:dk、k、rt、r、d、l等。

选择公式按钮,弹出如下对话框: 过滤器类型中选择“重命名参数”,新建类型参数选择“长度”,点击新建类型参数按钮,左边编辑栏输入“l”,右边编辑栏输入“16”,建立起螺钉长度l=16mm的参数,如下图: 继续新建dk=12mm、k=4.6mm、rt=10mm、r=0.25mm、d=6mm的长度参数。

选择yz平面进行草绘,根据GB818中的规定,画出头部的轮廓形状,如下: 对图示边框进行尺寸标识,在该尺寸上点击右键,在弹出的对话框中选择“对象-编辑公式”。 在弹出的公式编辑器中选择“重命名的参数”,在相对应的参数上双击,例如要编辑尺寸为6mm的边,找到参数dk并双击,则在上面公式编辑栏中出现dk,然后继续在编辑栏中输入“/2”(由于我们这里是采用旋转的方法来制作螺钉头,所以尺寸要除以2),如下图。

CATIA环境下怎么建标准件库

CATIA环境下怎么建标准件库 伴随着产品研发体系的不断完善,知识的延续与再利用作为一种全新的设计理念应运而生。特别是在市场经济大潮的影响下,企业人才的流动较为频繁。如何保证在关键位置的人才流动后不至于给企业带来巨大的损失,同时制造业经验如何快速传授给新的工程师,从而加速设计开发的流程,CAD/CAM是技术创新的关键。 CATIA V5的知识工程模块较好地解决了困扰制造业及其他消费品行业的知识重用和保留的重要问题。它利用独一无二的先进软件架构——CATIA V5知识工程及专家系统(Knowledge Ware),可以将用户成熟的经验做成模板,使得相似的设计可重复使用;还可以通过运用CATIA的知识工程顾问模块,以产品知识为基础,参数化地建立零组件模型,再把零部件模型导入Catalog中实现各种标准件及典型零组件库的建立,用以指导产品的设计和加工。随着CATIA V5在国内企业的大量使用,关于建立符合国标、航标、企标等的三维标准件库的要求也越来越紧迫。通过使用标准件库以其达到减少重复劳动、提高设计效率的目的。 我们可以利用CATIA 的Formula、 Design Table和Catalog功能,在CATIA 环境下构造零件的基本特征,通过参数化 设计方法,数值驱动生成标准件库。 下面以HB1-101-1983六角头螺栓 为例,采用CAT1A V5R17快速建立标准件 库。图1为零件的二维图形,表1给出了 有关控制参数。 表1 HB1-101-1983六角头螺栓规范尺寸 从表1中可以看出独立参数有d、H、S、r、l、d、C和L八个尺寸.用这些尺寸来驱动生成螺栓的

库文件。 首先,需要建立一个六角头螺栓的零件,它将作为标准件库的母版,其他的同类零件(此处的同类指结构相同、参数不同,例如HB1-102-1983等)只需改变母版零件的相应参数即可。其步骤为: (1)启动CATIA V5R17,创建一个新的Part,改Part1为HB1-101。 (2)用f(x)工具建立d、H、S、r、l、d、C和L八个Length变量,默认值可暂取手册中的六角头螺栓中的任意一组值,例如:4,,7,,,12, 1, 。如图2。 (3)选取该part总体坐标系下YZ的平面,绘制如图3的草图,标注4个尺寸,并用公式按图1所示赋予这些尺寸相应的参数值。如图3所示,双击,然后右键选择Edit Formula,选择结构树上的参数H,OK确认,以此类推,处的公式为S/2,处的公式为S / sqrt(3),见图4。 图2 图3 图4 (4)利用已建立的草图生成一个旋转体。 (5)拾取旋转体的顶部作为草图平面,选取旋转体直径较大的边作为参考几何,绘制内接正六边形见图3,约束正六边形的6个顶点在参考圆上。 (6)用已创建的草图对原实体进行Pocket操作,类型为Up to last。即得到六角头的螺栓头见图5。

[整理]catia参数化设计.

