搜档网
当前位置:搜档网 › 纳米石墨烯的特性以及应用

纳米石墨烯的特性以及应用

纳米石墨烯的特性以及应用
纳米石墨烯的特性以及应用

纳米石墨烯的特性以及应用

摘要:石墨烯是指从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。在石墨烯中,碳原子之间以σ键相连接,这些σ键赋予了石墨烯极其强大的机械性能;同时,由于碳原子的结合方式为SP2杂化,因此每个碳原子都有一个孤电子,从而赋予了其优秀的导电性。而近年来,纳米石墨烯以及其氧化物,由于自身良好的生物相容性以及较大的表面积,在生物医药等领域的应用取得了极大的进展,本文将简述石墨烯以及其氧化物的特性,并举例分析其在生物载药工厂中的作用。

关键词:纳米石墨烯;纳米氧化石墨烯;生物医药;药物传递

一.纳米石墨烯以及氧化纳米石墨烯自身特性

1.1 纳米石墨烯自身特性

纳米石墨烯与石墨烯的概念容易混淆,但本质上是同一个物质。纳米石墨烯代表的是厚度在纳米级别的石墨烯。一般程度上严格定义的石墨烯都是单层的,而纳米石墨烯则有可能是多层的。纳米石墨烯常常被称为石墨烯纳米片,也被称为碳纳米片( CNFs )或碳纳米壁( CNWs)。人们所熟悉的富勒烯,碳纳米管,石墨等碳材料,本质的基础单元就是石墨烯。

石墨烯最迷人的地方在于它的纯粹。单层原子的结构使得石墨烯具有极薄的性质,但由于碳原子之间强韧的σ键以及整个二维晶体平面的拉伸性能,使得石墨烯同时具有了非常高的强度性能,杨氏模量为1100Gpa,而断裂强度则达到惊人的125Gpa,这样的机械性能使得石墨烯几乎可以被利用在任何需要高强度材料的领域。

而与此同时,石墨烯二维晶体表面流动的孤电子赋予了它优越的导电性能。由于自身电阻率非常小,石墨烯被视为下一个可以取代“硅”的导电原材料,人们希望能制备出具有更高性能的现代计算机芯片或处理器。

1.2 氧化纳米石墨烯自身特性

氧化纳米石墨烯,英文缩写为GO,顾名思义是石墨烯的氧化物。氧化石墨烯保留了原有的层状结构,通过强氧化剂(例如高锰酸钾)开环,使得部分双键断裂,引入了许多含氧的官能团,例如羧基,羟基,环氧基等。这些活泼的含氧功能团赋予了石墨烯更为活泼的性能。

尽管含氧基团很大程度上破坏了碳原子的SP2杂化方式,使得石墨烯整体的导电性能大大降低,但氧基团自身活泼的化学性能以及良好的水溶性,使得氧化石墨烯在众多领域,尤其是生物领域,有着非常广泛的应用。

氧化纳米石墨烯最突出的性能在于承载与结合能力,由于表面含氧基团的存在,氧化石墨烯表面呈现负电性,因此容易吸附带正电荷的离子或外表显正电性的小型物质。自身具备的层状结构使得吸附过程更加平稳,牢固性能更高。这一特点在生物载药方面有着很大的价值。

二.纳米石墨烯以及氧化纳米石墨烯在生物领域的应用

2.1 药物传递中纳米石墨烯与氧化纳米石墨烯的应用

在上文中已经提到,无论是石墨烯还是氧化石墨烯,都具有非常大的表面积,同时由于同时存在两个平面,因此在药物传递中,石墨烯以及氧化石墨烯具有非常大的载药量。但载药工具自身需要满足一些要求:例如需要具有较好的生物相容性,同时还需要有能够进行化学修饰的能力,以吻合目标分子自身的表面结构。

氧化纳米石墨烯表面所携带的含氧集团可与不同的聚合物发生化学反应,从而与DNA,RNA,蛋白质等大生物分子也可发生相互作用。由于聚合物的修饰通常发生在边缘,因此对于石墨烯的层状结构并无太大的影响,是为良好的药物传递工具。以下是两个具体例子。

上图是一个简单的纳米载药体制备示意图,它是目前非常流行的一种做法。石墨烯活泼的表层使得它能够接纳多种受i体。除了自身载有一定数量的药物之外,石墨烯表层还附上了单克隆抗体以及成像探针,这样一种组合式的方法可以使得纳米石墨烯作为载药工具,同时拥有几种不同的功能。

以上是一个非常鲜明的通过修饰合成载药分子的例子。PEG是一种具有非常高生物相容性的物质,通过二硫键将PEG修饰在氧化石墨烯的外层,赋予了其良好的生物相容性,顺利通过血液循环。而在目标细胞内PH小于6的情况下,PEG外壳自动发生降解,从而释放出原本镶嵌在石墨烯层的药物分子,完成药物释放。

