搜档网
当前位置:搜档网 › 网络分析仪原理及使用

网络分析仪原理及使用

网络分析仪原理及使用
网络分析仪原理及使用

网络分析仪原理及使用

康飞---芬兰贝尔罗斯公司

2007年10月

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。

基本原理

电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。

光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。

用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数

(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。

重要的向量系数

反射特性

在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗

ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。

接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输线上的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。

同样,我们也可以从ρ值定义出回返损耗(R.L.),其意义是反射能量与入射能量的比值,其值愈大,代表反射回来的能量愈小。对于反射系数所衍生的相关纯量参数,我们将其整理成表1,基本上,它们之间是换算的过程,会因为产业及应用的不同而倾向于使用某一参数。

REMARK:

驻波系数又叫做驻波比,如果电缆线路上有反射波,它与行波相互作用就会产生驻波,这时线上某些点的电压振幅为最大值Vmax,某些点的电压振幅为最小值Vmin,最大振幅与最小振幅之比称为驻波系数.驻波系数越大,表示线路上反射波成分愈大, 也表示线路不均匀或线路终端失配较大.为控制电缆的不均匀性,要求一定长度的终端匹配的电缆在使用频段上的输入驻波系数S不超过

某一规定的数值.电缆中不均匀性的大小,也可用反射衰减来表示.反射系数的倒数的绝对值取对数,称为反射衰减.反射衰减愈大,

即反射系数愈小,也就是驻波比愈小,即表示内部不均匀性越小.

穿透特性

对于穿透的特性,一样有分为纯量与向量两种,对于向量系数而言,最重要的就是穿透系数,其中Vtrans为经过待测物后的穿透波、Vinc为入射波,而τ即为穿透系数的纯量大小,θ则表示入射与穿透波的相位差值。

对于纯量的定义上,以被动组件而言,最常使用的就是插入损失(I.L. Insertion Loss),亦即与上述的τ值是相关的参数,定义为。若为主动组件如放大器等,穿透的信号有放大的效应则为增益(Gain),此时定义为。

对于向量的行为,则计有插入相位(Insertion Phase),其表示入射与穿透信号的相位差,我们可以从相位的变化中,推导出另一个很重要的参数-群速延迟(G.D. Group Delay),它代表的意义就是不同频率的波在一段传输线中,因介电材料或其它边界效应(Boundary condition)的影响,使到达时间不同而产生的延迟现象,其中又有分为平均延迟时间(Average Group Delay)与波浪(Ripple)或称为平坦度(Flatness)的定义,前者表示不同频率到达的平均时间,并可以从中推算出电气长度(Electrical Length),后者则表示不同频率间的到达时间差,一般我们会希望平坦度愈小愈好,如此在通讯上不致造成信号失真的问题。

散射参数(Scattering parameter)

在高频的量测上,S参数提供了相当有用的定性量测方法,以便分析双端口甚至是多端口组件的所有特性,如放大器、滤波器、天线以及缆线等,S参数与低频的Z、Y参数定义相当类似,但不同的是S参数是采用入射、反射及穿透波能量来描述待测装置的输入及输出端口特性,而不若Z、Y参数必须找到电压或电流的开路或短路的解,使得在高频领域下的应用更为广泛。图2

则是两端口组件S参数的表示方式,其中a表示发射源,b则为接收器,而a、b的下标则代表从第一埠(Port 1)或第二埠(Port 2)来量测,如a1则表示从第一端口的发射信号源,b2则表示在第二端口的信号接收器。

以一个双端口组件而言,会衍生出四个S参数,若为三埠或多端口以上的组件,就会有N2个相对应参数,基本上,在微波工程中常用以矩阵来表示。而每一个S参数,都有其对应的边界条件,如,即表示第二端口时没有信号反射时,亦即待测物输出端有负载阻抗的匹配时,所得到待测物在输入端的反射系数。

基本上,网络分析仪的架构可以分成四大部分:一个是信号的发射源,另一种为用以分离入射、反射及穿透波的信号分离电路,第三是将射频或微波信号转换至中频信号的接收器,最后是负责将侦测信号作运算处理的处理器及显示屏。

信号源担任激励(Stimulus)的角色

信号源在网络分析仪中是担任一个激励(Stimulus)的角色,主要是提供一个扫频或功率扫描的信号送到待测物上,当信号打到待测物之后,就会反应出穿透或反射的行为,据此,我们就可以得到某个频率或功率范围下的响应,而信号源的频率范围、频率稳定度、信号纯度以至于功率位准即位准控制能力都会影响量测的结果,一般用于网络分析仪中大致有两类,其一是振荡器(Oscillator),另一个是合成器(Synthesizer),前者好处是价格低廉,但频率稳定度及精确度远不及后者,若我们量测的组件其响应变化优于振荡器时,如量测晶体滤波器的残存FM(residual FM)频宽时,就应该采用更稳定的合成器信号源。

信号分离电路将入射、反射及穿透信号分离处理

当信号源产生入射的信号行为后,接下来就是要将入射、反射及穿透信号予以分离处理,进而侦测每一分量的振幅及相位特性。担任信号分离工作的是一些被动组件,主要有单向耦合器(Directional Coupler)、电桥(Bridge)、功率分离器(Power Splitter)等,图4中即为单向耦合器的示意图,其中主路径只有单一方向的功率行进情况下,才会有能量被耦合到耦合路径上,而被耦合的路径的信号位准通常较低,而下降位准的总量称为耦合因子(Coupling Factor),例如耦合因子为20dB的单向性耦合器,代表入射信号的1%能量会耦合到耦合路径上,而99%的功率则仍在主路径上行进。另一个单向耦合器的重要参数为方向性(Directivity),其定义为:

Directivity(dB)=Isolation(dB) - Coupling Factor(dB) - Loss(dB)

代表信号在顺向及逆向所检测到的信号差,造成方向性误差的来源有信号的泄漏(Leakage)或称为隔绝性(Isolation)、耦合器内部及接头阻抗不匹配的反射(亦即耦合因子)等。在仪器内部中,方向性应尽可能的好,一般至少要在30dB以上,如此才不致受到信号泄漏的误差而影响量测。

而功率分离电路的特性是将入射信号分离成两个路径,一般而言,两个分离信号的功率位准比原入射信号低6dB,分离器的主要目的是产生一个具有与信号源完全匹配的量测环境,一般连接的方式是将其中一个输出路径连接到参考接收器

(Reference Detector),而另一个输出路径则连接到待测物上,若在待测物的输出端后接上一个传输接收器

(Transmission Detector),就可以从两个功率比值中得到穿透系数,综而言之,功率分离器是一个宽频且良好频率响应的组件,并能与信号源及接收器间有良好的匹配。