参数化 一.斜齿圆柱齿轮的几何特征 斜齿轮齿廓在啮合过程中,齿廓接触线的长度由零逐渐增长,从某一个位置开始又逐渐缩短,直至脱离接触,这种逐渐进入逐渐脱离的啮合过程减少了传动时的冲击、振动和噪声,从而提高了传动的稳定性,故在高速大功率的传动中,斜齿轮传动获得了较为广泛的应用。 二.斜齿圆柱齿轮与直齿圆柱齿轮的几何关系 三.catia画图思路 我们已经看到了,斜齿圆柱齿轮与直齿圆柱齿轮相比,就是斜齿圆柱齿轮两端端面旋转了一个角度,如果旋转角度为零,那这个斜齿圆柱齿轮就是一个直齿圆柱齿轮了,因而直齿圆柱齿轮就是螺旋角为零的特殊斜齿圆柱齿轮。因此,我们可以将直齿圆柱齿轮和斜齿圆柱齿轮用同一个画法画出来,只改变一下参数(为端面的参数)就可以输出不同的直齿或者斜齿的齿轮,大概思路如下:

a.首先用formula输入齿轮各参数的关系; b.画出齿轮齿根圆柱坯子; c.通过输入的公式得出一个齿的齿廓; d.在曲面设计模块下将齿廓平移到坯子的另一端面(通过平移复制一个新的齿廓到另一端面); e.将新的齿廓旋转到特定角度; f.多截面拉伸成形一个轮齿; g.环形阵列这个轮齿 这样,斜齿圆柱齿轮就画完了。 四.catia绘图步骤 1.设置catia,通过tools-->options将relation显示出来,以便待会使用,如图所示: 2.输入齿轮的各项参数 斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数 齿数 Z 模数 m 压力角 a 齿顶圆半径 rk = r+m 分度圆半径 r = m*z/2 基圆半径 rb = r*cosa 齿根圆半径 rf = r-1.25*m

螺旋角 beta 齿厚 depth 进入线框和曲面建模模块(或part design零件设计模块)如图: 输入各参数及公式,如图所示:

使用catia对弹簧进行参数化设计

圆形截面圆柱压缩弹簧设计 特性线呈线性,刚性稳定,结构简单,制造方便,应用较广,在机械设备中多用作缓冲,减震,以及储能和控制运动等。 现以下图(图0)为例做一个弹簧。 图0 圆形截面圆柱压缩弹簧创建过程 1.创建螺旋线 (1)首先打开CATIA应用程序,然后在【开始Start】下拉菜单中从【形状shape】/【创成式曲面设计Generative Shape Design】打开曲面设计工作平台,如图1所示,系统弹出【零部件名称Part Name】对话框。

(2)在弹出的【零部件名称Part Name】对话框中输入弹簧的零件名称:spring,单击【确定OK】按钮。用户也可在树状目录上右键单击,在弹出的关联菜单中选【属性Properties】,然后在选项板上修改【零部件名称Part Name】为spring,如图2所示,单击【确定OK】按钮后,树状目录也被相应修改,如图3所示。 图1 图2 图3 (2)单击【参考元素Points】工具栏上的【点Point】工具按钮,系统弹出如图4所示的【点定义Point Definition】对话框。在对话框的【点的形式Point type】选择坐标,x坐标改为11.5mm,y,z坐标分别为0mm。单击确定。

图4 (3)再单击【曲线Curves】工具栏上的【螺旋线Helix】工具按钮,系统弹出如图5所示的【螺旋曲线定义Helix Curve Definition】对话框。在对话框的【起点Start Point】中选中【Point.1】,在对话框的【轴Axis】中选中【z轴Z Axis】在对话框的【螺距Pitch】中填4mm,在对话框的【高度Height】中填4mm.单击确定。所画螺旋线如图6所示。 图5

catia齿轮参数化设计

目录 一齿轮参数与公式表格————————————————————————PAGE 3 二参数与公式的设置—————————————————————————PAGE 5 三新建零件—————————————————————————————PAGE 7 四定义原始参数———————————————————————————PAGE 8 五定义计算参数———————————————————————————PAGE 10 六核查已定义的固定参数与计算参数——————————————————PAGE 13 七定义渐开线的变量规则———————————————————————PAGE 14 八制作单个齿的几何轮廓———————————————————————PAGE 16 九创建整个齿轮轮廓—————————————————————————PAGE 32