以上两个例子都是石墨烯共价键修饰的例子。共价键修饰在石墨烯/氧化石墨烯表面修饰中占有很大的成分,但非共价键修饰也有着非常多的应用。非共价键修饰主要包括氢键作

用,电子相互作用,以及π-π堆积作用。在石墨烯中,π-π堆积作用是最为重要的一环。

下图所示的例子就是一个最为简单的通过层-层作用形成载药分子的示意图。当PEI在石墨烯表层吸附的时候,将形成带有正电荷的晶体表面,从而进一步吸引pDNA进行吸附,最终形成含有多层DNA的载药大分子。

三.小结

石墨烯以及氧化石墨烯由于其自身的结构特点,具有高机械性能,良好导电性能,高透明性等特征。这些特征使得石墨烯以及氧化石墨烯在多重领域中都发挥了极其重要的作用。如今在药物传递领域,石墨烯以及氧化石墨烯出众的载药能力,使得其成为新兴的载药工具。通过对其表面进行共价键修饰或非共价键修饰,可使得氧化石墨烯具有较好的生物相容性以及细胞针对性,从而获得更加有效的药物传递分子。

【1】Graphene and graphene oxide as new nanocarriers for drug deliveryapplications,Jingquan Liu,Liang Cui Dusan Losic,Acta Biomaterialia,2013

【2】Nano-Graphene Oxide for Cellular Imaging and Drug Delivery,Xiaoming Sun, Zhuang Liu, Kevin Welsher, Joshua Tucker Robinson, Andrew Goodwin, Sasa Zaric,and Hongjie Dai,Adv Materials,2008.5

【3】Nano-graphene in biomedicine: theranosticapplications,Kai Yang, Liangzhu Feng, Xiaoze Shi and Zhuang Liu*,Chem Sov Rev,2013.

石墨烯纳米带能带结构调控的理论研究

学位论文诚信声明书 本人郑重声明:所呈交的学位论文(设计)是我个人在导师指导下进行的研究(设计)工作及取得的研究(设计)成果。除了文中加以标注和致谢的地方外,论文(设计)中不包含其他人或集体已经公开发表或撰写过的研究(设计)成果,也不包含本人或其他人在其它单位已申请学位或为其他用途使用过的成果。与我一同工作的同志对本研究(设计)所做的任何贡献均已在论文中做了明确的说明并表示了致谢。 申请学位论文(设计)与资料若有不实之处,本人愿承担一切相关责任。 学位论文(设计)作者签名:日期: 学位论文知识产权声明书 本人完全了解学校有关保护知识产权的规定,即:在校期间所做论文(设计)工作的知识产权属西安科技大学所有。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。本人允许论文(设计)被查阅和借阅;学校可以公布本学位论文(设计)的全部或部分内容并将有关内容编入有关数据库进行检索,可以采用影印、缩印或其它复制手段保存和汇编本学位论文。 保密论文待解密后适用本声明。 学位论文(设计)作者签名:指导教师签名: 年月日

论文题目:石墨烯纳米带能带结构调控的理论研究 专业:微电子学 本科生:朱善旭(签名)___________ 指导教师:徐大庆(签名)___________ 摘要 随着集成电路技术的快速发展,集成密度,速度和存储器容量等集成电路性能指标的进一步发展必须要减小设备的尺寸。但是随着器件尺寸不断减小,硅材料较小的载流子迁移率,较低的热传导率,较差的稳定性成为了集成电路行业进一步发展的障碍,因此寻找新的材料来代替硅成为了科学研究的热点。石墨烯具有极高的电子迁移率(15000cm2·V- 1·S - 1)和优良的热传导率(3-5KW·m- 1·K- 1),因此,石墨烯被认为是可以取代单晶硅或者与单晶硅相结合,进而保持集成电路继续沿着摩尔定律提高性能的一种重要的新材料。 众所周知,本征石墨烯是一种带隙为零的半金属材料。如何打开石墨烯纳米带的带隙,使之具有半导体的基本性质,是研制石墨烯基半导体电子器件的重要条件之一。本研究基于密度泛函理论的第一性原理,利用Materials Studio程序及其CASTEP 模块研究如何改变石墨烯纳米带的能带结构。首先通过建立扶手椅型和锯齿型石墨烯纳米带模型计算分析不同形状的石墨烯纳米带的能带结构,并改变石墨烯纳米带的长度和宽度以及纳米带的层数研究结构变化对石墨烯纳米带带隙的影响,然后通过建立掺杂、吸附模型研究其各自对石墨烯纳米带带隙的影响,最后研究应力下的石墨烯纳米带的能带结构。 研究表明,不同长宽的石墨烯纳米带能带结构有变化。在长度较小,宽度适中时扶手椅型石墨烯纳米带带隙较大,长宽均较小时锯齿型石墨烯纳米带带隙较大,双层结构的石墨烯纳米带的带隙相对单层也会发生变化。另外,掺杂和吸附均可实现石墨烯纳米带能带结构的调控,但吸附对石墨烯优越的电学特性改变较小。最后,研究发现应力的存在使石墨烯纳米带的带隙减小。 关键词:石墨烯纳米带,能带结构,带隙,掺杂,吸附