第三种是电桥,其工作原理类似于惠斯同电桥(Wheatstone Bridge),其等效于单向性耦合器的方向性定义为最大的平衡值(Maximum Balance,即接上完美的负载)与最小的平衡值(Minimum Balance,即接上开路或短路)所得的比率(dB),是单向耦合器的替代方案。在量测上,与单向耦合器不同的地方是它可以工作在直流下,因此仪器可以有较大的频率量测范围,一般单向耦合器有高通(High Pass)的反应现象,因此在低于40MHz以下就必须用电桥来取代。但电桥也有其缺点,因为它的信号位准从待测物传回值较小,因此会有较大的损耗,相较于单向耦合器则具有低损耗(Low Loss)的优点,电桥则减少了量测的动态范围。

上述的各个组件一般工作在50或75欧姆下的环境,实际上量测反射系数时,我们会搭配一对或一个单向性耦合器及一个功率

分离器,如图5下方所示,才能将入射与反射信号分离,而对于穿透系数量测上,基本上使用一个功率分离器或单向性耦合器

就可完成入射与穿透信号的分离动作,在穿透量测上使用单向性耦合器的好处是可以将大部分的能量送到待测物上,而可以得

到较佳的动态范围,而电桥的接法与单向性耦合器类似,在此不再赘述。

接收器

接收器的角色,就是将分离电路所得的射频/微波讯号转换至中频或直流位准,以便于后方的数字处理器作运算的工作。基本上的接收器有两类,即为二极管(Diode)及调谐型接收器(Tuned Receiver),其中最简单也最便宜的技术就是使用宽频的二极管接

收器,二极管有整流的功能,可以将高频讯号能量转换成直流的信号,但使用这种接收器的缺点是因频率响应是宽频的,因此

对于信号源或待测物所产生的谐波(Harmonic)或虚拟(Spurious)效应也会加入量测范围内,因此其动态范围会限制在50~60dB

左右,但对于这种宽频量测行为的好处是它的侦测方式与频率无关,因此对于频率转换的组件、大的直流增益放大器及动态范

围较小的窄波滤波器上有其应用的范围,另外需注意的是得到信号仅有纯量的信息,所以搭配此类型接收器多半是较廉价的纯

量式(Scalar)网络分析仪。

另外一种是属于窄频的调谐接收器,其中混波的方式可以有基频混波(Fundamental Mixing)及谐波混波(Harmonic Mixing)的方式,将侦测到的射频/微波信号利用中频滤波器(IF filter)转换成较低频的中频信号,如图6右方所示,这种方式的好处是对于虚拟讯

号(Spurious Signal)可以有过滤的效果,另外,使用窄频滤波的方式,可以将噪声位准(Noise Level)降低,这原理与频谱分析仪相当类似,如此一来就可以得到较大的动态范围,除此之外,一般搭配调谐接收器的网络分析仪可以量测与输入信号间的相位

关系,因此向量网络分析仪内部接收器以此类为主。

信号处理及显示屏

分析仪中有许多组接收器,其中一个对应的处理单元会针对参考信道,纪录输入信号的绝对功率位准及相位归零值,而有另一

个或以上的处理单元则担任测试信道纪录的工作,而从参考与测试信道之间就可以得到信号位准比值及相对应相位差,例如两

信道之间量测电压比值为20dB,则代表两信道之间信号位准的比例为10:1,而所有网络分析仪的S参数都是采用相对性表示法得到,在相位部分,一般会以参考信道相位为零度去比较出其它测试信道的相位差而得到有关向量的参数。

因此,当信号经过降频处理及纪录后,仪器内部就会对所侦测到的信号,根据运算的数值作适当的显示,包括不同的图表格式

如史密斯图、极坐标、SWR、相位、群速延迟等,另外如光标显示、限制线(Limit Line)设定、不同S参数的显示及存盘、打印等工作,都是由内部的处理单元来完成,近来更因微软的窗口操作系统相当便利之故,并有其强大的COM/DCOM功能可以透

过局域网络联机(LAN)作外部计算机控制的动作,而在下一世代的仪器中,会渐渐走向窗口平台操作系统,因此无论在操作上或资料的转换上都相当的便利,不需要再考虑资料打印时打印机是否支持、以及量测资料格式是否兼容于计算机的问题,使用者

可以专注于量测及分析的工作以提高生产效率。

校正原理

在所有网络的量测系统中,都会有所谓的误差来源,他们分别来自于如缆线、治具及环境所造成的系统误差(Systematic Error),我们假设它不随时间而变(这也代表当缆线或治具改变时,就必须重新作校正),因此可以用校正模型或数学运算的方式将其去除,在网络中,这些误差计有信号泄漏(Signal Leakage)、信号反射(Signal Reflection)以及频率响应(Frequency Response)等。另

一类误差为随机误差(Random Error),它是会随着时间而改变且不可预期的,如仪器的噪声位准、取样噪声等,我们无法对此

类误差作校正的动作,但我们可藉由增加入射讯号功率、降低中频滤波器频宽或使用平均方式来尽量减少此类误差。第三种是

当校正后因使用时间增加所产生的飘移误差(Drift Error),它主要来自于环境温度改变的贡献,而飘移误差的大小就决定了何时

必须再做一次的校正工作,若我们可以控制环境温度为一稳定值,例如,则系统就可以维持在一定的精确度范围内。必须注意

的是,以上所述的这些误差大小会随着测试系统架设方式而有不同,因此在做每次精确的量测前,我们建议都必须作校正的动作,以下就是探讨误差的来源及相对应的解决方案。

单埠误差来源及解决方案(1-Port)

这里所提到的单埠,就是表示在所谓反射系数的量测上,误差主要来自于三项贡献,即方向性(Directivity)、信号源不匹配(Source Mismatch)、反射频率响应(Reflection Tracking)等。若对照到仪器及缆线端的架构上,可以由图7来表示,第一个误差项为方向性,前已提到,它主要来自于单向耦合器或电桥的信号泄漏的因素;其次是信号源匹配部分,由于信号源到缆线之间

阻抗匹配的问题,会造成信号源与待测物输入端间多次反射现象,而产生量测误差;第三是反射频率响应问题,对于反射系数

而言,它代表参考接收器与待测接收器的比值(亦即图7中的R与A接收器),但同样的信号从两端信号的路径中,所得到的值

会因为内部缆线长短及两接收器的频率响应而有所不同,总称为频率响应误差。对于前述三种误差来源,我们可以用已知的三个校正工具,利用数学矩阵仿真运算的方式,将三项误差去除,在同轴式的接头上,我们会采用标准的开路(Open)、短路(Short)及50欧姆的负载(Load)作为参考值,将各个频率下的误差订正(Correction),对于校正完后,应进一步做验证的动作,以确保在量测时的校正平面(Calibration Plane)是够精准的,例如在50欧姆负载端接上时,S11值应小于-60dB、在开路或短路的情况下,S11值应小于±0.05dB等。