十创建齿轮实体———————————————————————————PAGE 35 一齿轮参数与公式表格

16 L 长度(mm) ——齿轮的厚度(在定义计算参数中舔加公式时,可以直接复制公式:注意单位一致) 二参数与公式的设置 三新建零件 依次点击———— ———— 点击按钮 现在零件树看起来应该如下: 四.定义原始参数 点击按钮,如图下所示: 这样就可以创建齿轮参数: 1.选择参数单位(实数,整数,长度,角度…) 2.点击按钮 3.输入参数名称 4.设置初始值(只有这个参数为固定值时才用) 现在零件树看起来应该如下: (直齿轮)(斜齿轮)多了个参数:b分度圆螺旋角 五定义计算参数 大部分的几何参数都由z,m,a三个参数来决定的,而不需要给他们设置值,因为CATIA能计算出他们的值来。 因此代替设置初始值这个步骤的是,点击按钮

CATIA标准零件库建库

一.实体建模: 1. 进入CATIA软件,点击Start下拉菜单,鼠标移动到Mechanical Design,选择Part Design,进入机械零件设计工作台。 2. 左击xy plane参考平面,在工具栏中点击Sketcher 草图设计图标,进入草图设计模式。 3. 点击Rectangle 矩形图标的下拉箭头,出现多边型图标,点击Hexagon 六边形图标,画一个任意大小的六边形。工作台环境参数设置注意事项:此时Geometrical Constraints,Dimensional Constraints 必须在启用状态。 4. 点击Constraint 尺寸限制图标,选中六边型的一条垂直线,垂直线变橘黄色显示,移动鼠标,出现尺寸线,再点击另外一条垂直线,标出两条垂直线的距离尺寸线,双击该尺寸线,出现Constraint Definition 尺寸线定义对话框,直接在对话框内填入100,点击OK按钮。 5. 进入零件实体设计模式,建造立体模型。双击模型树的Part1处,进入实体设计模式。以后应注意这种模式转换,CATIA是大型CAD/CAM/CAE集成软件,在应用中的模式转换,工作台的切换频繁,设计者要清楚自己在哪个工作台工作。 6. 点击Pad拉伸图标,打开Pad Definition 对话框,第一栏Type 类型选择缺省的Dimension 实体,Length 长度栏内填100mm,点击OK 按钮,建成六棱柱实体。 7. 单击选中六棱柱实体的上底面,在工具栏中点击Sketcher 草图设计图标,进入草图设计模式。 8. 单击Circle 画圆图标,选中坐标原点,移动鼠标,再单击,画出任意大小的一个圆。点击Constraint 尺寸限制图标,然后单击该圆,标出圆的直径尺寸线。双击标注的尺寸线,出现Constraint Definition 尺寸线定义对话框,在Diameter栏内填上100mm。 9. 双击模型树的Part1处,回到零件实体设计模式,单击Pad拉伸图标,出现Pad Definition 对话框,第一栏Type类型选择缺省的Dimension 实体,Length 长度栏内填100mm,然后点击OK 按钮,建成圆柱实体于六棱柱上。 10.在模型树中单击yz plane 平面, 在工具栏中点击Sketcher 草图设计图标,进入草图设计模式。 11. 在工具栏中点击Profile 轮廓线图标,画一个三角形,三角形一条边与H轴重合,在工具栏中点击Constraint 尺寸限制图标,然后点击三角形水平线的左端点,移动鼠标,再点击原点,标注二者的距离,并双击尺寸线, 出现Constraint Definition 尺寸线定义对话框,在Diameter栏内修改尺寸为5mm。再单击Constraint 尺寸线图标,标注并修改水平线与斜线的夹角为30°,点击工具栏中Exit Workbench 离开草图工作台。 12. 点击工具栏中的Groove凹槽图标,出现Groove Definition 凹槽定义对话框,在对话框选中Axis Selection 轴选择,在图中选中中心轴,当鼠标移动到圆柱侧面附近时,圆柱的中心轴将自动显现,及时点击鼠标即可,然后点击OK按钮. 13. 设置圆柱和棱柱接触面的圆角.点击选中圆柱底面的外圆, 点击工具栏中的Edge Fillet 棱边导圆角图标,就出现Edge Fillet Definition 棱边导圆对话框,在Radius栏内写入10mm, 然后点击OK按钮,保存该文件(*.part) 二. 模型参数化: 1.建立参数, 点击Formula ,建立参数如下: 参数定义说明: 参数命名一定要规范,要与机械设计手册中的符号有较好的可对照性,规则是,CATIA 所用符号应与机械设计手册中的国家标准用符号相同,为编辑时明确意义,可用加下划线后,加入相应的英文字意,可以加连续后缀。参数命名符号对照表一定要以书面形式写入模板设计说明书中。主符号对照表,写的是设计手册中国家标准的符号,建模时自己用的驱动参数,要列入辅助符号对照表中。