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯纳米带的制备及其应用

石墨烯纳米带的制备及其应用: [1]于璇,刘一,叶雨萌,肖胜雄.石墨烯纳米带的制备方法[J].上海师范大学学报(自然科学版),2018,47(05):539-551+508. 石墨烯是一种二维大平面结构, 为了维持其自身的稳定, 很容易产生皱褶、起伏等结构缺陷.因此, 近年来研究者们开始着重研究石墨烯不同形态的衍生物.其中, 石墨烯纳米带(GNRs) 成为继CNTs之后被广泛关注的一类准一维碳基纳米材料.GNRs是指宽度小于50 nm的石墨烯条带, 其理论模型最初于1996年由FUJITA等[3,4,5]提出, 以检查石墨烯中的边缘和纳米级尺寸效应.由于其具有高载流子迁移率, 石墨烯也被公认为是纳米电子学未来最有应用前景的材料之一.尽管如此, 在纳米电子学中利用石墨烯的最大挑战之一就是其缺乏足够大的带隙[6].因为没有带隙, 则难以关闭石墨烯场效应晶体管(FETs) , 导致较小的开关比, 所以石墨烯不能直接应用于晶体管.要想在打开石墨烯带隙的同时保证其载流子迁移率不下降, 最好的办法就是将石墨烯裁剪成宽度较小的GNRs.当材料的尺寸变得等于材料中电子运动的特征长度时, 材料的性质在很大程度上取决于其尺寸和形状.GNRs结构引起的量子限域可以引入相当大的带隙, 使得GNRs可以应用于纳米电子学中.虽然GNRs不具有石墨烯那样易于器件化的平面结构, 但它继承了石墨烯的许多优异性质, 且由于GNRs特殊的边缘限域效应, 从而使其具有比石墨烯更灵活的可调节性质和更大的实用价值. 1.1 自上而下的制备方法 到目前为止, 人们对石墨烯的制备方法进行了各种研究, 取得了很多进展, 其基本思路可以分为两种:一种是以天然石墨为原料, 从大到小剥离得到单层的石墨烯材料;另一种是从碳原子出发, 从小到大合成GNRs.但如何大批量的制备高质量石墨烯, 仍然是学术界急需解决的问题. 自上而下的方法是目前较成熟的方法之一, 该方法是把大的GNRs、石墨烯晶体、CNTs 等通过一系列的方法变成所需尺寸的纳米带.这种方法不能提供均匀的超窄带宽度和原子级精确边缘, 但是相比于自下而上的制备方法可以大规模的合成GNRs.如图4所示, GNRs的制备方法可以简单总结为几种[12]: (a) 多壁碳纳米管(MWCNTs) 的嵌入-剥离方法, 包括在液态NH3和Li中进行处理, 以及随后使用HCl和热处理的剥离方法; (b) 化学途径方法, 涉及可能破坏碳-碳键的酸反应, 例如硫酸(H2SO4) 和高锰酸钾(KMnO4) 作为氧化剂; (c) 催化方法, 其中金属纳米粒子像剪刀一样纵向“切割”CNTs; (d) 电学方法, 让电流通过CNTs; (e) 物理化学方法, 将CNTs嵌入聚合物基质中, 然后进行Ar等离子体处理, 得到的结构是展开的碳纳米管, 如图4 (f) 所示, 进一步得到GNRs.下面将具体从解卷CNTs法、催化反应解离石墨烯法和石墨烯刻蚀法等方法详细介绍如何制GNRs. 1.1.1 解卷CNTs法 由于GNRs在结构上与CNTs相关, CNTs可以被视为卷起的GNRs, 因此可以通过纵向拉开CNTs来合成GNRs.而解卷CNTs的方法多种多样, 目前比较成熟的就是将CNTs通过一定的方式变成GNRs.解卷CNTs是利用外界作用将管状CNTs切割成带状GNRs的方法.该方法工艺简单、成本低廉, 并且所得GNRs尺寸均一、边缘平整、缺陷低, 因此在大规模制备高质量GNRs领域呈现具体广阔前景.CNTs是圆柱形碳同素异形体, 有明确且可控的直径, 这使得它们成为精确尺寸GNRs的合适前体. KOSYNKIN等[14]报道了一种基于溶液的氧化工艺以打开MWCNTs.他们首先将MWCNTs悬浮在浓H2SO4中, 然后用KMnO4处理, 将混合物在室温下搅拌1 h, 然后在55~70℃下再加热1 h.该过程完成之后, 纳米带的边缘和表面上都会出现含氧物质, 例如环氧