双埠误差来源及解决方案(Full 2-Port)

同样是在单端口模型下的情形,但多了穿透特性的量测,因此在误差来源上,比纯粹反射系数多了三项误差,它们分别是穿透频率响应(Transmission tracking)、输出端不匹配(Load Mismatch)以及串音(Crosstalk)。如同前所述反射频率响应一般,穿透系数是由图中两接收器R、B所定义,当两接收器反应不一致时,就会造成误差;其次在信号输出端与穿透接收器之间的阻抗也必须匹配,否则信号同样会在输出端与接收器之间来回振荡而使信号多了一个不确定性;最后一个是串音的现象,对于切换器或动态范围较大的组件,必须考虑到当信号不直接通过待测物但透过空气传递的现象,因此,对于这方面我们就必须比纯作反射系数量测上,多做额外的三项校正。

为了解决上述的误差来源,我们会采用直接缆线对接的方式,称之为Through校正,同样也是经由数学运算,此时可以解决输出端不匹配及穿透频率响应的问题。对于串音部分,一般为一选项校正,除非串音对待测组件影响较大,不然可以将此误差项忽略,实际上若要校正,必须两埠都接上50欧姆或先接上待测物再串接50欧姆负载做校正才正确。

以上为单端口的误差来源模型,共计有6个误差项,若对于两端口组件上,因信号源入射方向及待测物所走的路径不同,而会有对应到12个误差来源,对于三埠,则有27个误差项,若为四埠,则计有48个误差来源,因此当测量埠愈多时,相对的误差也会较多,但对于误差来源的原因,都可以归纳成图八所提的六大类误差之中。

校正方式及校正工具介绍

在了解误差的来源后,接下来,就是对应到仪器如何操作,我们以双端口网络分析仪为例,以速度及精准度来分,计有响应(Response)、单埠反射校正(1-Port)、全双埠校正(Full 2-Port)三种。所谓的响应,就是单做开路、短路、负载或者是穿透(Through)其中一种,其中以穿透较为常见,因做全双埠校正需要较多的接头转换次数,为了节省时间或不需要非常精确的量测,只做穿透校正就可以将其中四项误差更正,例如使用频谱分析仪(Spectrum Analyzer)加上同步信号产生器(Tracking Generator)所得纯量穿透系数所做的归一化(Normalization)就属于同样类型的校正原理。对于单埠的反射系数量测上,则须做三次接头转换,其分别为开路、短路及负载,这类似于高频的阻抗分析仪,若只纯粹量测反射相关参数如阻抗、反射损失等,就仅做此校正即可。但对于较有弹性的量测上,如滤波器或放大器等需同时量测反射及穿透相关参数,则需要做全双埠校正而将10或12项误差(其中两项为串音误差,一般可以忽略掉)做订正的动作,图9为不同校正方式与其相对应的校正工具。

另外,相对于不同的接头型态、涵盖频率及精准度,就会有不同校正工具的选择,如APC-7、N-Type、3.5mm、2.4mm等等,端视欲量的待测物为何种形式的接头而定。如图10左方,为传统3.5mm的校正工具,而右方则是目前较新式的电子切换式校正工具,使用者只须连接一次而不必再换接头就可以将所有的误差来源校正完成,这应该是未来多埠校正工具的趋势。

仪器规格及特征

如同频谱分析仪一般,网络分析仪也有相对应的规格,而规格的好坏并非绝对,主要须能符合量测应用的领域范围及未来的需要为优先考量因素,另外就是价格方面的问题,某些量测设备,可能会因为添加某些选项而可以做某方面特殊的应用等(如时域反射侦测、Full TRL校正),而会使整体价格提升,但为了作正确的测量及应用,这方面的投资是必要的。

一般来说,仪器规格大致可以区分成系统、信号源、测试端口、扫描项目、校正、选项及支持性等六类,以下我们举实例来做参考。

系统规格

仪器规格中,有定义所谓的系统动态范围(Dynamic Range),它的计算方式是输出功率或接收器的最大输入信号位准与接收器噪声位准的差值,单位为dB,其值愈大愈好,一般都会在70dB以上,但必须同时考虑到扫描的时间,若仪器动态范围够大,但相对的扫描时间过长,就不适用于产线上实时的量测监控,一般来说,单次扫描时间为数十毫秒到数秒之间。另外,会标示反射或穿透的不确定性(Uncertainly),这是代表在做完校正动作之后,仪器因噪声、接头重复性及切换器所造成最差情况的误差贡献,造成量测的不确定,单位为dB,其值愈小愈好。

信号源规格

频率范围(Frequency Range)代表信号源所能扫描的频率范围,而频率分辨率(Frequency Resolution)则表示信号源扫频时的最小频率间隔,一般为数kHz至1Hz,在频率稳定度(Stability)及精确度(Accuracy)规格上,则表示有多少成分的频率会偏离欲调变的频率中心,单位为ppm,另外,影响较大的如残存FM(Residual FM),又称为相位噪声(Phase Noise),其值越低越好,一般在数kHz左右。在功率规格上,较重要的有位准精确度(Level Accuracy)及线性度(Linearity),前者表示输出功率有多精准,而后者就是的振幅平坦度,另外,若针对放大器的量测上,也会有相关最小输出功率的定义(一般会采用内含步阶衰减器的选项)。测试端口规格

包括平均噪声位准(Average Noise Level)及方向性(Directivity),前者表示接收器所能侦测到的最低功率值,后者主要是来自于单向耦合器的信号泄漏影响,一般在40dB以上,愈大愈好。

扫描项目

计有线性、对数扫频、数据列表、连续波(CW, Continuous Wave,用于侦测稳定性)及用于放大器量测的功率扫描(Power Sweep)等,实际上仪器所能提供的扫描方式,端视其定位及配备而定。

校正方式

一般会内建前所述单埠以及响应校正,以及较精准的全双埠校正,以及校正工具与待测物的接头型态不同所使用的接头转换(Adapter Swept),另外,对于非同轴型态模型如TRL(Thru-Reflect-Line)或LRM(Line-Reflect-Match)校正的提供等。对于其它较方便的工具如治具仿真(Fixture simulation)参数;其中又包含嵌入式(Embeded)、或非嵌入式(Dembeded)、对于延长校正平面的缆线延伸(Port Extension)、缆线与待测物阻抗值不同所做的阻抗转换(Impedance Transfer)等,则端视仪器是否有此额外的功能。

