搜档网
当前位置:搜档网 › 课程设计风力机

课程设计风力机

课程设计风力机
课程设计风力机

机械与动力工程学院风力机空气动力学课程设计

设计题目:小型三叶片风力机叶片设计

设计人:王伦

班级:风能1101

组号: 4

指导教师:姚桂焕

设计时间:2周

成绩:

日期:2014.6.23-2014.7.4

设计内容及要求

第一章风力机发展程

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。

1.1风力机简介

风力机,将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。许多世纪以来,它同水力机械一样,作为动力源替代人力、畜力,对生产力的发展发挥过重要作用。近代机电动力的广泛应用以及20世纪50年代中东油田的发现,使风力机的发展缓慢下来。70年代初期,由于“石油危机”,出现了能源紧张的问题,人们认识到常规矿物能源供应的不稳定性和有限性,于是寻求清洁的可再生能源遂成为现代世界的一个重要课题。风能作为可再生的、无污染的自然能源又重新引起了人们重视。

1.2风力机简史

风车最早出现在波斯,起初是立轴翼板式风车,后又发明了水平轴风车。风车传入欧洲后,15世纪在欧洲已得到广泛应用。荷兰、比利时等国为排水建造了功率达66千瓦(90马力)以上的风车。18世纪末期以来,随着工业技术的发展,风车的结构和性能都有了很大提高,已能采用手控和机械式自控机构改变叶片桨距来调节风轮转速。风力机用于发电的设想始于1890年丹麦的一项风力发电计划。到1918年,丹麦已拥有风力发电机120台,额定功率为5~25千瓦不等。第一次世界大战后,制造飞机螺旋桨的先进技术和近代气体动力学理论为风轮叶片的设计创造了条件,于是出现了现代高速风力机。1931年,苏联采用螺旋桨式叶片建造了一台大型风力发电机,风速为13.5米/秒时,输出功率达100千瓦,风能利用系数提高到0.32。在第二次世界大战前后,由于能源需求量大,欧洲一些国家和美国相继建造了一批大型风力发电机。1941年,美国建造了一台双叶片、风轮直径达53.3米的风力发电机,当风速为13.4米/秒时输出功率达1250千瓦。英国在50年代建造了三台功率为100千瓦的风力发电机。其中一台结构颇为独特,它由一个26米高的空心塔和一个直径24.4米的翼尖开孔的风轮组成。风轮转动时造成的压力差迫使空气从塔底部的通气孔进入塔内,穿过塔中的空气涡轮再从翼尖通气孔溢出。法国在50年代末到60年代中期相继建造了三台功率分别为1000千瓦和800千瓦的大型风力发电机。现代的风力机具有增强的抗风暴能力,风轮叶片广泛采用轻质材料,运用近代航空气体动力学成就,

使风能利用系数提高到0.45左右,用微处理机控制,使风力机保持在最佳运行状态,发展了风力机阵列系统,风轮结构形式多样化。法国人在20年代发明的垂直轴风轮在淹没了半个多世纪之后,已成为最有希望的风力机型之一。这种结构有多种形式,它具有运转速度高、效率高和传动机构简单等优点,但需用辅助装置起动。人们还提出了许多新的设想,如旋涡集能式风力机,据估计这种系统的单机功率将100~1000倍于常规风力机。中国利用风车的历史至少不晚于13世纪中叶,曾建造了各种形式的简易风车碾米磨面、提水灌溉和制盐。直到20世纪50年代仍可见到“走马灯” 式风车。

1.3风力机的特点

新一代风力机的特点是:

①增强抗风暴能力;

②风轮叶片广泛采用轻质材料,如玻璃纤维复合材料等;

③运用近代航空气体动力学成就使风能利用系数提高到0.45左右;

④用微处理机控制,使风力机保持在最佳运行状态;

⑤发展风力机阵列系统;