碳纳米管;石墨烯;及碳纳米管-石墨烯复合材料

目录 摘要 ................................................................................................................................................... I Abstract ............................................................................................................................................. I I 1 石墨烯. (1) 1.1 石墨烯简介 (1) 1.2 石墨烯的结构和性质 (2) 1.2.1 石墨烯的结构 (2) 1.2.2 石墨烯的性质 (4) 1.3 石墨烯的表征 (5) 1.4 石墨烯的主要制备方法 (6) 2 碳纳米管 (8) 2.1 碳纳米管的发现及发展历程 (8) 2.2 碳纳米管的结构和分类 (9) 2.2.1碳纳米管的结构 (9) 2.2.2碳纳米管的分类 (11) 2.3 碳纳米管的生长机理 (12) 2.3.1 顶部生长机理 (12) 2.3.2 底部生长机理 (13) 2.4 碳纳米管的性能 (14) 2.4.1 碳纳米管的力学性能 (14) 2.4.2 热学性能 (14) 2.4.3 碳纳米管的电学性能 (15) 2.4.4 光学性能 (16) 2.5碳纳米管的制备 (16) 2.5.1 电弧放电法 (16) 2.5.2 激光蒸发法 (17) 2.5.3 化学气相沉积法 (18) 2.6.碳纳米管的预处理 (19) 2.6.1 碳纳米管的纯化 (19) 2.6.2 碳纳米管的分散 (19) 2.6.3碳纳米管的活化 (20) 2.7碳纳米管的应用 (20) 2.7.1 在电磁学与器件方面 (20) 2.7.2 在信息科学方面 (21) 2.7.3 储氢方面 (21) 2.7.4 制造纳米材料方面 (21) 2.7.5 催化方面 (22) 2.8 存在问题及发展方向 (22) 3碳纳米管/石墨烯复合材料 (22) 3.1 从碳纳米管、石墨稀到碳纳米管/石墨稀复合材料发展历程 (22) 3.2 碳纳米管/石墨烯复合材料结构 (23)

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

石墨烯、碳纳米管总结

第四、五章总结 石墨烯、碳纳米管的化学生物传感 一、石墨烯和碳纳米管 1、石墨烯是由碳原子以sp2杂化连接的单原子层构成的,其基本结构单元为有机材料中最稳定的苯六元环,其理论厚度仅为0.35 nm,是目前所发现的最薄的二维材料。石墨烯是构成其它石墨材料的基本单元,可以翘曲变成零维的富勒烯, 卷曲形成一维的CNTs或者堆垛成三维的石墨。 2、碳纳米管是由碳六元环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过sp 2杂化与周围3个碳原子发生完全键合。 由于石墨烯和碳纳米管独有的结构和奇特的物理、化学特性,迅速成为备受瞩目的国际前沿和研究热点。 二、石墨烯和碳纳米管的制备 1、石墨烯的制备 (1)机械剥离法(机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨表面剥离开来。是制备石墨烯最为直接的方法。但低产率和尺寸不易控制等缺点使该方法仅适用于实验室的基础研究。) (2)氧化石墨-还原法(利用KClO 和HNO 可以使石墨层深度氧化,获得氧化石墨(GO),GO与石墨烯具有类似的平面结构,以其为前体采用适当的还原方法可以使其表面的功能团消除,获得石墨烯材料。) (3)化学气相沉积法(采用一定化学配比的气体为反应物,在特定激活条件下,通过气相化学反应可在不同的基片表面生成石墨烯膜层。优点一、获得单层石墨烯比例大,二、结晶完整度高。缺点:成本高产量低。) 2、碳纳米管的制备方法 自发现CNTs以来人们尝试了多种方法进行制备研究,取得了一定的进展。如电弧法、激光蒸发法、催化裂解法等。在以上许多的制备方法中,有一个共同的特点,即产生小的碳(Cn)组分以使CNTs生长,从这一点来看,各种合成方法的区别在于产生碳组分的方法不同。电弧法和激光蒸发是由电极或靶蒸发产生的碳蒸气;催化裂解法是由碳氢化合物与催化剂相互作用产生的碳蒸气。 三、石墨烯和碳纳米管的功能化 所谓功能化就是利用石墨烯和CNTs在制备过程中表面产生的缺陷和基团通过共价、非共价或掺杂等方法,使石墨烯或CNTs表面的某些性质发生改变,更易于研究和应用。由于石墨烯和CNTs具有类似的结构,而且表面都含有羧基、羰基等含氧基团,因此对两者表面进行功能化的方法可以一致,即共价键合功能化和非共价键合功能化 四、石墨烯和碳纳米管在化学生物传感技术中的应用 1、石墨烯的应用 (1)基于其荧光效应LuCH等通过标记荧光染料的单链DNA吸附于氧化石墨烯上制备出一种复合物,进而用于目标单链DNA的检测。 (2)基于其载体作用Zhang Y等发展了一种制备Fe3O4纳米粒子-氧化石墨烯复合材料的新方法,该复合材料可以实现磁靶向纳米药物输运等用途。 (3)基于其拉曼效应M.Manikandan等分别用原位合成和混合超声的方式