选项及支持性

一般会有支持自动化控制的GP-IB接口、串联端口RS232或I/O端口Handler及打印功能的Print Port,另外较实际的量测上会需要直流压源(Bias)来达成实际组件的仿真,另外,在进阶的选项计有时域转换(Time Domain Analysis)、主要量测混波器等非线性组件的频率转换(Frequency Offset)、谐频量测(Harmonic Measurement)、用以量测高功率放大器的步阶式衰减器及相关转换接头(如N-type转3.5mm或转SMA)等,在使用前都须特别的注意有无此相关配备。

ZVB网络分析仪的使用操作手册

文件编号: 文件版本: A ZVB矢量网络分析仪操作指导书 V 1.0 拟制 _____________ 日期_______________ 审核 _____________ 日期_______________ 会审 _____________ 日期_______________ 批准 _____________ 日期______________ 生效日期:2006.10

操作规范: 使用者要爱护仪器,确保文明使用。 1、开机前确保稳压电源及仪器地线的正确连接。 2、使用中要求必须佩戴防静电手镯。 3、使用中不得接触仪器接头内芯(含连接电缆) 4、使用时不允许工作台有较大振动。 5、使用中不能随意切断电源,造成不正常关机。不能频繁开关机。 6、使用射频电缆时不要用力大,确保电缆保持较大的弧度。用毕电缆接头上加接头盖。 7、旋接接头时,要旋接头的螺套,尽量确保内芯不旋转。 8、尽量协调、少用校准件。校准件用毕必须加盖放回器件盒。 9、转接件用毕应加盖后放回盒中。 10、停用时必须关机,关闭稳压电源。方可打扫卫生。 11、无源器件调试必须佩戴干净的手套。 ______________________________________________________________________________

概述:1、本说明书主要为无源器件调试而做,涵盖了无源器件调试所需的矢量网络分析仪基本能,关于矢量网络分析仪的其它更进一步的使用,请参照仪器所附的使用说明书。 2、本说明书仅以ZVB4矢量网络分析仪为例,对其它型号矢量网络分析仪,操作步骤基本相 同,只是按键和菜单稍有差别。 3、仪器使用的一般要求仪器操作使用规范。 4、方框内带单引号的键为软菜单(soft menu), 5、本仪器几乎所有操作都可以通过鼠标进行。

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S 参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A 和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器

网络分析仪使用方法总结

如何使用网络分析仪 德力网络分析仪NA7682A NA7682A矢量网络分析仪吸取了前几代和国内外各款网络分析仪使用的经验,结合了最新国际仪器发展的技术和态势,是Deviser德力仪器最新推出的第四代矢量网络分析仪,作为国内主流的网络分析仪,下面介绍网络分析仪的使用技巧如下。 频率范围从100kHz到8.5GHz频段,为无线通信、广播电视、汽车电子、半导体和医疗器件等行业射频器件、组件的研发和生产的使用提供了高效、灵活的测试手段,进入了民品、工业、科研教育和军工等领域。其主要的特点是和主流网络分析仪是德的E507X系列指标和指令上做到兼容,在客户使用的性价比上非常优秀的选择。 在射频器件、基站天线、手机天线、GPS天线等、通信系统模块分析等领域成功的测试经验使越来越多的客户开始使用这款网络分析仪,在低频、800/900M、1800/1900M、2100M、5G/5.8G等的产品频率使用领域内广泛使用。 深圳市良源通科技有限公司专业服务和销售射频和通信仪表多年,是德力仪器国内最重要的合作伙伴和一级代理商,结合自己多年的技术积累和客户使用的配合测试,得到丰富经验。在仪器的售前和售后服务上面具有自己的优势。提供大量仪器试用和使用方案的设计,给客户在设备开发、产品研制和批量生产上都提供方便和最有优势的选择。 产品特点: 1、12.1英寸1280*800 TFT触摸屏 2、频率覆盖范围: 100 kHz 至 8.5 GHz 3、阻抗:50Ω 4、动态范围: >125 dB (比E5071C宽7-12dB) 5、极低的迹线噪声: <0.005 dBrms (在 3 kHz IFBW) 6、快速的测量速度: 80usec/点 7、分析和误差修正和校准功能 8、通过USB、LAN 和 GPIB 接口进行系统互联 9、时域分析(选件):时域传输、反射特性分析;距离上的故障定位。 10、数据变换:涉及多种形式的阻抗、导纳变换。 11、滤波器分析:自动分析出:插损、3dB带宽、6dB带宽、带内纹波、带外抑制、Q值、矩形系数

网络分析仪基本原理

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB 压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则 c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,如图1所示,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect 为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。 接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输在线的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。

矢量网络分析仪基础知识和S参数测量

矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 。因为只有一个口,总是接在最后又称 1.单端口网络习惯上又叫负载Z L 终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 2单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S )更方便些。 11 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。 2匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 2传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

2两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回 损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即 S 11、S 21、S 12、S 22。这里仅简单的(但不严格)带上一笔。 S 11与网络输出端接上匹配负载后的输入反射系数Г相当。注意:它是网络 的失配,不是负载的失配。负载不好测出的Γ,要经过修正才能得到S 11 。 S 21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传 输系数T 或插损,对放大器即增益。 上述两项是最常用的。 S 12即网络输出端对输入端的影响,对不可逆器件常称隔离度。 S 22即由输出端向网络看的网络本身引入的反射系数。 中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能 力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。 1.2 传输线 传输射频信号的线缆泛称传输线。常用的有两种:双线与同轴线,频率更高则会用到 微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。 2特性阻抗Z 0 它是一种由结构尺寸决定的电参数,对于同轴线: 式中εr 为相对介电系数,D 为同轴线外导体内径,d 为内导体外径。 2反射系数、返回损失、驻波比 这三个参数采用了不同术语来描述匹 配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电

ENA网络分析仪的使用

ACTIVE CH/TRACE BLOCK(活动通道/轨迹区) Channel Prev:选择前一个通道 Channel Next:选择下一个通道 Trace Prev:选择前一个轨迹 Trace Next:选择下一个轨迹 RESPONSE & ENTRY(响应和输入区) Channel Max:将当前选中的Channel最大化显示 Trace Max:将当前选中的Trace最大化显示 Entry off:关闭当前选中的窗口 Back space:退格键 Focus:在已打开的所有窗口之间进行切换 Measurement(s参数的测量) S11: Port1接收Port1发射 S21: Port1接收Port2发射 S12: Port2接收Port1发射 S22: Port2接收Port2发射 ******************************************************************************************* Format(格式设置) Log Mag:Y轴以对数形式显示振幅,X轴显示频率 Phase:Y轴以对数形式显示相位,X轴显示频率 Group Delay:Y轴以对数形式电视教学群时延,X轴显示频率 Smith:史密斯圆图的格式设置 Polar:极性图的格式设置 Lin Mag:Y轴以线性形式显示振幅,X轴显示频率 SWR:Y轴显示驻波比,X轴显示频率 Real:Y轴显示实部,X轴显示频率 Imaging:Y轴显示虚部,X轴显示频率 Expand Phase:Y轴显示扩展相位,X轴显示频率 Positive Phase:Y轴显示正相位,X轴显示频率 Return:返回 ******************************************************************************************* Scale(屏幕显示标尺) Auto scale:自动调整尺寸 Auto scale all:设置所有为自动尺寸 Divisions:设置一屏所显示的行格子数,必须为偶数个 Scale/div:每格所表示的数值 Reference position:设定参考线所在的格子数