⑥风轮结构形式多样化。

1.4风力机的基本原理

太阳对大气层的不均匀照射和地球表面吸热能力的不同,在大气层中引起冷热空气的强烈对流而形成风。风的动能与风速的3次方成正比。用v表示空气速度,用ρ表示质量密度,则单位时间内流过风

轮扫掠面积A的空气质量(m)为ρAv ,于是空气动能便是。由于气体的可压缩性,气体质点穿过风轮扫掠面──能量转换界面时,风速由v1降为v2,即v1>v2。因自然风速v1只能有一部分被利用,若以风能利用系数Cρ表示利用程度,则可利用风能为,其中Cρ<1。根据气体动量理论推导出风能利用系数的最大可能值为0.593,因此风轮输出功率与风轮的工作面积成正比。Cρ取决于风轮和叶片的结构和工艺。旧式风车Cρ≈0.10,现代风力机Cρ=0.3~0.4,最高可达0.5。另外,现代风力机在能量传输过程中大约还要损失1/3 理论上应输出的功。

1.5风力机的构成和分类

风力机的主要部件是风能接收装置。一般说来,凡在气流中产生不对称力的物理构形都能成为风能接收装置,它以旋转、平移或摆动运动而发出机械功。各类风能接收装置的取舍取决于使用寿命和成本的综合效益。风力机大都按风能接收装置的结构形式和空间布置来分类,一般分为水平轴结构和垂直轴结构两类。以风轮作为风能接收装置的常规风力机,按风轮转轴相对于气流方向的布置分为水平轴风轮式(转轴平行于气流方向)、侧风水平轴风轮式(转轴平行于地面、垂直于气流方向)和垂直轴风轮式(转轴同时垂直于地面和气流方向)。广义风力机还包括那些利用风力产生平移运动的装置,如风帆船和中国古代的加帆手推车等。无论何种类型的风力机,都是由风能接收装置、控制机构、传动和支承部件等组成的。近代风力机还包括发电、蓄能等配套系统。

1.6风力机存在的问题

世界上已有数万台风力机在运行,作为辅助能源正在发挥作用。但风力机仍存在若干不足之处:①能量输出不稳定,特别是大型风力机的利用率低,作为独立能源的条件还不具备;②安全可靠性尚无充分保障;③成本在短期内尚不足以与矿物燃料相竞争。但是,随着人类对能源需求量的日益增多和科学技术的发展,上述问题终会得到解决。

1.7本课题的背景目的及主要工作

我国可开发利用的风能资源为2.53亿kW,新疆、内蒙至东北和东南沿海两大主风带有有效风力时间百分率在70%以上。可以说,我国开发风能具有良好的自然环境和资源条件。近几年来,随着我国电网覆盖程度的提高,在各级政府、电力部门和国外政府及金融组织的援助下,我国在新疆、内蒙、广东、福建、辽宁等地区建立了20座风力发电场,总装机容量达302MW,对缓解当地电力供应矛盾,提高供电质量起到了很好的作用。风力发电场的建设,加速了我国能源结构改革的进程,风能己成为真正的补充能源和发挥规模效益的生力军。

我国风力发电起步较晚,但发展较快。自80年末引进大型风力发电机以来,经过十多年的不断引进、消化、吸收,积累了一定的经验。我国并网型风力发电技术在80年代中期开始进行试验、示范,经过二十多年的努力,为今后进行国产化风力发电机组的规模化生产打下了一定的基础,同时也为推动国家风电产业化进程做出了努力。

但遗憾的是,作为世界上的风能大国,我国尚不具备独立开发风力机尤其是大型风力机的能力,迄今为止国内已投入运行的风力机绝大部分是进口风力机。设计水平是主要制约因素,与此相关的基础研究、实验研究和新技术应用等方面与国外存在着较大的差距,有些领域国内甚至是空白。尤其是目前主流的大型风力机,我国基本上是依靠从国外引进生产技术来仿制。这不但受到成本、运输、售前售后等方面的制约,还要消耗大量的资金,而且将使我国对风力机组的研制水平日益落后于国际先进水平,从根本上来说不利于我国风电产业的发展。更何况从国外引进的风机由于在设计时针对国外的风况和有一些特殊的环保要求,并不能和国内的情况非常吻合,不能很好地达到预期的性能。因此,必须以提高我国风力机的设计和研究水平为目标来实现“国产化"。

