搜档网
当前位置:搜档网 › 正弦余弦定理判断三角形形状专题

正弦余弦定理判断三角形形状专题

正弦余弦定理判断三角形形状专题
正弦余弦定理判断三角形形状专题

例1:已知△ABC 中,bsinB=csinC,且C B A 2

22sin sin sin +=,试判断三角形的形状. 例2:在△ABC 中,若B=

60,2b=a+c,试判断△ABC 的形状.

例3:在△ABC 中,已知

22

tan tan b

a B A =,试判断△ABC 的形状. 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA=

C

B C

B cos cos sin sin ++,试判断三角形的形状.

例5:在△ABC 中,(1)已知a -b=ccosB -ccosA ,判断△ABC 的形状. (2)若b=asinC,c=acosB,判断△ABC 的形状. 例6:已知△ABC 中,5

4

cos =

A ,且3:2:1)2(::)2(=+-c b a ,判断三角形的形状. 例7、△ABC 的内角A 、

B 、

C 的对边abc,若abc 成等比数列,且c=2a ,则△ABC 的形状为( )

∴△ABC 为钝角三角形。

例8 △ABC 中,sinA=2sinBcosC,sin 2A=sin 2B+sin 2C,则△ABC 的形状为( )

例9△ABC 中A 、B 、C 的对边abc ,且满足(a 2+b 2)sin(A-B)=(a 2-b 2)sinC,试判断△ABC 的形状。

∴△ABC 为等腰三角形或直角三角形。

1、 在三角形ABC 中,三边a 、b 、c 满足::1)a b c =,试判断三角形的形状。 所以三角形为锐角三角形。

3、在△ABC 中,已知sin sin B C =cos 22A 试判断此三角形的类型.故此三角形是等腰三角形.

4、(06陕西卷) 已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△

ABC 为( )

A 、三边均不相等的三角形

B 、直角三角形

C 、等腰非等边三角形

D 、等边三角形

5、在ABC ?中,设,,,BC a CA b AB c === 若,a b b c c a ?=?=?

判断ABC ?的形状。

6、在△ABC 中,cos cos b A a B =试判断三角形的形状 故此三角形是等腰三角形.

7、在ABC ?中,如果lg a lg c -=lgsin B =-B 为锐角判断此三角形的形状。 故此三角形是等腰直角三角形。

巩固练习:在ABC ?中,若

22

tan :tan :,A B a b =试判断ABC ?的形状。 ABC ∴?为等腰三角形或直角三角形。

1.(2014?静安区校级模拟)若,则△ABC为()

2.(2014秋?郑州期末)若△ABC 的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC A.一定是锐角三角形B.一定是直角三角形

C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形

3.A为三角形ABC的一个内角,若sinA+cosA=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形

5.(2014春?禅城区期末)已知:在△ABC中,,则此三角形为()

A.直角三角形 B.等腰直角三角形C.等腰三角形D.等腰或直角三角形6.已知△ABC满足,则△ABC是()

7.(2014?马鞍山二模)已知非零向量与满足且

=.则△ABC为()

9.(2014?黄冈模拟)已知在△ABC中,向量与满足(+)?=0,且

?=,则△ABC为()

A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形10.(2014?奉贤区二模)三角形ABC中,设=,=,若?(+)<0,则三角形

11.已知向量,则

12.(2014秋?景洪市校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且

,则△ABC的形状为()

A.等边三角形B.等腰直角三角形C.等腰或直角三角形D.直角三角形13.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形14.在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若,

则△ABC的形状是()

A.等边三角形B.钝角三角形C.直角三角形D.等腰三角形但不是等边三角形15.在△ABC中,tanA?sin2B=tanB?sin2A,那么△ABC一定是()

A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形16.(2014?漳州四模)在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA则△ABC的形状为()

A.直角三角形B.锐角三角形C.等边三角形D.等腰直角三角形

18.(2013秋?金台区校级期末)双曲线=1和椭圆=1(a>0,m>b>0)的

19.(2014?红桥区二模)在△ABC中,“”是“△ABC为钝角三角形”的()

A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件20.(2014秋?德州期末)在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形21.在△ABC中,已知sinA=2sinBcosc,则△ABC的形状为.

22.在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.

23.已知△ABC中,AB=,BC=1,tanC=,则AC等于.

24.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是三角形.25.在△ABC中,已知c=2acosB,则△ABC的形状为.

26.(2014春?常熟市校级期中)在△ABC中,若,则△ABC的形状是.