网络分析仪原理及使用

网络分析仪原理及使用 康飞---芬兰贝尔罗斯公司 2007年10月 一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数 (Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗 ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。 接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输线上的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。 同样,我们也可以从ρ值定义出回返损耗(R.L.),其意义是反射能量与入射能量的比值,其值愈大,代表反射回来的能量愈小。对于反射系数所衍生的相关纯量参数,我们将其整理成表1,基本上,它们之间是换算的过程,会因为产业及应用的不同而倾向于使用某一参数。 REMARK: 驻波系数又叫做驻波比,如果电缆线路上有反射波,它与行波相互作用就会产生驻波,这时线上某些点的电压振幅为最大值Vmax,某些点的电压振幅为最小值Vmin,最大振幅与最小振幅之比称为驻波系数.驻波系数越大,表示线路上反射波成分愈大, 也表示线路不均匀或线路终端失配较大.为控制电缆的不均匀性,要求一定长度的终端匹配的电缆在使用频段上的输入驻波系数S不超过 某一规定的数值.电缆中不均匀性的大小,也可用反射衰减来表示.反射系数的倒数的绝对值取对数,称为反射衰减.反射衰减愈大, 即反射系数愈小,也就是驻波比愈小,即表示内部不均匀性越小. 穿透特性 对于穿透的特性,一样有分为纯量与向量两种,对于向量系数而言,最重要的就是穿透系数,其中Vtrans为经过待测物后的穿透波、Vinc为入射波,而τ即为穿透系数的纯量大小,θ则表示入射与穿透波的相位差值。 对于纯量的定义上,以被动组件而言,最常使用的就是插入损失(I.L. Insertion Loss),亦即与上述的τ值是相关的参数,定义为。若为主动组件如放大器等,穿透的信号有放大的效应则为增益(Gain),此时定义为。

S11-HP8753D-网络分析仪简单用法

第一:接线方式像您现在用的谐振器一样 预测测试结果类似此图 S[1,1]|S |(d B ) 43.spv Freq(MHZ) -17.31 -15.56 -13.82 -12.07 -10.33 -8.58 -6.84 -5.09 -3.35 -1.60 0.13 422.00425.00428.00431.00434.00437.00440.00443.00446.00449.00452.00 第二、测试方法 测试S11(或者S22) (单端对器件,只需要存盘接数据的那一边) 具体测试用HP8753D 如下 1、首先明确待测器件的工作中心频率(central frequency)和带宽(bandwidth),以及扫描的点数(例如输入1601)。按激励类键CENTER ,数据录入类键输入中心频率数值和单位(例如433MHz ),SPAN 通过类似的方法输入测试带宽(例如30MHz )。因为基片不同,这个器件频率可能不在433,请查询 2、在这些参数设定完后,开始开路校验校准。(单端对只用开路校准) 开路:断开刚才连接的电缆,通道选取CH1(如果用1通道测试的话,即S11),FORMAT 键查看SMITH 图,软键查看S11,在键盘上按CAL(Calibration),用屏幕右侧软键选择RESPONSE ,然后软键选择OPEN ,等待一会儿软键按DONE 完成开路校验。如果有管座且不带匹配器件,请带管座一起开路校准。 第三、保存数据:---请最好是存盘数据 A 存数据:开路校准S11,存盘S11。或者开路校准S22,存盘S22。 (1)功能类SA VE/RECALL 如果想保存在网络分析仪里面,软键选择Internal Disk (软盘);

网络分析仪原理及测量阻抗

网络分析仪组成框图 图1所示为网络分析仪内部组成框图。为完成被测件传输/反射特性测试,网络分析仪包含; 1.激励信号源;提供被测件激励输入信号 2.信号分离装置,含功分器和定向耦合器件,分别提取被测试件输入和反射信号。 3.接收机;对被测件的反射,传输,输入信号进行测试。 4.处理显示单元; 对测试结果进行处理和显示。 图1 网络分析仪组成框图 传输特性是被测件输出和输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和输出信号信息。 网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。 被测件输出信号进入网络分析仪B接收机,所以,B接收机测试得到被测件输出信号信息。B/R为被测试件正向传输特性。当完成反向测试测试时,需要网络分析仪内部开关控制信号流程。

图2网络分析仪传输测试信号流程 反射特性是被测件反射和输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和测试端口反射信号。 网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。 激励信号输入到被测件后会发射反射,被测件端口反射信号和输入激励信号在相同物理路径上传播,定向耦合器负责把同个物理路径上相反方向传播的信号进行分离,提取反射信号信息,进入A接收机。 A/R 为被测试件端口反射特性。当需要测试另外端口反射特性时,需网络分析仪内部开关将激励信号转换到相应测试端口。

第8章 网络分析仪的使用.