关于在CATIA V5中建立零部件库的方法

关于在CATIA V5中建立零部件库的方法 本文介绍了建立CATIA参数化零件库的主要两种措施:CATIA内部知识工程模块技术以及编程开发技术,对编程开发技术又从进程内和进程外进一步加以介绍。本文着重讲解了用知识工程模块建立参数化零件库的方法和步骤,并对比分析了各方法的优缺点,以及运用各方法在开发过程中需注意的事项。 CATIA作为当前一种主流的CAD三维设计软件,广泛应用于航空、汽车、船舶及其他制造业。它之所以如此多地受到越来越多企业的青睐,除了其所具备的强大的三维建模功能外,很大程度上由于其提供给用户的友好的二次开发接口,用户可以根据自己的需求开发出自身需要的界面,以及建立随时可以调用的模型库,方便设计者进行设计。在当前竞争日益加剧的形势下,谁先推出新的符合大众需求的产品,谁就占据了商机。对于设计者来说,从产品概念设计到产品的批量生产的过程中,经历了不断的设计、测试、更改;再设计、再测试、再更改的过程。而这种更改经常只是一些小的方面的更正,例如尺寸上的稍加改动,而总的产品外形是不变的,如果重复性地做这种更改,会带来设计时间上的浪费。为了减少这种时间上的浪费,提高设计效率,同时节约投入上的成本,对于一些标准件、常用件以及企业的一些同类型、尺寸不同的产品,有必要将其参数化,建立相应的零部件库,待到需要时,只需从库中调出所需的参数化零件,或者在定制的界面中输入用户所需的参数,就可以快速在CATIA环境中生成模型,这样很大程度上缩短了建模时间,提高了建模效率,而且方便了模型的更改。 基于当前为了提高建模效率,降低重复性建模次数的要求,本文讨论了关于CATIA中建立参数化零件库的方法,以及它们相应的建立步骤。 一、CATIA中建立零件库的方法简介 作为一款成熟的CAD软件,CATIA拥有强大的建模功能,友好的界面,同时它也嵌入了装配建模时所需的一些标准件,如螺栓、螺母和垫圈等的参数化标准件库。但这些都不能满足不同企业生产过程中的要求,因为这些自带的标准件是CATIA软件开发公司根据通用零件标准建立的,不具备特殊性。一般的企业都有自己的一些常用件,这些常用件又是设计过程中经常用到的,并且很多情况下这些零件是同类不同尺寸,若反复建立这些模型,会导致时间上的浪费,因此CATIA提供了参数化零件库的二次开发功能。 目前,在CATIA中建立参数化零件库的方法主要有以下两种:①运用CATIA软件本身自带的智能工程模块建立零部件库;②运用编程的方式建立参数化零件库。第二种方法需要用户具备一定的计算机编程方面的知识,使用的方法可分为进程内和进程外的编程。进程内的开发主要是使用宏命令录制或编写,使用到的语言有VBScript、CATScript和VBA;进程外的主要是运用VB和VC作为开发软件,通过驾驭CATIA专门的外部接口进行通讯建库。

最新catia参数化设计

c a t i a参数化设计

参数化 一.斜齿圆柱齿轮的几何特征 斜齿轮齿廓在啮合过程中,齿廓接触线的长度由零逐渐增长,从某一个位置开始又逐渐缩短,直至脱离接触,这种逐渐进入逐渐脱离的啮合过程减少了传动时的冲击、振动和噪声,从而提高了传动的稳定性,故在高速大功率的传动中,斜齿轮传动获得了较为广泛的应用。 二.斜齿圆柱齿轮与直齿圆柱齿轮的几何关系 三.catia画图思路 我们已经看到了,斜齿圆柱齿轮与直齿圆柱齿轮相比,就是斜齿圆柱齿轮两端端面旋转了一个角度,如果旋转角度为零,那这个斜齿圆柱齿轮就是一个直齿圆柱齿轮了,因而直齿圆柱齿轮就是螺旋角为零的特殊斜齿圆柱齿轮。因此,我们可以将直齿圆柱齿轮和斜齿圆柱齿轮用同一个画法画出来,只改变一下参数(为端面的参数)就可以输出不同的直齿或者斜齿的齿轮,大概思路如下:

a.首先用formula输入齿轮各参数的关系; b.画出齿轮齿根圆柱坯子; c.通过输入的公式得出一个齿的齿廓; d.在曲面设计模块下将齿廓平移到坯子的另一端面(通过平移复制一个新的齿廓到另一端面); e.将新的齿廓旋转到特定角度; f.多截面拉伸成形一个轮齿; g.环形阵列这个轮齿 这样,斜齿圆柱齿轮就画完了。 四.catia绘图步骤 1.设置catia,通过tools-->options将relation显示出来,以便待会使用,如图所示: 2.输入齿轮的各项参数 斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数

齿数 Z 模数 m 压力角 a 齿顶圆半径 rk = r+m 分度圆半径 r = m*z/2 基圆半径 rb = r*cosa 齿根圆半径 rf = r-1.25*m 螺旋角 beta 齿厚 depth 进入线框和曲面建模模块(或part design零件设计模块)如图:

Catia结构设计模块自定义截面库总结分解

(1)创建参数化零件和设计表 以创建圆截面为例,进入零件设计模块(如图1) 图1 将零件命名为Cycle 选取xy平面开始绘制草图(一定要在xy平面绘制,否则之后绘制框架的时候会出现如图2所示情况,即生成的为一个片而不是实体) 图2 绘制的草图如图3所示 图3

点“公式”这个按钮,弹出对话框,如图4所示 图4 点击左下角的“新类型参数”,注意类型选为:长度,具有:单值。如图5和图6所示(这一步的目的是在之后要生成的设计表中出现“半径” 这一参数) 图5

图6 接下来要将草图中的那个尺寸标注与刚才生成的“半径”这个参数对应,右键“直径”这个尺寸,选择最下面的“半径1对象”,然后选“编 辑公式” 图7 点选左侧特征树中的“参数”-“半径”如图8所示。说明:草图中的尺寸是直径,为什么要和半径参数对应:因为回看图7可知:对直径右键后,对象是半径,所以要和“半径”这个参数对应。(如果特征树中没有参数显示,需要定制一下,工具-选项-基础结构-零件基础结构,然后把约束、参数、关系都勾选上如图9所示)

图8 图9 自此,参数化零件就做完了,这只是一个圆,所以参数不是很多,至于

其他较复杂的截面,比如铝型材,创建方法是一样的,只不过需要多定义一些参数。创建完之后注意保存。保存的地点:D:\Program Files\Catia V5 R19\intel_a\startup\EquipmentAndSystems\Structure\StructuralCatal ogs\AISC\Models 接下来要创建设计表。设计表的目的:1 是将参数化零件加入目录的必要条件,2 可以利用Excel创建系列化零件参数 点击“设计表”图标,弹出如图10对话框 名称:自定义,注释:自定义,下面有两个选择:“从预先存在的文件中创建设计表”和“使用当前的参数值创建设计表”,前者的目的是使用已存在的设计表,后者是创建新的设计表 方向:垂直和水平决定生成的设计表中数据的方向 图10 点击确定之后弹出如图11对话框,过滤器类型中选择:用户参数,然后双击刚才创建的“半径”参数,点击确定

基于CATIA定位销的参数化设计

本设计属于自身独立完成并顺利完成答辩,具有很高的可靠性,绝对不弄虚作假,设计内容真实可靠,内含设计说明书、图纸、动画演示等,需要图纸和设计详细电子档的加QQ:3103064563,旨在共同进步, 寻求共同提高!!!! 基于CATIA定位销的 参数化设计 毕业设计

论文题目基于CATIA定位销的参数化设计 姓名0000000 学号11530082 院系经济技术学院专业机械设计制造及其自动化指导教师000000 职称教授 中国·合肥 二o一五年六月

目录 摘要 (1) 第一章绪论 (2) 1.1课题研究背景及意义 (2) 1.2 CAD/CAM的介绍 (2) 1.3 CATIA简介 (3) 第二章参数化设计 (4) 2.1 参数化设计简介 (4) 2.2 参数化设计方法 (4) 2.3 参数化设计思路 (4) 2.4 定位销参数化建模及其实现方法 (4) 2.5 利用系统参数与尺寸约束驱动定位销零件图 (5) 第三章定位销参数化建模 (6) 3.1 技术条件 (6) 3.2 固定式定位销工程图及参数 (6) 3.3 固定式定位销参数化建模 (7) 第四章零件库的建立 (14) 4.1 功能模块介绍 (14) 4.2 定位销零件库的建立 (14) 4.3定位销零件库总览 (15) 第五章定位销的简单应用 (21)