27.(2014春?石家庄期末)在△ABC中,若sin2A+sin2B<sin2C,则该△ABC是

三角形(请你确定其是锐角三角形、直角三角形还是钝角三角形).

28.(2013春?遵义期中)△ABC中,b=a,B=2A,则△ABC为三角形.29.(2013秋?沧浪区校级期末)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC为(填锐角三角形、直角三角形、钝角三角形.)

30.(2014春?宜昌期中)在△ABC中,sinA=2cosBsinC,则三角形为三角形.【考点训练】三角形的形状判断-2

参考答案与试题解析

一、选择题(共20小题)

1.(2014?静安区校级模拟)若,则△ABC为()

,得:

2.(2014秋?郑州期末)若△ABC 的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC

,从而得到

cosC=

3.(2014秋?祁县校级期末)A为三角形ABC的一个内角,若sinA+cosA=,则这个三角

sinA+cosA=

A=,

,解得(<

),

5.(2014春?禅城区期末)已知:在△ABC中,,则此三角形为()

中,

6.(2014?南康市校级模拟)已知△ABC满足,则△ABC

=+?得?

中,

(﹣??+?

=?,得?=0

⊥即

7.(2014?马鞍山二模)已知非零向量与满足且

=.则△ABC为()

通过求出等腰三解:因为

,所以∠

8.(2014?蓟县校级二模)在△ABC中,a,b,c分别是角A,B,C所对的边,且2c2=2a2+2b2+ab,

cosC=<

9.(2014?黄冈模拟)已知在△ABC中,向量与满足(+)?=0,且

?=,则△ABC为()

,则原式化为=0

是菱形,=|||BAC=,

BAC=,∴∠

10.(2014?奉贤区二模)三角形ABC中,设=,=,若?(+)<0,则三角形

+=

=,=,

+==;

?+

?

||

||

本题考查三角形的形状判断,+=

11.(2015?温江区校级模拟)已知向量

,则△ABC的形状为

>=

解:由题意可得:

,,=

=

12.(2014秋?景洪市校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且,则△ABC的形状为()

2=,

=

cosA=cosA=

=

13.(2014?咸阳三模)△ABC的三个内角A、B、C成等差数列,,则

+=2

14.(2014?奎文区校级模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若,则△ABC的形状是()

c+a+b=转化为以与为基底的关系,即可得到答案.

=﹣=﹣,

c+a+b=c﹣a+b(﹣=

c+b﹣(),

=()

c+b﹣+),

(﹣

15.(2014秋?正定县校级期末)在△ABC中,tanA?sin2B=tanB?sin2A,那么△ABC一定是

变形为:

,即sin2B=

16.(2014?漳州四模)在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,

cosA=,

18.(2013秋?金台区校级期末)双曲线=1和椭圆=1(a>0,m>b>0)的

解:双曲线和椭圆

19.(2014?红桥区二模)在△ABC中,“”是“△ABC为钝角三角形”的()

|||cos

sin2A=sin2B

二、填空题(共10小题)(除非特别说明,请填准确值)

21.(2014春?沭阳县期中)在△ABC中,已知sinA=2sinBcosc,则△ABC的形状为等腰三角形.

22.(2014秋?思明区校级期中)在△ABC中,若a=9,b=10,c=12,则△ABC的形状是锐角三角形.

=>

23.(2013?文峰区校级一模)已知△ABC中,AB=,BC=1,tanC=,则AC等于2.

,tanC=

AC=

24.(2013春?广陵区校级期中)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是等腰三角形.

25.(2014秋?潞西市校级期末)在△ABC中,已知c=2acosB,则△ABC的形状为等腰三角形.

26.(2014春?常熟市校级期中)在△ABC中,若,则△ABC的形状是等腰或

直角三角形.

中,由正弦定理得:=

=

?=

27.(2014春?石家庄期末)在△ABC中,若sin2A+sin2B<sin2C,则该△ABC是钝角三角形(请你确定其是锐角三角形、直角三角形还是钝角三角形).

28.(2013春?遵义期中)△ABC中,b=a,B=2A,则△ABC为等腰直角三角形.

b=

sinA

sin2A=

cosA=

A=B=C=,

29.(2013秋?沧浪区校级期末)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC为钝角三角形(填锐角三角形、直角三角形、钝角三角形.)

cosC==<

30.(2014春?宜昌期中)在△ABC中,sinA=2cosBsinC,则三角形为等腰三角形.