第8章:标量网络分析仪的使用 网络分析仪是研究线性系统的重要工具,用来测量线性系统的振幅传输特性和相移特性。它是射频范围内使用最广泛的电子测量仪器之一。广泛用于甚高频,超高频,极高频范围内各种网络的动态扫频测量。如有源四端网络、无源四端网络﹑滤波器﹑电缆﹑放大器的传输特性和反射特性的测量。 对于不同器件,器件特性的表现参数形式有所不同,如放大器的传输特性,表现为增益;环行器的传输特性,表现为正向传输损耗和反向隔离等等。尤其工作在微波波段的这些参数,是最为关心的。因此,网络分析仪测量的器件种类比较广,在仪器的工作频率之内,均可以测量器件的传输和反射特性。 通讯系统和雷达系统中,使用了大量的微波器件,以及微波组件,都可以通过网络分析仪测量相关的参数。可以测量的器件有:双工器、滤波器、传输线连接器(包括转换接头)、电桥、功率分配器、功率合成器、隔离器、环行器、定向耦合器、衰减器、负载、放大器、混频器、谐振器、微波二极管、射频组件、天线等。 网络分析仪的种类很多。按频率宽度,网络分析仪可分为窄带和宽带;按测量通道,网络分析仪可分为双通道和多通道;按照测量的参数特点,网络分析仪可以分为标量网络分析仪和矢量网络分析仪两类。与标量网络分析仪相比,矢量网络分析仪不仅可以测量信号的幅度参量,同时可以测量相位参量。本章主要讨论标量网络分析仪。 典型的网络分析仪的频率范围: HP-E5100A网络分析仪频率范围为10kHz-300MHz的 HP8753C 网络分析仪频率范围:300kHz ~3GHz/6GHz; AV-3616X 网络分析仪频率范围:10MHz~8.6GHz; AV-3617X 网络分析仪频率范围:10MHz~110GHz;(10MHz~18GHz,10MHz~26.5GHz等)HP8757C 网络分析仪频率范围: 10MHz~110GHz ;(10MHz~20GHz,10MHz~40GHz等) 8.2、CS36100系列标量网络分析仪的使用 8.2.1、CS36100系列标量网络分析仪概述 CS36100系列标量网络分析仪为信号源和显示部分一体化。信号源部分采用数字频率合成技术,频率分辨率达到1Hz,数据处理部分采用数字信号处理器(DSP)和可编程逻辑器件,7.8英寸(640*480)TFT液晶显示器。输入为双通道有源检波输入(A、B通道)和一个直接输入

Agilent E5061B网络分析仪使用方法

前面板:部件的名称和功能

按键 工作通道/迹线区 用于选择工作通道和迹线的一组按键。 输入区 E5061B 的前面板上提供了用于输入数字数据的一组按键。

仪器状态区 与宏程序功能、存储和调用功能、控制/管理功能以及预设 E5061B(将其返回到预设状态)相关的一组按键。

标记/分析区 用于通过使用标记等来分析测量结果的一组按键。 浏览区(前面板上没有标签) 浏览区中的按键和旋钮用于在功能键菜单、表格(极限表、分段表等)或对话框中的选定(高亮显示的)区域中进行浏览,以及通过增加或减少来更改数据输入区域中的数值。当使用屏幕上显示的浏览区按键,从两个或多个对象(功能键菜单、数据输入区域等)中选择一个要操纵对象的时,首先按输入区中的 Foc(聚焦)键,以选择要操纵的对象(将焦点置于该对象上),然后操纵浏览区按键(旋钮),在选定(高亮显示)的对象之间移动或更改数值。

下面的描述说明了当焦点在功能键菜单上时和当焦点在数据输入区域中时浏览区按键的作用。有关操纵表和对话框的更多信息,请参考所有这些功能的操纵步骤。 ?焦点位于功能键菜单上时(已选择功能键菜单) 旋钮 (顺时针旋转或 逆时针转动) 上下移动对功能键的选择(高亮显示)。 上/下 箭头键 上下移动对功能键的选择(高亮显示)。 右箭头键 显示上一层功能键菜单。 左箭头键 显示下一层功能键菜单。 Enter或 旋钮(按下) 执行选定功能键的功能。 ?焦点位于数据输入区域中时(已选择数据输入区域) 旋钮 (顺时针旋 转或逆时针 转动) 以小步长增加或减少数据输入区域中的数值。 上/ 下箭头键 以大步长增加或减少数据输入区域中的数值。 左/右箭在数据输入区域来回横向移动光标 键一起使用,以一次更改一个字符的方式更改数据。

网络分析仪的原理详解

网络分析仪的原理详解 网络分析仪基本原理无线射频 一种独特的仪器 网络分析仪是一种功能强大的仪器,正确使用时,可以达到极高的精度。它的应用也十分广泛,在很多行业都不可或缺,尤其在测量无线射频(RF)元件和设备的线性特性方面非常有用。现代网络分析仪还可以应用于更具体的场合,例如,信号完整性和材料的测量。随着业界第一款PXI网络分析仪—NI PXIe - 5630的推出,你完全可以摆脱传统网络分析仪的高成本和大占地面积的束缚,轻松地将网络分析仪应用于设计验证和产线测试。 网络分析的基本原理网络分析仪的发展 你可以使用图1所示的NI PXIe-5630矢量网络分析仪测量设备的幅度,相位和阻抗。由于网络分析仪是一种封闭的激励-响应系统,你可以在测量RF特性时实现绝佳的精度。当然,充分理解网络分析仪的基本原理,对于你最大限度的受益于网络分析仪非常重要。 网络分析的基本原理 图1. NI PXle-5630 矢量网络分析仪 在过去的十年中,矢量网络分析仪由于其较低的成本和高效的制造技术,流行度超过了标量网络分析仪。虽然网络分析理论已经存在了数十年,但是直到20世纪80年代早期第一台现代独立台式分析仪才诞生。在此之前,网络分析仪身形庞大复杂,由众多仪器和外部器件组合而成,且功能受限。NI PXIe-5630的推出标志着网络分析仪发展的又一个里程碑,它将矢量网络分析功能成功地赋予了灵活,软件定义的PXI模块化仪器平台。 通常我们需要大量的测量实践,才能实现精确的幅值和相位参数测量,避免重大错误。由于射频仪器测量的不确定性,小的错误很可能会被忽略不计。而网络分析仪作为一种精密的仪器能够测量出极小的错误。 网络分析的基本原理网络分析理论

网络分析仪的基本原理.

一种独特的仪器 网络分析仪是一种功能强大的仪器, 正确使用时, 可以达到极高的精度。它的应用也十分广泛, 在很多行业都不可或缺, 尤其在测量无线射频 (RF元件和设备的线性特性方面非常有用。现代网络分析仪还可以应用于更具体的场合, 例如, 信号完整性和材料的测量。随着业界第一款 PXI 网络分析仪— NI PXIe - 5630的推出, 你完全可以摆脱传统网络分析仪的高成本和大占地面积的束缚, 轻松地将网络分析仪应用于设计验证和产线测试。 网络分析仪的发展 你可以使用图 1所示的 NI PXIe-5630矢量网络分析仪测量设备的幅度,相位和阻抗。由于网络分析仪是一种封闭的激励 -响应系统, 你可以在测量 RF 特性时实现绝佳的精度。当然, 充分理解网络分析仪的基本原理, 对于你最大限度的受益于网络分析仪非常重要。 在过去的十年中, 矢量网络分析仪由于其较低的成本和高效的制造技术, 流行度超过了标量网络分析仪。虽然网络分析理论已经存在了数十年,但是直到 20世纪 80年代早期第一台现代独立台式分析仪才诞生。在此之前, 网络分析仪身形庞大复杂,由众多仪器和外部器件组合而成,且功能受限。 NI PXIe-5630的推出标志着网络分析仪发展的又一个里程碑, 它将矢量网络分析功能成功地赋予了灵活,软件定义的 PXI 模块化仪器平台。 通常我们需要大量的测量实践, 才能实现精确的幅值和相位参数测量, 避免重大错误。由于射频仪器测量的不确定性, 小的错误很可能会被忽略不计。而网络分析仪作为一种精密的仪器能够测量出极小的错误。 网络分析理论 网络是一个被高频率使用的术语,有很多种现代的定义。就网络分析而言, 网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配, 最大限度地提高功率效率和信号的完整性。每当射频信号由