1.8本课程的主要工作:

1.阅读理解“风能转换原理与技术中”叶片设计的相关原理及设计知识,主要是第五章和第六章相关知识。

2.编制叶素轴向、周向速度诱导因子、最佳弦长及扭角的计算的界面程序;

3.根据程序计算并绘制风力机叶片弦长随叶片展向长度的变化曲线;

4.根据程序计算并绘制风力机叶片扭角随叶片展向长度的变化曲线;

第三章风力机叶片设计

一.选定翼型,确定最佳攻角α下的Cl和Cd

1.翼型(定义μ=r/R,其中R为叶片设计半径,r为叶片剖面到旋转中心距离)

(1)叶片根部选用NACA4418标准翼型(μ<0.2)

NACA4418翼型参数:

Calculated polar for: NACA 4418

1 1 Reynolds number fixed Mach number fixed

xtrf = 1.000 (top) 1.000 (bottom)

Mach = 0.000 Re = 1.000 e 6 Ncrit = 9.000

alpha CL CD CDp CM Top_Xtr Bot_Xtr

5.000 1.0296 0.00899 0.00420 -0.0949 0.4086 1.0000

5.250 1.0484 0.00914 0.00432 -0.0931 0.4017 1.0000

5.500 1.0691 0.00929 0.00444 -0.0917 0.3956 1.0000

5.750 1.0909 0.00942 0.00456 -0.0905 0.3893 1.0000

6.000 1.1100 0.00962 0.00472 -0.0888 0.3820 1.0000

6.250 1.1316 0.00978 0.00487 -0.0876 0.3757 1.0000

6.500 1.1527 0.00998 0.00504 -0.0863 0.3674 1.0000

6.750 1.1735 0.01022 0.00524 -0.0851 0.3586 1.0000

根据以上资料,NACA4418翼型的最佳攻角α=5.75°,此时对应升力系数Cl=1.0909, 阻力系数Cd=0.0094

(2)叶片中部选用NACA4415翼型(μ=0.2—0.8)

根据有关资料NACA4415的最佳攻角为5.5°,此时对应的升力系数Cl=1.0575, 阻力系数Cd=0.00886

Calculated polar for: NACA 4415

1 1 Reynolds number fixed Mach number fixed

xtrf = 1.000 (top) 1.000 (bottom)

Mach = 0.000 Re = 1.000 e 6 Ncrit = 9.000

alpha CL CD CDp CM Top_Xtr Bot_Xtr

5.500 1.0576 0.00886 0.00400 -0.0927 0.3936 1.0000

(3)叶片尖部选用NACA4412翼型(μ>0.8)

Calculated polar for: NACA 4412

1 1 Reynolds number fixed Mach number fixed

xtrf = 1.000 (top) 1.000 (bottom)

Mach = 0.000 Re = 1.000 e 6 Ncrit = 9.000

alpha CL CD CDp CM Top_Xtr Bot_Xtr

4.500 0.9734 0.00758 0.00284 -0.1004 0.4273 1.0000

4.750 0.9993 0.00778 0.00297 -0.1001 0.4110 1.0000

5.000 1.0254 0.00797 0.00311 -0.0998 0.3979 1.0000

5.250 1.0518 0.00813 0.00326 -0.0995 0.3861 1.0000

5.500 1.0777 0.00834 0.00342 -0.0992 0.3731 1.0000

5.750 1.1031 0.00857 0.00359 -0.0988 0.3575 1.0000

6.000 1.1280 0.00884 0.00379 -0.0983 0.3398 1.0000

根据以上资料,NACA4412的最佳攻角为5.25°,此时对应的升力系数Cl=1.0518,阻力系数Cd=0.0813

二.设定叶尖速比λ,U∞,Pu,计算U

1.设定叶尖速比:

根据设定参数,可求得λ=ωR/V=6.087

2.设定U∞=10m/s,P u=10kW

3.计算U:

根据风力机的额定功率计算公式:Pu=0.125ρ3

Uπ2D Cpηiηk 计算得:D min=7.272m

根据风轮动量理论,功率关系有以下结论:

U=0.5(U1+U2)------------------------------

P∞=Pu/(Cp*ηi*ηk)-----------------------

在单位时间内,有P∞=0.5ρA(3

U-32U)-------

1

U 1=U ∞--------------------------------------------------------④

A=π

2D /4---------------------------------⑤

将已知设定参数:U ∞=10m/s,P u =10kW ,Cp=0.45,ηi =0.92, ηk =0.95, ρ=1.225kg/m^3代入以上各式得: U 2=3312A

P U ρ∞

-

=5.580m/s U=7.790m/s 三.计算叶片半径: R=D/2=3.635 四.计算角速度: Ω=2πn/60=16.747rad/s

五.将R 分为10份,分别取μ=0.1,0.2,···1情况下的a 和 a ’

由于风力机采用变桨距调节,当风速为额定风速U 1=10m/s 时,控制系统会调节桨距角β,使得叶片处于最佳攻角α=5.75°,此时对应升力系数Cl=1.0631, 阻力系数Cd=0.00882

入流角Φ=arctan

r

b U a Ω+)1(-11

)(

r=μR(μ=0.1,0.2,...1.0) α=Φ-β

计算流程: 1.叶素弦长:

2.假设a,b 的初值,一般可取0

3.计算来流角:Φ=arctan

r

b U a Ω+)1(-11

)(

4.计算各截面扭角:β=Φ-α

5.根据空气动力特性曲线得到叶素得升力系数Cl 和阻力系数Cd;

6.计算法向系数Cx 和切向系数Cy C x =C l cos Φ+C d sin Φ Cy=C l sin Φ+C d cos Φ

7.计算新的a 和b 值:

a=x

x BcC r BcC +φπ2sin 8 b=y y

BcC r BcC +φφπcos sin 8

8.比较新的a 和b 与上一次的a 和b ,如果误差小于0.001,则迭代 终止;否则回到3继续迭代。

由于需要重复计算,因此用计算机编程计算较为方便。 将以上步骤及公式编写VB 程序代码,计算结果如下:

弦长—μ曲线图:

扭角—μ曲线图:

六.功率校核:

(1)假设a值,计算b值;(以前面的a,b为参考)

(2)将假设值代入公式计算W,SinΦ,cosΦ,Cx, Cy, σ

(3)通过以上值计算a 和b

(4)计算值与假设值比较,得到各自的误差,

若误差大于8%,回到(1)重新假设 (5)计算每个μ下的dM,dP,,,将dP 相加得到P

(6) 计算P 与Pu 的误差,若误差大于15%,返回(1)重新假设 通过代码计算:

风轮叶片尖部的切向诱导速度可表示为:

)1()1(2bt a a b t +-=λ

转矩可表示为:

)1()1(42123t b a a R V M +Ω-=πρ

功率可表示为:

P=ωM

功率系数为:

)

1()1(42

t b a a Cp +-=

校正后计算结果:

七.绘制Cp—λ曲线:

(1)由以上计算确定σr,R, β设为已知

(2)分别取λ=1—12,在每个λ下假设a的值

(3)通过迭代法求出诱导因子a,b,使得假设值与计算值相差小于0.001

(4)计算此时a值和对应λ值下的对应Cp

(5)通过计算绘制Cp—λ曲线

通过程序输出计算结果:

Cp---λ曲线

;

八.载荷计算:

叶片主要载荷集中在根部,因此只需对叶片根部载荷进行校核 从叶片根部10%处取圆柱形与轮毂连接的叶根; NACA4418叶片展向10%处厚度:

H=c ×18%=1.1279×18%=0.203m 叶片转动时根部圆最小直径为:

(

)

cdr C g C crdr C g C r R

r x t x R

r t m ??++=0

)1(/122

φ

静止时最小直径:

dr cC dr rcC r R

r d R r d m ??=0

/

应力:W

M Tr m 2

2)(+=

σ

推力:

)

1(32

4

3

απ-=

d

W

rdr

a a V dT )1(42

-=π

转矩: dr r a b V dM 3

1)1(4-Ω=πρ

式中: 98.0=α

查找相关资料,叶片所用材料碳纤维复合材料的许用应力约为:

[]Pa

9

10

17.045.3??=σ

将许用应力代入应力表达式计算得到:rm=1.9762 T=1654.631N*m 根部直径: (D )min=0.0932m

通风空调课程设计说明书

通风部分 (2) 第一章工程概况及基本资料 (2) 1.1 工程概况 (2) 1.2 基本资料 (2) 第一章设计内容 (2) 2.1 确定通风方式 (2) 2.2 送风量和排风量的计算 (3) 2.3 管道系统布置与水力计算 (3) 2.4 风机选择 (4) 空调部分 (5) 第一章工程概况 (5) 1.1 建筑概况 (5) 1.2 设计参数 (6) 第二章空调负荷计算 (6) 2.1 室内冷负荷计算 (6) 2.1.1 用冷负荷温度计算围护结构传热形成的冷负荷 (6) 2.1.2用冷负荷系数计算窗户因日射得热形成的冷负荷 (6) 2.1.3 内围护结构传热形成的冷负荷 (7) 2.1.4 人体散热形成的冷负荷 (7) 2.1.5 室内照明散热形成的冷负荷 (8) 2.1.6 室内设备散热形成的冷负荷 (8) 第三章空调系统方案确定 (9) 3.1 冷热源机组的确定 (9) 3.1.1 冷热源方案分析 (9) 3.1.2 空调系统划分送风区划分 (9) 第四章空调机组的选择 (10) 4.1 空调房间风量、冷量的确定 (10) 4.2 末端设备选型 (11) 第五章风系统设计计算 (11) 5.1 风系统设计概述 (11) 5.2 通风管道的选择 (11) 5.3 风管水力计算 (11) 第六章水系统设计计算 (12) 6.1 空调水系统形式的确定 (12) 6.1.1 冷冻水系统的选择 (12) 6.1.2 冷却水系统的选择 (14) 6.1.3 水循环水力计算 (14)

通风部分 第一章工程概况及基本资料 1.1 工程概况 本工程为营业及办公建筑。地下一层,建筑面积770m2。地下一层为车库及各类机房。要求进行地下室的通风排烟设计。 1.2 基本资料 本工程位于市中心,动力与能源完备,照明用电充足,自来水和天然气由城市管网供应。土建专业提供地下室平面图一张。 第一章设计内容 2.1 确定通风方式 地下一层的有害气体主要是由地下停车场产生,而地下停车场内汽车排放的有害物主要是一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOX)等有害物。怠速状态下,CO、HC、NOX三种有害物散发量的比例大约为7:1.5:0.2。由此可见,CO是主要的。根据TT36-79《工业企业设计卫生标准》,只要提供充足的新鲜的空气,将空气中的CO浓度稀释到《标准》规定的范围以下,HC、NOX均能满足《标准》的要求。 由《高层民用建筑设计防火规范》[GB50045—1995(2001版)]及《人民防空工程设计防火规范》[GB50098—1998(2001版)]中对地下车库设消防排烟的规定知:本建筑属于高度超过32m的二类建筑,应在面积超过100m 2,且常有人停留或可燃物较多的无窗或固定窗房间是指机械排风排烟设施。 在考虑地下汽车库的气流分布时,防止场内局部产生滞流是最重要的问题。因CO较空气轻,再加上发动机发热,该气流易滞流在汽车库上部,因此在顶棚处排风有利,排风口的布置应均匀,并尽量靠近车体。新风如能从汽车库下部送,对降低CO浓度是十分有利的,但结构上很难做到,因此,送风口可集中布置在上部,采用中间送,两侧回。在保证满足设计要求的前提下,尽量使系统安装简