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

11知识讲解_正弦函数、余弦函数的性质_基础

正弦函数、余弦函数的性质 【学习目标】 1.了解周期函数、周期、最小正周期的定义; 2.理解正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等). 【要点梳理】 要点一:周期函数的定义 函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期. 要点诠释: 1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足 )()(x f T x f =+都不能说T 是)(x f y =的一个周期. 2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期. 要点二:正弦函数、余弦函数的图象和性质 (1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域. (2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求

sin()y x =-的单调递增区间时, 应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先 求定义域. 要点三:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>的性质. 函数sin()y A x ω?=+与函数cos()y A x ω?=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R (2)值域:[],A A - (3)单调区间:求形如sin()y A x ω?=+与函数cos()(,0)y A x A ω?ω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ω?+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由 )(2 22 2Z k k x k ∈+ ≤+≤- π π?ωπ π解出x 的范围所得区间即为增区间,由 )(2 3222Z k k x k ∈+≤+≤+ππ?ωππ解出x 的范围,所得区间即为减区间. (4)奇偶性:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>不一定具备奇偶性.对于函数sin()y A x ω?=+,当()k k z ?π=∈时为奇函数,当()2 k k z π ?π=±∈时为偶函数; 对于函数cos()y A x ω?=+,当()k k z ?π=∈时为偶函数,当()2 k k z π ?π=±∈时为奇函数. 要点诠释: 判断函数sin()y A x ω?=+,cos()y A x ω?=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件. (5)周期:函数sin()y A x ω?=+及函数cos()y A x ω?=+的周期与解析式中自变量x 的系数有关,其周期为2T π ω = . (6)对称轴和对称中心 与正弦函数sin y x =比较可知,当()2 x k k z π ω?π+=± ∈时,函数sin()y A x ω?=+取得最大值(或 最小值),因此函数sin()y A x ω?=+的对称轴由()2 x k k z π ω?π+=± ∈解出,其对称中心的横坐标 ()x k k z ω?π+=∈,即对称中心为,0()k k z π?ω-?? ∈ ??? .同理,cos()y A x ω?=+的对称轴由

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

正弦余弦定理判断三角形形状专题

例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 例2:在△ABC 中,若B= 60,2b=a+c,试判断△ABC 的形状. 例3:在△ABC 中,已知 22 tan tan b a B A =,试判断△ABC 的形状. 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 例5:在△ABC 中,(1)已知a -b=ccosB -ccosA ,判断△ABC 的形状. (2)若b=asinC,c=acosB,判断△ABC 的形状. 例6:已知△ABC 中,5 4 cos = A ,且3:2:1)2(::)2(=+-c b a ,判断三角形的形状. 例7、△ABC 的内角A 、 B 、 C 的对边abc,若abc 成等比数列,且c=2a ,则△ABC 的形状为( ) ∴△ABC 为钝角三角形。 例8 △ABC 中,sinA=2sinBcosC,sin 2A=sin 2B+sin 2C,则△ABC 的形状为( ) 例9△ABC 中A 、B 、C 的对边abc ,且满足(a 2+b 2)sin(A-B)=(a 2-b 2)sinC,试判断△ABC 的形状。 ∴△ABC 为等腰三角形或直角三角形。 1、 在三角形ABC 中,三边a 、b 、c 满足::1)a b c =,试判断三角形的形状。 所以三角形为锐角三角形。 3、在△ABC 中,已知sin sin B C =cos 22A 试判断此三角形的类型.故此三角形是等腰三角形. 4、(06陕西卷) 已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ ABC 为( ) A 、三边均不相等的三角形 B 、直角三角形 C 、等腰非等边三角形 D 、等边三角形 5、在ABC ?中,设,,,BC a CA b AB c === 若,a b b c c a ?=?=? 判断ABC ?的形状。 6、在△ABC 中,cos cos b A a B =试判断三角形的形状 故此三角形是等腰三角形. 7、在ABC ?中,如果lg a lg c -=lgsin B =-B 为锐角判断此三角形的形状。 故此三角形是等腰直角三角形。 巩固练习:在ABC ?中,若 22 tan :tan :,A B a b =试判断ABC ?的形状。 ABC ∴?为等腰三角形或直角三角形。