安捷伦网络分析仪使用手册

网络分析仪使用手册 目录 ACTIVE CH/TRACE Block: Channel Prev:选择上一个通道 Channel Next:选择下一个通道 Trace Prev:选择上一个轨迹 Trace Next:选择下一个轨迹RESPONSE Block: Channel Max: 通道最大化 Trace Max: 轨迹最大化 Meas: 设置S参数 Format: 设置格式 Scale: 设置比例尺 Display: 设置显示参数 Avg: 波形平整 Cal: 校准 STIMULUS Block: Start: 设置频段起始位置 Stop: 设置频段截止位置 Center: 设置频段中心位置 Span: 设置频段范围 Sweep Setup: 扫描设置 Trigger: 触发 NAVIGATION Block: Enter: 确定 ENTRY Block: Entry off: 取消当前窗口 Back space: 退格键 Focus: 窗口切换键 +/-: 正负切换键 G/n, M/,k/m: 单位输入 INSTR STATE Block: Macro Setup: Macro Run: Macro Break: Save/Recall: 程序载入载出键 System: 系统功能键 Preset: 预设置键 MKR/ANALYSIS Block: Marker: 标记键 Marker Search: 标记设置键 Marker Fctn: 标记功能 Analysis: 分析 部分按键详细功能: ------------------------------------------------------------ System: (系统功能设定) Print: 将显示屏画面打印出来 Abort printing: 终止打印 Printer setup: 配置打印机 Invert image: 颠倒图象颜色 Dump screen image: 将显示屏画面保存到硬盘中 E5091A setup: 略 Misc setup: 混杂功能 Beeper: 发声控制 Beeper complete: 开/关提示音 Test beeper complete: 测试开/关提示音 Beep warning: 开/关警告音 Test beep warning: 测试开/关警告音 Return: 返回 GPIB setup: 略 Network setup: 略 Clock setup: 时钟设定 Set date and time: 设置日期和时间 Show clock: 开/关时间显示 Return: 返回 Key lock: 锁定功能 Front panel & keyboard lock: 锁定前端面板和键盘 Touch screen & mouse lock: 锁定触摸屏和鼠标

矢量网络分析仪的使用——实验报告

矢量网络分析仪实验报告 一、实验容 单端口:测量Open,Short,Load校准件的三组参数,分别进行单端口的校准。 a.设置测量参数 1)预设:preset OK 2)选择测试参数S11:Meas->S11; 3)设置数据显示格式为对数幅度格式:Format->LogMag; 4)设置频率围:Start->1.5GHz,Stop->2.5GHz(面板键盘上“G”代表 GHz,“M”代表MHz,“k”代表kHz; 5)设置扫描点数:Sweep Setup->Points->101->x1(或”Enter”键或按 下大按钮); 6)设置信号源扫描功率:Sweep Setup->Power->Foc->-10->x1->Entry Off (隐藏设置窗)。 b.单端口校准与测量 1)设置校准件型号:Cal->Cal Kit->85032F(或自定义/user)(F指femal 母头校准件,M指male公头校准件); 2)Modify Cal Kit->Specify CLSs->Open->Set All->Open(m/f),返回到 Specify CLSs->Short->Set ALL->Short(m/f); 3)选择单端口校准并选择校准端口:Cal-Calibrate->1-Port Cal->Select Port->1(端口1 的校准,端口2也可如此操作); 4)把Open校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Open,校准提示(嘀的响声)后完成Open校准件的 测量;得到的结果如Fig 1:单口Open校准件测量 5)把Short校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Short,校准提示(嘀的响声)后完成Short校准件的 测量;得到的结果如Fig 2:单口Short校准件测量 6)把Load校准件连接到端口(或与校准端口相连的同轴电缆另一连

网络分析仪使用说明书

1 目的 本使用说明书为规范矢量网络分析仪的操作,避免操作不当引起的仪器损坏;作为培训文件使公司技术人员了解本仪器的使用。 2 适用范围 本使用说明书适用于公司范围内的所有Anglent E50系列矢量网络分析仪的使用(其他型号具有一定的实用价值,但最大区别在于按键位置以及功能方面有细小区别)。 3 主要职责 3.1 各部门设备使用者负责实施设备一级保养工作。 3.2 各部门安排专人负责实施设备的定期保养管理,监督日常保养工作之实施。 3.3 对新进员工有必要学习此文件时进行培训学习。 4 仪器操作注意事项 4.1 测试产品时,不能直接加电测试。 4.2 测试功放前,必须在频谱仪上检测过没有自激,才能用网络仪测其它指标。 4.3 防止有大的直流电加入,网络仪最大能承受10V 的直流电。 4.4 防止过信号的输入。 4.4.1 网络分析仪的最大允许输入信号为20dBm 。 4.4.2 输入信号大于10dBm 时,应加相应的衰减器。 4.5 仪器使用前确保已接地。 5 仪器面板介绍 5.1 按键区域 1·ACTIVE CH/TRACE :活动通道区; 2·软驱; 3·RESPONSE :响应区; 4·NAVIGATION :导航区; 5·ENTRY :输入区; 6·STIMULVS :激励区; 7·MKR/ANALYIS :标定点/分析; 8·INSTRSTATE :设备状态区。 注:见“11 按键翻译”。 1 2 3 6 4 5 7 8 软菜单 USB 接口