纳米石墨烯的特性以及应用

纳米石墨烯的特性以及应用 摘要:石墨烯是指从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。在石墨烯中,碳原子之间以σ键相连接,这些σ键赋予了石墨烯极其强大的机械性能;同时,由于碳原子的结合方式为SP2杂化,因此每个碳原子都有一个孤电子,从而赋予了其优秀的导电性。而近年来,纳米石墨烯以及其氧化物,由于自身良好的生物相容性以及较大的表面积,在生物医药等领域的应用取得了极大的进展,本文将简述石墨烯以及其氧化物的特性,并举例分析其在生物载药工厂中的作用。 关键词:纳米石墨烯;纳米氧化石墨烯;生物医药;药物传递 一.纳米石墨烯以及氧化纳米石墨烯自身特性 1.1 纳米石墨烯自身特性 纳米石墨烯与石墨烯的概念容易混淆,但本质上是同一个物质。纳米石墨烯代表的是厚度在纳米级别的石墨烯。一般程度上严格定义的石墨烯都是单层的,而纳米石墨烯则有可能是多层的。纳米石墨烯常常被称为石墨烯纳米片,也被称为碳纳米片( CNFs )或碳纳米壁( CNWs)。人们所熟悉的富勒烯,碳纳米管,石墨等碳材料,本质的基础单元就是石墨烯。 石墨烯最迷人的地方在于它的纯粹。单层原子的结构使得石墨烯具有极薄的性质,但由于碳原子之间强韧的σ键以及整个二维晶体平面的拉伸性能,使得石墨烯同时具有了非常高的强度性能,杨氏模量为1100Gpa,而断裂强度则达到惊人的125Gpa,这样的机械性能使得石墨烯几乎可以被利用在任何需要高强度材料的领域。 而与此同时,石墨烯二维晶体表面流动的孤电子赋予了它优越的导电性能。由于自身电阻率非常小,石墨烯被视为下一个可以取代“硅”的导电原材料,人们希望能制备出具有更高性能的现代计算机芯片或处理器。 1.2 氧化纳米石墨烯自身特性 氧化纳米石墨烯,英文缩写为GO,顾名思义是石墨烯的氧化物。氧化石墨烯保留了原有的层状结构,通过强氧化剂(例如高锰酸钾)开环,使得部分双键断裂,引入了许多含氧的官能团,例如羧基,羟基,环氧基等。这些活泼的含氧功能团赋予了石墨烯更为活泼的性能。

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯纳米带的研究进展_李婧

图1 GNRs的TEM照片[4] 基金项目:河北省高校重点学科建设项目资助;河北省高等学校科学技术研究青年基金(No.Q2012111);河北省自(NO.E2013210011);河北省大学生创新创业训练计划项目;河北省高校重点学科建设项目资助。