正余弦定理与三角形形状判断附标准答案

一、运用正弦定理进行判断 基本思路:运用正弦定理将条件全部转化为边(或角)之间的关系,进一步判断。 二、运用余弦定理进行判断 基本思路:关注特殊角余弦值,往往向边与边之间的关系进行转化。 三、运用正、余弦定理综合判断 基本思路:尽量统一边(或角)之间的关系,使3个未知量减少为2个未知量之间的关系往往可以导出结果;常用到sinA=sin(π-A)=sin(B+C);正弦值的比可以直接化为边的比值。 1、已知在△ABC 中,A c b cos ?=,试判断△ABC 的性状。 2 222222cos 22cos c b a a c b A bc b A c b =+∴-+=?=∴?=Θ ∴ΔABC 为直角三角形 2、已知在△ABC 中,角A 、B 均为锐角,且B A sin cos >,试判断△ABC 的形状。 2 2 2) 2cos(cos sin cos π π π π ><<>>C B A B A B A B A ∴+∴-∴-∴Θ ∴ΔABC 为钝角三角形 3、已知在△ABC 中,C a b sin ?=,且)2sin(B a c -?=π ,试判断△ABC 的形状。 2 222222cos 22cos )2sin(a c b b c a B ac c B a B a c =+∴-+=?=∴?=-?=π Θ ∴ΔABC 为直角三角形,且a c C =sin c b C a b =∴?=sin Θ ∴ΔABC 为等腰直角三角形 4、已知在△ABC 中,C B A sin cos sin 2=?,试判断△ABC 的性状。 b a b c a c B ac c B a =∴-+==?∴=?∴=?2222cos 2cos 2C sin cosB 2sinA Θ

正弦余弦函数的性质定义值域

正弦函数、余弦函数的性质 ——定义域与值域 目的:要求学生掌握正、余弦函数的定义域与值域,尤其能灵活运用有界性 求函数的最值和值域。 过程: 一、复习:正弦和余弦函数图象的作法 二、研究性质: 1.定义域:y=sinx, y=cosx 的定义域为R 2.值域: 1?引导回忆单位圆中的三角函数线,结论:|sinx|≤1, |cosx|≤1 (有界性) 再看正弦函数线(图象)验证上述结论 ∴y=sinx, y=cosx 的值域为[-1,1] 2?对于y=sinx 当且仅当x=2k π+ 2 π k ∈Z 时 y max =1 当且仅当时x=2k π-2 π k ∈Z 时 y min =-1 对于y=cosx 当且仅当x=2k π k ∈Z 时 y max =1 当且仅当x=2k π+π k ∈Z 时 y min =-1 3.观察R 上的y=sinx,和y=cosx 的图象可知 当2k π0 当(2k-1)π0 当2k π+ 2π

利用平面向量判断三角形形状练习题专题

利用平面向量判断三角形形状 1.三角形ABC 中,5BC =,G ,O 分别为三角形ABC 的重心和外心,且5GO BC ?=u u u r u u u r ,则三角形ABC 的形状是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .上述均不是 【答案】B 【解析】 【分析】 取BC 中点D ,利用GO GD DO =+u u u r u u u r u u u r 代入计算,再利用向量的线性运算求解. 【详解】 如图,取BC 中点D ,连接,OD AD , 则G 在AD 上,1 3 GD AD = ,OD BC ^, ()GO BC GD DO BC GD BC DO BC ?=+?=?+?u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 221111()()()53326 GD BC AD BC AB AC AC AB AC AB =?=?=?+?-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ∴2223025AC AB BC -=>=,∴2220AB BC AC +-<, 由余弦定理得cos 0B <,即B 为钝角,三角形为钝角三角形. 故选:B . 2.若O 为ABC ?所在平面内任一点,且满足()()0OB OC OC OA CA AB -?-++=u u u r u u u r u u u r u u u r u u r u u u r ,则 ABC ?的形状为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形

【B402】正弦函数与余弦函数的定义

高一同步之每日一题【B402】 正弦函数与余弦函数的定义 B4021.若点(P -在角α的终边上,则角α的最小正值为______. 解:由点在(P -在第二象限可知角α的终边在第二象限. 由于||4OP ==,因此21cos cos12042 α-==-=?. 所以,角α的最小正值为120?. B4022.已知角θ的终边经过点(,3)P x ,其中0x ≠,且cos x θ=,求sin θ与cos θ的值. 解:由||OP = cos 10 x θ==. 解得1x =-,或1x =. 当1x =-时,sin 10θ==,cos θ=; 当1x =时,sin θ= =,cos θ= B4023.已知角θ的终边上的点均在直线3y x =上,点(,)P m n 在角θ的 终边上,且||OP =,求sin θ与cos θ的值. 解:由题意可知3n m =,且||OP == 解得m n ==-或m n = = 当m n ==-, sin 10θ= =-cos 10θ==-; 当m n ==, sin 10θ==,cos 10 θ==.