矢量网络分析仪使用说明书版次V1.0 页次2/16 5.2 1 2 3 4 5 Tr1 S11 SWR 1.000/Ref 1.0000 Tr2 S21 Logmag 10dB/Ref 0.00dB Tr3 S22 SWR 1.000/Ref 1.0000 1.表示通道编号; 2.表示通道类型; 3.表示通道的格式; 4.表示通道在显示屏上每格所表示的数值; 5.表示通道在显示屏上参考线所在的格子数值。 6 仪器的基本常用功能介绍 6.1 测量回波损耗(电压驻波比) 通道选择S11或S22,S11时,用电缆PORT1;S22时,用电缆PORT2。 测量单通道时,所测器件终端应加负载;测双通道时,器件输出与输入均应接电缆。器件为有源器件时,详见“4 仪器操作注意事项”。 6.2 测量插入损耗 通道选择S12(Port2接收Port1发射)或S21(Port1接收Port2发射)测量时,所测器件输出、输入应接电缆;测量有源器件时,S12、S21不能选错,其余详见“4 仪器操作注意事项”。 6.3 测量时延 所测器件端口接上仪器,通道选择视具体情况,仪器按键Format→GroupDelay,详见“4 仪器操作注意事项”。 6.4 测量史密斯圆图 通道选择S11或S22时,终端应加负载,所测端接电缆。双通道时,输出、输入应同时接电缆,仪器按键Format→Smith,详见“4 仪器操作注意事项”。 7 仪器校准按键介绍 7.1 手动校准(以下介绍了双通道的校准方法) 按Cal*键,选择Cal kit ,选择ⅹⅹⅹ(具体见校准件型号,一般仪器厂商有配置),再选择Calibrate,选择2-Port Cal(双通道校准),选择Reflection,再对应相应的通道及校准件进行校准(电缆接什么标准件并在仪器上具体按何键见按件翻译,这里用到的标准键有3种分别是,开路Open、短路Short和负载Load),结束后,选择Return返回

网络分析仪工作原理

矢量网络分析仪原理 网络分析仪组成框图 图1所示为网络分析仪内部组成框图。为完成被测件传输/反射特性测试,网络分析仪包含; 1.激励信号源;提供被测件激励输入信号 2.信号分离装置,含功分器和定向耦合器件,分别提取被测试件输入和反射信号。 3.接收机;对被测件的反射,传输,输入信号进行测试。 4.处理显示单元; 对测试结果进行处理和显示。 图1 网络分析仪组成框图

传输特性是被测件输出与输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和输出信号信息。 网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。 被测件输出信号进入网络分析仪B接收机,所以,B接收机测试得到被测件输出信号信息。B/R为被测试件正向传输特性。当完成反向测试测试时,需要网络分析仪内部开关控制信号流程。 图2 网络分析仪传输测试信号流程

反射特性是被测件反射与输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和测试端口反射信号。 网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。 激励信号输入到被测件后会发射反射,被测件端口反射信号与输入激励信号在相同物理路径上传播,定向耦合器负责把同个物理路径上相反方向传播的信号进行分离,提取反射信号信息,进入A接收机。 A/R 为被测试件端口反射特性。当需要测试另外端口反射特性时,需网络分析仪内部开关将激励信号转换到相应测试端口。 图3 网络分析仪反射测试信号流程 信号源 信号源提供被测件激励信号,由于网络分析仪要测试被测件传输/反射特性与工作频率和功率的关系。所以,网络分析仪内信号源需具备频率扫描和功率扫描功能。 为保证测试的频率精度,现在网络分析仪内信号源采用频率合成方法实现。当扫宽设置为零时,输出信号为点频CW 信号。 网络分析控制其输出功率依靠ALC和衰减器两个部分完成。ALC保证输入信号功率的稳定和功率扫描控制,由于ALC控制范围有限,需衰减器完成大范围功率调

网络分析仪使用说明书

矢量网络分析仪 使用说明书 版 次 V1.0 页 次 1/16 1 目的 本使用说明书为规矢量网络分析仪的操作,避免操作不当引起的仪器损坏;作为培训文件使公司技术人员了解本仪器的使用。 2 适用围 本使用说明书适用于公司围的所有Anglent E50系列矢量网络分析仪的使用(其他型号具有一定的实用价值,但最大区别在于按键位置以及功能方面有细小区别)。 3 主要职责 3.1 各部门设备使用者负责实施设备一级保养工作。 3.2 各部门安排专人负责实施设备的定期保养管理,监督日常保养工作之实施。 3.3 对新进员工有必要学习此文件时进行培训学习。 4 仪器操作注意事项 4.1 测试产品时,不能直接加电测试。 4.2 测试功放前,必须在频谱仪上检测过没有自激,才能用网络仪测其它指标。 4.3 防止有大的直流电加入,网络仪最大能承受10V 的直流电。 4.4 防止过信号的输入。 4.4.1 网络分析仪的最大允许输入信号为20dBm 。 4.4.2 输入信号大于10dBm 时,应加相应的衰减器。 4.5 仪器使用前确保已接地。 5 仪器面板介绍 5.1 按键区域 1·ACTIVE CH/TRACE :活动通道区; 2·软驱; 3·RESPONSE :响应区; 4·NAVIGATION :导航区; 5·ENTRY :输入区; 6·STIMULVS :激励区; 7·MKR/ANALYIS :标定点/分析; 8·INSTRSTATE :设备状态区。 注:见“11 按键翻译”。 1 2 3 6 4 5 7 8 软菜单 USB 接口

矢量网络分析仪使用说明书版次V1.0 页次2/16 5.2 1 2 3 4 5 Tr1 S11 SWR 1.000/Ref 1.0000 Tr2 S21 Logmag 10dB/Ref 0.00dB Tr3 S22 SWR 1.000/Ref 1.0000 1.表示通道编号; 2.表示通道类型; 3.表示通道的格式; 4.表示通道在显示屏上每格所表示的数值; 5.表示通道在显示屏上参考线所在的格子数值。 6 仪器的基本常用功能介绍 6.1 测量回波损耗(电压驻波比) 通道选择S11或S22,S11时,用电缆PORT1;S22时,用电缆PORT2。 测量单通道时,所测器件终端应加负载;测双通道时,器件输出与输入均应接电缆。器件为有源器件时,详见“4 仪器操作注意事项”。 6.2 测量插入损耗 通道选择S12(Port2接收Port1发射)或S21(Port1接收Port2发射)测量时,所测器件输出、输入应接电缆;测量有源器件时,S12、S21不能选错,其余详见“4 仪器操作注意事项”。 6.3 测量时延 所测器件端口接上仪器,通道选择视具体情况,仪器按键Format→GroupDelay,详见“4 仪器操作注意事项”。 6.4 测量史密斯圆图 通道选择S11或S22时,终端应加负载,所测端接电缆。双通道时,输出、输入应同时接电缆,仪器按键Format→Smith,详见“4 仪器操作注意事项”。 7 仪器校准按键介绍 7.1 手动校准(以下介绍了双通道的校准方法) 按Cal*键,选择Cal kit ,选择ⅹⅹⅹ(具体见校准件型号,一般仪器厂商有配置),再选择Calibrate,选择2-Port Cal(双通道校准),选择Reflection,再对应相应的通道及校准件进行校准(电缆接什么标准件并在仪器上具体按何键见按件翻译,这里用到的标准键有3种分别是,开路Open、短路Short和负载Load),结束后,选择Return返回

相关主题