人员深入研究GNRs 的高效制备方法开启了一扇大门。James 小组认为,他们制备的GNRs 可用于柔韧触摸屏、太阳能电池板、以及制成轻薄导电纤维,以取代笨重的铜线,进而用于航空航天领域。本文对GNRs 的典型制备方法进行了综述,并比较各种方法的优劣,最后对GNRs 的应用进行了介绍,对其未来进行了展望。 1 GNRs 的制备方法 清楚的看到剥离的GNRs 一端连接导电电极,一端是脱离的CNTs 内心。并且产生的GNRs 随着电压的增加,电导率也增加,这为它成为电学材料提供了很好的应用前景。这种方法生成的GNRs 宽度分布均匀(45nm 左右),含杂质量低,如果有效实现批量快速生产,有望实现高质量GNRs 的宏量制备。 1.1.2混酸切割CNTs 法 CNTs 具有与石墨相同的晶体结构,CNTs 的发现远早于石墨烯和 GNRs,并且CNTs 非合成技术现在已经成熟。Zhang 等人提出,切割垂直排列的CNTs 获得的GNRs 有许多优异的电学性质,可用于超级电容器。纵向切割和压制管状CNTs 制成GNRs,这种方法通过控制CNTs 的长度和直径进而控制所需GNRs 的尺寸,从而制备出所需的各种规格GNRs,这种方法操作简单方便,得到的GNRs 边缘光滑。James [5]小组用高锰酸钾和硫酸混合处理CNTs,沿着一个轴心将纳米管打开可以得到宽度在100~500nm 的GNRs,如图3所示。这种方法虽然可以制备大量的GNRs,但是得到的GNRs 不是半导体,应用上有一定限制。 1.1.3钾气裂解CNTs 法 催化法是利用化学沉积或磁控溅射把催化的纳米颗粒分散到CNTs 的表面上,在某些特定的气体(如H 2)氛围下进行加热。在纳米粒子的催化下,气体分子会和CNTs 表面的碳原子反应而使得CNTs 裂解产生GNRs。这种方法相对比较简单,但是会影响产物的性质。后来,Kosynkin 等人用气态钾来做催化剂,在250℃真空环境下催化裂解CNTs,得到了边缘连接着钾的GNRs,用乙醇质子化处理后可以得到质量有所提高的边缘钝化的GNRs。 图2 电解CNTs 制备石墨烯过程示意图 [6] 图3 CNTs 逐级拉开形成GNRs 的示意图 [4] 1.1 切割CNTs 法 1.1.1电极切割CNTs 法 在非常高的电偏压下,碳纳米管(CNTs)会显示出超塑[5]。Kim K [6]等人提出了用电流诱发CNTs 裂解制备GNRs 的方法。在真空下,利用电极的移动,促使CNTs 外层裂解。如图2所示,在电极的移动下,通过对电偏压的控制使CNTs 外层被裂解,移除的内心成为一个新的CNTs,剩下的GNRs 完全悬浮在真空中。在图2 中,我们可以

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯及其纳米复合材料发展.

河北工业大学 材料科学与工程学院 石墨烯及其纳米复合材料发展概况 专业金属材料 班级材料116 学号111899 姓名李浩槊 2015年01月05日

摘要 自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。 关键词:石墨烯纳米材料制备复合材料

石墨烯纳米带场效应管

石墨烯纳米带场效应管原理 微电子与固体电子学专业 学生潘立丁S111411 指导教师石瑞英摘要:由于石墨烯的导带与价带之间没有能隙,做成晶体管器件时,很难实现开关特性,而且若要运用于现在普遍使用的逻辑电路,其金属性也是一个巨大的难题。如何在石墨烯中引入能隙,成为了石墨烯晶体管器件制造的关键。本文主要关注的石墨烯纳米带场效应管,通过对肖特基势垒石墨烯纳米带场效应管和金属氧化物半导体石墨烯纳米带场效应管这两种结构进行对比和分析来了解其主要特性。 关键词:石墨烯纳米带场效应管肖特基势垒 Abstract:Because there is no energy gap in graphene,it is very difficult to achieve on-off characteristic while use it to make transistors, and it is metallic behavior also have been a big problem if we want to use it in logical circuits. How to get an energy gap in grapheme has become the key point of the fabrication of grapheme transistors. This paper focus on graphene nanoribbon FETs, the comparison of two structures (GNR SBFET and GNR MOSFET) is used to analyze the main behaviors of graphene nanoribbon FETs. Key words:graphene nanoribbon field-effect-transistor schottky barrier 1、引言 石墨烯[1](Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。2004年,石墨烯被成功地从石墨中分离出来。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比碳纳米管或硅晶体迁移率高,而电阻率只约10-6Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子传输的速度极快,因此被期待为可用来发展出更薄、导电速度更快的新一代电子元件或电晶体的材料。 2、石墨烯纳米带基本结构 目前已知可以在石墨烯中引入能隙的手段主要有:(1) 利用对称性破缺场或相互作用等使朗道能级发生劈裂,在导带与价带之间引入能隙。这主要通过掺杂、外加电场、化学势场等方式在双层石墨烯中引入对称破缺,实现人工调制能隙。 (2) 利用量子陷阱效应和边缘效应,通过形成石墨烯纳米结构(如纳米带)引入能

简述碳纳米管和石墨烯的成建构成

1、简述碳纳米管和石墨烯的成建构成? 碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20 nm。并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。 碳纳米管(carbon nanotubes,CNTs)作为碳的第四种同素异形体,由于其准一维的管状纳米结构,以及独特的机械、电子传导、气体吸附等性质,越来越被人们所关注和研究,并已在多种领域得到广泛的应用。 2、碳纳米管的性能由直径D和手性角θ来确定。已知碳纳米管单胞的手性矢量为C=na1+ma2 ,试推导碳纳米管直径D和手性角θ表达式。当(n,m)为(8,0),(8,4),(8,3)时判断碳纳米管类型。 CNTs的性能由它们的直径和手性角θ来确定,而这两个参数又取决于两个整数n和m值,Ch=na1+ma2,a1和a2为CNTs一个单胞的单位矢量。手性矢量形成了纳米管圆形横截面的圆周,不同的m和n值导致了不同的纳米管结构1,5。 碳纳米管依其结构特征可以分为三种类型:扶手椅形纳米管(armchair form),锯齿形纳米管(zigzag form)和手性纳米管(chiral form)。碳纳米管的手性指数(n,m)与其螺旋度和电学性能等有直接关系,习惯上n>=m。当n=m时,碳纳米管称为扶手椅形纳米管,手性角(螺旋角)为30o;当n>m=0时,碳纳米管称为锯齿形纳米管,手性角(螺旋角)为0o;当n>m≠0时,将其称为手性碳纳米管。 根据碳纳米管的导电性质可以将其分为金属型碳纳米管和半导体型碳纳米管:当n-m=3k(k为整数)时,碳纳米管为金属型;当n-m=3k±1,碳纳米管为半导体型。