风力发电机组设计与制造课程设计报告

\ 《风力发电机组设计与制造》 课程设计报告 : 院系:可再生能源学院 班级:风能0902班 % 姓名:陈建宏 学号:04 指导老师:田德、王永

提交日期: 一、设计任务书 1、设计内容 风电机组总体技术设计 ; 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)、 3)关键零部件(齿轮箱、发电机和变流器)技术参数; 4)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数; 5)完成叶片设计任务; 6)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装 MW 至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 . 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p曲线和C t曲线,风力机基本参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p曲线和C t曲线,计算几种关键零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。(3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ错误!未找到引用源。错误!未找到引用源。 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段内V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的范围内按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

西南交通大学钢桥课程设计75.4m详解

西南交通大学钢桥课程设计 单线铁路下承式栓焊简支钢桁梁桥 课程设计 姓名: 学号: 班级: 电话: 电子邮件: 指导老师: 设计时间:2016.4.15——2016.6.5

目录 第一章设计资料 (1) 第一节基本资料 (1) 第二节设计内容 (2) 第三节设计要求 (2) 第二章主桁杆件内力计算 (3) 第一节主力作用下主桁杆件内力计算 (3) 第二节横向风力作用下的主桁杆件附加力计算 (7) 第三节制动力作用下的主桁杆件附加力计算 (8) 第四节疲劳内力计算 (10) 第五节主桁杆件内力组合 (11) 第三章主桁杆件截面设计 (14) 第一节下弦杆截面设计 (14) 第二节上弦杆截面设计 (16) 第三节端斜杆截面设计 (17) 第四节中间斜杆截面设计 (19) 第五节吊杆截面设计 (20) 第六节腹杆高强度螺栓计算 (22) 第四章弦杆拼接计算和下弦端节点设计 (23) 第一节 E2节点弦杆拼接计算 (23) 第二节 E0节点弦杆拼接计算 (24) 第三节下弦端节点设计 (25) 第五章挠度计算和预拱度设计 (27) 第一节挠度计算 (27) 第二节预拱度设计 (28) 第六章桁架桥梁空间模型计算 (29) 第一节建立空间详细模型 (29) 第二节恒载竖向变形计算 (30) 第三节活载内力和应力计算 (30) 第四节自振特性计算 (32) 第七章设计总结 (32)

第一章设计资料 第一节基本资料 1设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。 2结构轮廓尺寸:计算跨度L=70+0.2×27=75.4m,钢梁分10个节间,节间长度d=L/10=7.54m,主桁高度H=11d/8=11×7.46/8=10.3675m,主桁中心距B=5.75m,纵梁中心距b=2.0m,纵梁计算宽度B0=5.30m,采用明桥面、双侧人行道。 3材料:主桁杆件材料Q345q,板厚 40mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35II、辊轴采用35号锻钢。 4 活载等级:中—活载。 5恒载 (1)主桁计算 桥面p1=10kN/m,桥面系p2=6.29kN/m,主桁架p3=14.51kN/m, 联结系p4=2.74kN/m,检查设备p5=1.02kN/m, 螺栓、螺母和垫圈p6=0.02(p2+ p3+ p4),焊缝p7=0.015(p2+ p3+ p4); (2)纵梁、横梁计算 纵梁(每线)p8=4.73kN/m(未包括桥面),横梁(每片)p9=2.10kN/m。 6风力强度W0=1.25kPa,K1K2K3=1.0。 7工厂采用焊接,工地采用高强度螺栓连接,人行道托架采用精制螺栓,栓径均为22mm、孔径均为23mm。高强度螺栓设计预拉力P=200kN,抗滑移系数μ0=0.45。