5.1应用简介 (21) 5.2应用装配简介 (21) 5.2.1固定式定位销组合 (21) 5.2.2可换式定位销与定位衬套组合 (22) 5.2.3定位插销与定位衬套组合 (23) 结论 (24) 致谢 (25) 参考文献 (26)

CATIA实用参数化建模理念

CATIA参数化建模理念 现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。 在传统的三维设计包含两种设计模式: ①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。 ②自上而下设计的设计理念为先总体规划,后细化设计。 大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。 一、参数化设计基本原理 参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。 ①参数(Parameter)是作为特征定义的 CATIA文档的一种特性。参数有值,能够用关系式(Relation)约束。 ②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则( rules)、检查(checks)和设计表(design tables)。 ③公式(formulas)是用来定义一个参数如何由其他参数计算出的。 ④零件设计表:设计表是 Excel或文本表格,有一组参数。表格中的每列定义具体参数的一个可能的值。每行定义这组参数可能的配置。零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。 ⑤配置(Configuration)是设计表中相关的参数组的一组值。

CATIA环境下建标准件库讲解及操作实例

CATIA环境下建标准件库操作说明 伴随着产品研发体系的不断完善,知识的延续与再利用作为一种全新的设计理念应运而生。特别是在市场经济大潮的影响下,企业人才的流动较为频繁。如何保证在关键位置的人才流动后不至于给企业带来巨大的损失,同时制造业经验如何快速传授给新的工程师,从而加速设计开发的流程,CAD/CAM是技术创新的关键。 CA TIA V5的知识工程模块较好地解决了困扰制造业及其他消费品行业的知识重用和保留的重要问题。它利用独一无二的先进软件架构——CATIA V5知识工程及专家系统(Knowledge Ware),可以将用户成熟的经验做成模板,使得相似的设计可重复使用;还可以通过运用CATIA的知识工程顾问模块,以产品知识为基础,参数化地建立零组件模型,再把零部件模型导入Catalog中实现各种标准件及典型零组件库的建立,用以指导产品的设计和加工。随着CATIA V5在国内企业的大量使用,关于建立符合国标、航标、企标等的三维标准件库的要求也越来越紧迫。通过使用标准件库以其达到减少重复劳动、提高设计效率的目的。 我们可以利用CATIA 的Formula、 Design Table和Catalog功能,在CATIA 环境下构造零件的基本特征,通过参数化 设计方法,数值驱动生成标准件库。 下面以HB1-101-1983六角头螺栓 为例,采用CAT1A V5R17快速建立标准件 库。图1为零件的二维图形,表1给出了 有关控制参数。 表1 HB1-101-1983六角头螺栓规范尺寸

从表1中可以看出独立参数有d、H、S、r、l0、d2、C和L八个尺寸.用这些尺寸来驱动生成螺栓的库文件。 首先,需要建立一个六角头螺栓的零件,它将作为标准件库的母版,其他的同类零件(此处的同类指结构相同、参数不同,例如HB1-102-1983等)只需改变母版零件的相应参数即可。其步骤为: (1)启动CATIA V5R17,创建一个新的Part,改Part1为HB1-101。 (2)用f(x)工具建立d、H、S、r、l0、d2、C和L八个Length变量,默认值可暂取手册中的六角头螺栓中的任意一组值,例如:4,2.8,7,0.5,7.5,12, 1, 2.5。如图2。 (3)选取该part总体坐标系下YZ的平面,绘制如图3的草图,标注4个尺寸,并用公式按图1所示赋予这些尺寸相应的参数值。如图3所示,双击2.8,然后右键选择Edit Formula,选择结构树上的参数H, OK确认,以此类推,3.5处的公式为S/2,4.041处的公式为S / sqrt(3),见图4。 图2 图3 图4 (4)利用已建立的草图生成一个旋转体。 (5)拾取旋转体的顶部作为草图平面,选取旋转体直径较大的边作为参考几何,绘制内接正六边形见图3,约束正六边形的6个顶点在参考圆上。 (6)用已创建的草图对原实体进行Pocket操作,类型为Up to last。即得到六角头的螺栓头见图5。

相关主题