德国碳纳米管及石墨烯的发展概况

德国碳纳米管及石墨烯的发展概况 碳纳米管和石墨烯是世界材料行业飞速发展的产物,因为它们代表着更高的性能,更轻的质量,更可靠的环保责任。德国在该领域的研究虽然起步较晚,但随着其后续大量的投入,已经让它成为世界上相关产品研发的领跑者。碳纳米管和石墨的发展前景虽被看好,但高昂的制备成本和较低的产量却严重遏制其大规模应用。 图为:单壁碳纳米管(左),多壁碳纳米管(右) 随着行业对于材料性能的要求越来越高,传统材料的发展占空间逐渐走向萎缩,而高新科技材料将会取而代之成为行业选择的未来之路。众所周知,碳纳米管(CNTs)和石墨烯(graphene)及其复合材料因其卓越的电气及机械特性,已经在诸多领域,如光电,传感器,半导体器件,显示器,指挥,智能

纺织品和能量转换装置(例如,燃料电池,收割机和电池)等,显示出巨大的应用潜能。 从化学结构看,碳纳米管(CNTs)可以用作有机或无机半导体的替代物,但高昂的成本是目前限制其广泛用的最大难题。然而,碳纳米管作为一种新型材料有望在不久的将来实现成本低廉化大规模生产。 在电子学应用领域(电磁屏蔽除外),碳纳米管最大的用途是导体。它不仅具有高电导率,其材料还能呈现透明状,使用起来非常灵活便于拉伸。因此可以取代ITO,用于制作显示器,触摸屏,光电与显示母线和其他产品。经实验证明,碳纳米管的迁移率高于硅,这就意味着碳纳米管可以用于制造快速转换晶体管。此外,碳纳米管能够用于制备高性能的大面积加工设备,如印刷设备,从而帮助提高生产工艺,并显著降低生产成本。碳纳米管还适用于制造超级电容器,其原理是通过利用电容和晶体管的功率密度来平衡电池的能量密度,从而达到弥合电池和电容器的差距的目的。 从目前发展程度来看,碳纳米管的最大挑战是材料纯度,设备制造,以及对其他设备材料(如适当的电介质)的需要。但毋庸置疑的是其无法超越的性能优点(比如高性能,灵活

石墨烯纳米材料(论文)

《应用胶体化学》论文大作业 ——石墨烯纳米材料 姓名:杨晓 学号:200900111143 年级:2009级 2011-12-11

摘要:石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自 2004 年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文简要介绍了石墨烯的性能特点、制备方法,着重对石墨烯纳米复合材料进行了介绍,对石墨烯纳米材料的制备方法、理化性质、国内外研究进展、石墨烯纳米材料的优缺点及应用前景进行了详细介绍。 关键词:石墨烯纳米材料复合物特性制备应用

目录 引言 (4) 一石墨烯纳米材料的理论与实际意义 (4) 二石墨烯纳米材料的国内外研究现状及比较分析 (5) 2.1 石墨烯纳米材料的国内外研究 (5) 2.1.1 国外研究 (5) 2.1.2 国内研究 (8) 2.2 石墨烯纳米材料的国内外研究比较分析 (11) 三文献中石墨烯纳米材料的研究方案 (11) 3.1 聚乳酸/ 纳米羟基磷灰石/ 氧化石墨烯(PLA/n-HA/GO)纳米复合膜的制备及生物性 (11) 3.1.1 实验试剂 (11) 3.1.2 PLA/n-HA/GO纳米复合膜的制备 (11) 3.2 石墨烯负载Pt催化剂的制备及催化氧还原性能[43] (12) 3.2.1 试剂和仪器 (12) 3.2.2 石墨烯负载Pt催化剂的制备 (12) 3.3 石墨烯的制备和改性及其聚合物复合的研究进展[44] (12) 3.3.1 石墨烯的制备 (12) 3.3.2 制备聚合物基复合材料 (14) 3.4 石墨烯/聚合物复合材料的研究进展[45] (14) 3.4.1 石墨烯的制备 (14) 3.4.2 石墨烯/聚合物复合材料的制备 (15) 3.5 石墨烯的合成与应用[46] (16) 3.5.1 微机械分离法(micromechanical cleavage) (16) 3.5.2 取向附生法———晶膜生长(eqitaxial growth) (16) 3.5.3 加热SiC的方法 (17) 3.5.4 化学分散法 (17) 四结合胶体理论与性质比较分析各种石墨烯纳米材料的优缺点 (17) 4.1 石墨烯 (17) 4.2 氧化石墨烯 (18) 4.3 石墨烯/无机物纳米材料 (18) 4.4 石墨烯/聚合物纳米材料 (18) 五展望石墨烯纳米材料的应用前景 (18) 参考文献 (20)