B4024.若角α的终边上一点的坐标为(sin135,cos135)P ??,则角α的最小正值为______. 解:由于点(sin135,cos135)P ??即为点P , 因为角α的终边在第四象限的角平分线上. 所以角α的最小正值为315?. B4025.若角α的终边上一点的坐标为22(cos ,sin )33P ππ-,则角α的最小正值为______. 解:由于点22(cos ,sin )33 P ππ-即为点1(,22P --, 因为角α的终边在第三象限,且1cos240,sin 2402?=- ?=所以角α的最小正值为240?. B4026.若角α的终边上一点的坐标为22(cos ,sin )55P ππ-,则角α的最小正值为______. 解:因为22cos cos(2)55πππ=-,22sin sin(2)55 πππ-=-, 且2802255 ππππ<-=<. 所以角α的最小正值为85 π. B4027.若角α的终边上一点的坐标为22(sin ,cos )55P ππ,则角α的最小正值为______. 解:因为22sin cos()525πππ=-,22cos sin()525 πππ=-, 且2022510 ππππ<-=<. 所以角α的最小正值为10 π.

判断三角形形状的常用方法

判断三角形形状的常用方法 判定三角形的形状,在数学竞赛中经常出现,这类试题灵活多变,解决这类问题,要根据题目的特点,选用恰当的方法,它往往将代数、几何、三角等知识之间的联系,用到的数学思想方法较多,具有一定的技巧,本文结合近几年的各类数学竞赛题,介绍判定三角形形状的一些常用技法,供读者参考。 一、配方法 例 1. (2001年初二“希望杯”第二试)若?ABC 的三边长是a 、b 、c ,且满足 a b c b c b c a c a c a b a b 444224442244422=+-=+-=+-,,,则?ABC 是( ) A. 钝角三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形 解:由条件a b c b c b c a c a c a b a b 444224442244422=+-=+-=+-,,,三式相加得 a b c a b b c c a 4442222220++---= 配方得: 12 022*******[()()()]a b b c c a -+-+-= 因为a 、b 、c 是三角形的边长,所以 a b b c c a 222222000-=-=-=,, 得a b c BC ==,?A 为等边三角形,故选D 。 例 2. (2002年河南省初二数学竞赛)?ABC 的三边为a 、b 、c ,且满足a b c a b c 222325215++=?+..,则?ABC 是( ) A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 以上答案都不对 解析:初看本题很难入手,先化简条件等式,即去分母化简整理得: 44138120222a b c ac bc ++--= 到此思路已经明朗,配方得 423022()()a c b c -+-= 所以a c -=0且230b c -= 得c a b a ==,32 所以?ABC 是等腰三角形,故选B 。 二、因式分解 例 3. (2002年太原市初中数学竞赛)已知a 、b 、c 为三角形的三边,且满足a ab ac bc b bc ba ca 2200+--=+--=,,则?ABC 是( ) A. 等腰三角形 B. 直角三角形

正余弦定理、三角形的一些公式

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 R c C R b B R a A C R c B R b A R a R R C c B b A a 2sin 2sin 2sin sin 2sin 2sin 2)(2sin sin sin = = = ======变形有:为外接圆的半径 三角形的面积公式: A bc B ac C ab S ABC sin 2 1 sin 21sin 21=== ? 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 ab c b a C ac b c a B bc a c b A C ab b a c B ac c a b A bc c b a 2cos 2cos 2cos cos 2cos 2cos 22222 222 22222222222-+= -+= -+= -+=-+=-+=变形有: 判断三角形的形状: 为锐角三角形 ,为直角角三角形 为钝角三角形 ABC b a c c a b c b a ABC c b a ABC c b a ?+<+<+2222222222 222 22,, 三角形中有: 形为正三角形 成等比数列,则该三角、、成等差数列,、、)若()(中c b a C B A C B A C B A C B A ABC 2tan )tan(cos )cos(sin )sin(1-=+-=+=+? 两角和差的正余弦公式及两角和差正切公式 ()βαβαβαsin cos cos sin sin -=- ()βαβαβαsin cos cos sin sin +=+ cos()cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i n αβα βαβ+=- ()βαβαβαt a n t a n 1t a n t a n t a n +-=- ()tan tan tan 1tan tan αβ αβαβ ++=- 二倍角公式: α α ααβ β ααααα2 22 2 2t a n 1t a n 22t a n 1 c o s 2s i n 21s i n c o s 2c o s c o s s i n 22s i n -= -=-=-== 半角公式:

第二节 正弦函数和余弦函数的定义及诱导公式

第二节 正弦函数和余弦函数的定义及诱导公式 A 组 1.若cos α=-35,α∈(π2 ,π),则tan α=________. 解析:cos α=-35,α∈(π2,π),所以sin α=45,∴tan α=sinαcosα=-43 . 答案:-43 2.(2009年高考北京卷)若sin θ=-45 ,tan θ>0,则cos θ=________. 解析:由sin θ=-45<0,tan θ>0知,θ是第三象限角,故cos θ=-35 . 答案:-35 3.若sin(π6+α)=35,则cos(π3 -α)=________. 解析:cos(π3-α)=cos[π2-(π6+α)]=sin(π6+α)=35.答案:35 4.(2010年合肥质检)已知sin x =2cos x ,则5sinx -cosx 2sinx +cosx =______. 解析:∵sin x =2cos x ,∴tan x =2,∴5sinx -cosx 2sinx +cosx =5tanx -12tanx +1=95 . 答案:95 5.(原创题)若cos2θ+cos θ=0,则sin2θ+sin θ=________. 解析:由cos2θ+cos θ=0,得2cos 2θ-1+cos θ=0,所以cos θ=-1或cos θ=12 ,当cos θ=-1时,有sin θ=0,当cos θ=12时,有sin θ=±32 .于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或3或- 3 6.已知sin(π-α)cos(-8π-α)=60169,且α∈(π4,π2 ),求cos α,sin α的值. 解:由题意,得2sin αcos α=120169 .①又∵sin 2α+cos 2α=1,② ①+②得:(sin α+cos α)2=289169,②-①得:(sin α-cos α)2=49169 . 又∵α∈(π4,π2 ),∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713.③sin α-cos α=713 ,④ ③+④得:sin α=1213.③-④得:cos α=513 . B 组 1.已知sin x =2cos x ,则sin 2x +1=________. 解析:由已知,得tan x =2,所以sin 2x +1=2sin 2x +cos 2x =2sin2x +cos2x sin2x +cos2x =2tan2x +1tan2x +1=95 .答案:95 2.(2010年南京调研)cos 10π3 =________. 解析:cos 10π3=cos 4π3=-cos π3=-12.答案:-12 3.(2010年西安调研)已知sin α=35,且α∈(π2,π),那么sin2αcos2α 的值等于________.

正余弦定理中等题讲义

正弦定理和余弦定理 1.考查正、余弦定理的推导过程. 2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法。 基础梳理 1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 2 2ac ,cos C =a 2+b 2-c 2 2ab . 3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则

一条规律 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B . 两类问题n 在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径 根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 双基自测 1.()在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063 D .56 2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ). A .30° B .45° C .60° D .90°

正弦余弦函数的定义教学反思

《任意角正弦、余弦函数的定义》公开课后的教学反思2017年4月12日,在数学组备课组长、教研组长及所有组内同事的共同指导与帮助下,我有幸在高一1605班上了一节《任意角正弦、余弦函数的定义》的公开课。本节内容是北师大版高一数学必修四第一章第三节的内容,该节内容是对推广后任意角的正弦、余弦函数的重新定义,理论性较强,虽然学生在初中有学习过相应的函数知识,但由于任意角的推广,学生对于任意角的正弦、余弦函数就不那么容易理解了。整节课讲授之后,我才发现学生的学习情况并没有自己想象中的那么理想与完美,因此,对于这节课,我做出以下几点教学反思: 1.对“数学概念”的反思——学会数学的思考 对一名高中数学教师而言教学反思首先是对数学概念的反思。 对于学生来说,学习数学的一个重要目的是要学会数学的思想,用数学的眼光去看世界去了解世界:用数学的精神来学习。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,去挖掘、发现新的问题,解决新的问题。因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。 2.对“备学生”的反思---学会课前多“备学生” 教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来,这样我们才能更充分了解学生的思想,掌握他们的学习情况。因此,课前充分去“备学生”—--备学生的思想,备学生的差异,备学生的基础都是很有必要的。 3.对“备教材”的反思----学会课前多听课 由于我是今年开学初才接任的高中数学科教学任务,教学时间短,经验不是很足,因此,在备教材的时候,感觉自己也有点力不从心。整节课的内容,虽然我花了很长的时间去备课,但到了真正的课堂,在和学生一起探究正弦、余弦函数定义的环节时,我发现自己仍存在一定的问题,比如:如何引导学生通过构造