初中物理大题集练——能源与可持续发展

初中物理大题集练——能源与可持续发展 1、我市地处沿海,风力资源极为丰富,随着各项大型风力发电项目的建设,我市将成为广东省知名风力发电基地。如图甲是某地风力发电的外景。风力发电机组主要由风机叶片和发电机组成。请回答下列问题: (1)风力发电利用的是风能,风能是清洁的(选填“可再生”或“不可再生”)能源; (2)风机叶片具有质量轻、强度高、耐磨损等性能,通常用密度(选填“大”或“小”)、硬度大的复合材料制成;叶片形状像飞机的机翼,若叶片位置和风向如图乙所示,由于叶片两面空气流速不同而产差,使风叶旋转; (3)风叶产生的动力通过传动系统传递给发电机,发电机是利用原理,把机械能转化为电能; (4)某风力发电机的输出功率与风速的关系如图丙所示,由图像可以知道,当风速在v1到v2之间时,风速越大,发电机组的电功率; (5)请你根据图像判断,台风来临时,能否给风力发电带来最大的经济效益?(选填“能”或“不能”)。 2、如下图甲是我国某公路两旁风光互补路灯系统的外景,其中的风力发电机组主要由风机叶片和发动机组成;该风力发电机的输出功率与风速的关系图像如图乙所示。请回答: (1)风力发电利用的是风能,风能是清洁的、_____(填“可再生”或“不可再

生”)能源; (2)风力发电机利用_________原理把_________转化为电能; (3)由图乙图像可知,能使该风力发电机组产生电能的风速范围是_________(用图像中的字母表示); (4)下表给出的是在不同风速下该风力发电机的输出功率。请根据表中信息回答: ①当风速为8 m/s时,该风力发电机的输出功率为_________W; ②当风速为16 m/s时,这台风力发电机工作1 s所产生的电能可供1只“12 V 60W”电灯正常工作2 s,那么风力发电机发电的效率为_________。 3、2015年3月,全球最大的太阳能飞机“阳光动力2号”(如图所示)开始首次环球飞行,途径我国重庆和南京两个城市,此行的重要目的是传播新能源概念。 (1)该飞机白天飞行时,利用高效太阳能电池版将电磁能(太阳能)转化为____________能;夜间飞行时,利用其超轻薄离子电池储备的____________能转化为电能,首次实现昼夜飞行而不耗费一滴燃油。 (2)该机从重庆飞往南京的航程约为1260千米,用时17.5小时。则它的飞行速度为多少千米/小时? (3)为降低飞行时的能量消耗,该机选用新型轻质材料,取面积为1平方米,厚度为1毫米的新型材料,测得其质量为250克,则该材料的密度为多少?(4)该机计划从南京起飞后直飞美国夏威夷,是此次环球航行中最具挑战性的一段航程,飞行时间长达120小时,飞行过程中依靠平均功率为10千瓦的电动机提供动力,其消耗的能源全部由电池板吸收的太阳能提供,则此段航行中至少需要吸收多少太阳能?(太阳能电池板的转化功率约为30%) 4、如图所示,2015年3月31日,无需一滴燃料的世界最大太阳能飞机“阳光动力”2号降落在重庆江北国际机场,并于当天在重庆巴蜀中学开启中国首个

《风力发电机组设计与制造》课程设计报告_图文

《风力发电机组设计与制造》 课程设计报告 一、设计任务书 1、设计内容 风电机组总体技术设计 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)关键零部件(齿轮箱、发电机和变流器)技术参数;

3)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数; 4)完成叶片设计任务; 5)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在1.5MW至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装1.5 MW至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p曲线和C t曲线,风力机基本参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p曲线和C t曲线,计算几种关键零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。 (3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。4、进度计划