掺杂armchair石墨烯纳米带电子结构和输运性质的研究

第39卷第4期2011年8月 福州大学学报(自然科学版) Journal of Fuzhou University(Natural Science Edition) Vol.39No.4 Aug.2011 DOI:CNKI:35-1117/N.20110705.1543.017文章编号:1000-2243(2011)04-0533-06掺杂armchair石墨烯纳米带电子结构和输运性质的研究 安丽萍1,2,刘念华1,刘春梅1,刘正方1 (1.南昌大学高等研究院,江西南昌330031;2.燕山大学物理系,河北秦皇岛066004) 摘要:基于第一性原理计算,研究了B/N掺杂对宽度为N a =3p+2=11的扶手椅(Armchair)型石墨烯纳米带电子结构和输运性质的影响.杂质的存在使得扶手椅型石墨烯纳米带的能隙增大,并在能隙中出现了一条局 域的杂质态能带,杂质的位置也影响其能带结构.另外,杂质的存在还引起输运过程中的电子共振散射,其特 点与掺杂种类、掺杂位置和结构对称性有关. 关键词:扶手椅型石墨烯纳米带;杂掺;电子结构;输运性质 中图分类号:O472文献标识码:A The study of the electronic structure and transport properties of armchair graphene nanoribbons with dopant AN Li-ping1,2,LIU Nian-hua1,LIU Chun-mei1,LIU Zheng-fang1 (1.Institute for Advanced Study,Nanchang University,Nanchang,Jiangxi330031,China; 2.Department of Physics,Yanshan University,Qinhuangdao,Hebei066004,China) Abstract:The electronic structure and transport properties of armchair graphene nanoribbons(AG-NRs)with B/N dopant are studied by using the first-principles calculation.It is shown that because of the existence of the dopant,there is an impurity band in the energy gap of armchair graphene nanor-ibbons and their energy gaps increase.The band structures depend also on the position of the dopant. In addition,the existence of the dopant yields resonant backscattering in the charge transport,whose features are strongly dependent on the types,the position of the dopant and the symmetry of the struc-ture. Keywords:armchair graphene nanoribbons;dopant;electronic structure;transport properties 单层石墨片的成功剥离和石墨烯纳米带(graphene nanoribbon)的成功制备引起了人们对此类碳基纳米 材料研究的极大热情[1-9].这种石墨烯纳米带具有类似碳纳米管(CNTs)的结构和量子限域效应,是潜在 的新一代微纳电子学的候选基础材料之一.石墨烯纳米带是具有一定宽度、无限长度的准一维带状石墨 烯,按照边缘的形状,可以分为锯齿型石墨烯带(zigzag-graphene nanoribbon,ZGNR)和扶手椅型石墨烯 带(armchair-graphene nanoribbon,AGNR).石墨烯纳米带的特性强烈依赖于它们的几何构型,通过控制 几何构型可将其调制成金属或能隙宽度依赖于纳米带宽度的半导体[10],这在能带工程中非常有用. 另外,石墨片和石墨烯纳米带在最初的制备过程中不可避免地产生各种缺陷,如拓扑缺陷、空位、吸 附原子和替位式杂质,这些缺陷的存在会影响其结构和性能[5-9,11-20].类似于传统半导体,如在锯齿型石 墨烯带中掺B/N,将产生受主(施主)杂质能级,实现金属和半导体的转变,而且随着杂质原子在纳米带 中位置的不同,将会发生受主与施主的转变[13].另外,由石墨烯裁制而成的微纳电子器件一般都是在有 限偏压下工作,有必要研究偏压下石墨烯纳米带的电子输运情况.本工作旨在探讨宽度为N a=3p+2=11 的扶手椅型单层石墨烯纳米带的掺杂效应,利用第一性原理方法研究B/N掺杂对扶手椅型石墨烯纳米带 电子结构和输运性质的影响. 收稿日期:2010-10-27 通讯作者:安丽萍(1975-),讲师,E-mail:fox781209@sina.com.cn 基金项目:国家自然科学基金资助项目(10832005)

相关主题