判断三角形形状

判断三角形形状 解三角形是高考考察的重要内容,借助三角变换、正余弦定理和向量解与三角形有关的问题是高考命题的新趋势。而判断三角形形状也是高考命题的重点. 一、运用三角函数的公式判断三角形形状 例1.在△ABC中,sinBsinC=cos2 ,则此三角形是(). A.等边三角形 B.三边不等的三角形 C.等腰三角形 D.以上答案都不对 解析:利用倍角公式和两角和(差)公式化简判断. 解:选C.∵sinBsinC=cos2 ,∴sinBsinC=, ∴2sinBsinC=1+cosA,∵在△ABC中,A+B+C=π,∴2=1-cos(B+C),∴2sinBsinC=1- cosB cosC+ sinBsinC,∴sinBsinC +cosB cosC=1,∴cos(B-C)=1,∴在△ABC中,B-C=0,∴B=C,∴△ABC是等腰三角形. 2.设A、B、C是△ABC的三个内角,且tanA、tanB是方程3x2-5x+1=0的两个实根,那么△ABC是 A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.等边三角形 解析:利用二次函数的韦达定理和正切的两角和公式化简判断. 解:选A. ∵tanA、tanB是方程3x2-5x+1=0的两个实根,∴,∵tan(A+B)= = = ,∴tanC=- tan(A+B)=-,∴△ABC是钝角三角形. 点评:1.运用三角函数公式进行化简,其中往往用三角形内角和定理A+B+C=π通过诱导公式转化为一个角.然后通过这个角的值判断三角形的形状. 2.而三角形内角和定理A+B+C=π一方面可转化角, 如sinA=sin(B+C),cosA=-cos(B+C),sin =cos ,cos =sin ,另一方面可判断三个内角的范围不能超出(0,)。 二、运用正弦定理和余弦定理判断三角形形状

判定三角形形状的十种方法

判定三角形形状的十种方法 数学考试和数学竞赛中,常有判断三角形形状的题目,这类题目涉及的知识面广,综合性强,它沟通了代数、几何、三角等方面的知识联系。解题思路不外是从边与边、边与角之间的关系考虑,从而达到解题的目的。 1、若有a=b或(a-b)(b-c)(c-a)=0, 则△ABC为等腰三角形。 2、若有(a-b)2+(b-c)2+(c-a)2=0, 则△ABC为等边三角形。 3、若有a2+b2>c2,则△ABC为锐角三角形; 若有a2+b2=c2,则△ABC为直角三角形; 若有a2+b2<c2,则△ABC为钝角三角形。 4、若有(a2-b2)(a2+b2-c2)=0, 则△ABC为等腰三角形或直角三角形。 5、若有a=b且a2+b2=c2, 则△ABC为等腰直角三角形。 以上是从三角形的边与边之间的关系考虑的。 6、若有sin2A+sin2B=sin2C或sinA=sinB, 则△ABC为直角三角形或等腰三角形。 7、若有cosA>0,或tanA>0,(其中∠A为△ABC中的最大角) 则△ABC为锐角三角形。

8、若有cosA<0,或tanA<0,(其中∠A为△ABC中 的最大角), 则△ABC为钝角三角形。 9、若有两个(或三个)同名三角函数值相等(如 tanA=tanB),则△ABC为等腰三角形(或等边三角形)。 10、若有特殊的三角函数值,则按特殊角来判断,如 cosA=,b=c,则△ABC为等边三角形。 以下就一些具体实例进行分析解答: 一、利用方程根的性质: 例1:若方程x2+2ax+b2=0与x2+2cx-b2=0有一 个相同的根,且a、b、c为一个三角形的三条边,则此三 角形为() (A)锐角三角形;(B)钝角三角形; (C)以c为斜边的直角三角形;(D)以a为斜边的直角 三角形; (“缙云杯”初中数学邀请赛) 解:将两个方程相减,得:2ax-2cx+2b2=0,显然a≠c,否则b=0,与题设矛盾,故x= ,将两个方程相加, 得2ax+2cx+2b2=0,∵x≠0,否则b=0,与题设矛盾, ∴x=-(a+c),∵两个方程有一个相同的根, ∴ =-(a+c),即b2+c2=a2,故△ABC是以a为斜边 的直角三角形,故应选(D) 二、利用根的判别式

正余弦定理三角形形状判断

正余弦定理与三角形形状的判断 一、掌握基本原理 常用的定理或公式主要有以下几个: (1)在△ABC 中,A + B + C = π, 2 22C B A -=+π, () C B A s i n s i n =+,()C B A cos cos -=+, sin (A+B/2)=cos (C/2),2 cot 2tan C B A =+ . (2)正余弦定理及其变式: 如a = 2R sin A ,b 2 + c 2-a 2 =2b c cos A ,这里, R 为三角形外接圆的半径. (限于篇幅,定理原文及其它相关变式请读者自己回忆并写出). (3)射影定理:a = b cos C + c cos B .(用余弦定理很容易证得,请读者作为练习自行证之) 二、弄清题目类型 1.目标明确型 例1 在△ABC 中,a 2+b 2=c 2+ab ,且sin A sin B = 4 3 ,求证:△ABC 为等边三角形. 分析:由a 2+b 2=c 2+ab ,知,用余弦定理可求出C 角, 证明:由余弦定理,得c 2=a 2+b 2-2ab cos C . ∵a 2+b 2=c 2+ab , ∴ab -2ab cos C =0. ∴cos C = 21 ,∴C =60° ∵sin A sin B =43,cos (A +B )=cos (180°-C )=cos120°=-2 1 , cos (A +B )=cos A cos B -sin A sin B , ∴cos A cos B = 4 1. ∴cos (A -B )=cos A cos B +sin A sin B =1. ∵-π<A -B <π,∴A -B =0. ∴A =B =60° ∴△ABC 是等边三角形. 评注:这类题目往往由于目标明确,在利用正弦定理或余弦定理得出一些初步结论之后能够很快确定后续思路.尤其本题中首先得出了一个特殊角,加之sin A sin B =4 3 ,则更容易联想到三角形内角和定理了.

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》 江西省铜鼓县铜鼓中学漆赣湘(336200) 教材:北师大版高一数学必修四第一章第四节第一小节 一、教学目标 1.知识与技能目标 (1)了解任意角的正弦函数、余弦函数定义产生的背景和应用; (2)掌握任意角的正弦函数与余弦函数的定义,正确理解三角函数是以实数为自变量的函数,并能应用. 2.过程与方法目标 (1)通过参与知识的“发现”与“形成”的过程,培养合理猜测的能力,体会函数模型思想,数形结合思想. (2)培养观察、分析、探索、归纳、类比及解决问题的能力.3.情感、态度、价值观目标 在学习中感悟数学概念的合理性、严谨性、科学性.感悟数学的本质,培养追求真理的精神.通过本节的学习,使同学们对正弦函数与余弦函数有了一个全新的认识,通过对定义的应用,提高学生分析、解决问题的能力. 二、教学重难点 教学重点: 任意角的正弦函数与余弦函数的定义(包括定义域和函数值在各象限的符号)及其应用. 难点: 任意角的正弦函数与余弦函数的定义及其构建过程的理解. 三、教学方法与教学手段 问题教学法、合作学习法结合多媒体课件 四、教学过程

(一)问题引入【投影展示】 问题1:初中我们学过锐角α的正弦函数与余弦函数,同学们还记得它是怎样表示的吗? 借助右图直角三角形,复习回顾. sin s r α α==的对边 斜边 , cos h r α== α的邻边 斜边 . 问题2:锐角三角函数就是以锐角为自变量,以比值为函数值的 函数,那么该比值会随着三角形的大小而改变吗?为什么?(根据相似三角形的知识可知该比值不会发生改变) (二)新知探究 我们所学角的范围已经扩充到任意角,如果角α为任意角,显然初中正弦函数与余弦函数的定义已经不能满足我们的需求,我们必须重新定义正弦函数、余弦函数.今天,我们将在直角坐标系中,对此作深入探讨. 【投影展示】问题3:如图,在直角坐标系中,我们作出一个以原点为圆心,以单位长度为半径的圆,该圆称为单位圆.设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,终边与单位圆交于点(,) P u v,你能求出sinα与cosα的值吗?该值与点P的坐标有什么关系呢? 由学生自己探究,得出结论,sin v v r α==, cos u u r α==. 归纳总结:一般地,在直角坐标系中,给定 α r x y (,) P u v O α M

正弦函数和余弦函数图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法

三角函数之正余弦定理

戴氏教育中高考名校冲刺教育中心 【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。谢谢使用!!!】 主管签字:________ §3.6 正弦定理和余弦定理 一、考点、热点回顾 2014会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识.自主学习 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以 变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A = a 2R ,sin B = b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2. 余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余 弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并 可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解

相关主题