水平轴风力发电机设计

目录 摘要 (Ⅰ) Abstract (Ⅱ) 1 绪论 (1) 1.1风能资源的概述 (1) 1.2风能资源的利用 (1) 1.3风能资源利用的原理 (1) 1.4风力发电的输出 (3) 1.5风力发电机的种类 (3) 1.5.1水平轴风力发电机 (3) 1.5.2垂直轴风力发电机 (4) 2 水平轴发电机的基本功能构成及工作原理 (5) 2.1水平轴风力发电机的结构简介 (5) 2.2水平轴发电机关键部件详细介绍认知 (6) 2.2.1风轮叶片介绍 (6) 2.2.2发电机 (6) 2.2.3调速机构 (8) 2.2.4调向机构 (9) 2.2.5手刹车机构 (9) 2.2.6塔架 (10) 3 小型风力发电机叶轮和发电机装置的选择确定 (11) 3.1设计风速的确定 (11) 3.2风轮外形的计算 (12) 3.2.1风能利用系数Cp (12) 3.2.2风轮的扫掠面积确定 (12) 3.2.3风轮直径的确定 (13) 3.2.4回转体水平轴向力的计算 (14)

3.2.5发电机的选择确定 (14) 4 水平轴风力发电机回转体的设计与计算 (16) 4.1回转体结构设定 (16) 4.2轴承的计算与选用 (16) 4.2.1轴承的功能与作用 (16) 4.2.2轴承的查表选用 (16) 5 塔架 (22) 5.1塔架高度的确定 (22) 5.2塔架材料的确定 (22) 5.3整体建模效果图 (23) 总结 (24) 参考文献 (25) 致谢 (26)

风能是清洁绿色的动力,风力能源目前相对于我国来说还是相当充裕的。风力发电就是获取风能最主要的一种方法。风力发电的根本工作原理,是通过风力使其叶片转动,然后经过增速机把风轮转动的速度提高到一定的值,继而使发电机正常工作然后发电。现在风力发电技术已经达到了一定的地步,基本风速达到3m/s的速度后,发电机就可以开使正常工作继而发电。该课题是设计一台小型水平轴风力发电机,它的基本组成部件主要有以下五种①叶片②发电机③回转体④塔架⑤控制系统等。本课题对风力发电机进行了基本的讲述,首先计算风轮的扫掠面积,继而确定风轮的直径,选定发电机,然后通过以上计算查表选择轴承等部件,确定塔架的高度及材料,并绘制了图纸。 关键词:风力发电机;回转体;风轮

风力机叶片课程设计(空气动力学)设计报告

课程设计(综合实验)报告( -- 年度第一学期) 名称: 题目: 院系: 班级: 学号: 学生姓名: 指导教师: 设计周数: 成绩: 日期:

一、目的与要求 本次课程设计的主要目的: 1.掌握动量叶素理论设计风力机叶片的原理和方法 2.熟悉工程中绘图软件及办公软件的操作 3.掌握科研报告的撰写方法 本次课程设计的主要要求: 1.要求独立完成叶片设计参数的确定,每人提供一份课程报告 2.每小组提供一个手工制作的风力机叶片 二、主要内容 设计并制作一个风力机叶片 1.原始数据 三叶片风力机功率P=6.03KW 来流风速7m/s 风轮转速72rpm 风力机功率系数Cp=0.43 传动效率为0.92 发电机效率为0.95 空气密度为1.225kg/m3 全班分为2个小组,每个小组采用一种风力机翼型,翼型的气动数据(升力系数,阻力系数, 俯仰力矩系数)已知。 2.设计任务 2.1风力机叶片设计:根据动量叶素理论对各个不同展向截面的弦长和扭角进行计算, 按比例画出弦长、扭角随叶高的分布。 2.2根据以上计算结果手工制作风力机叶片,给出简单的制作说明。 四、数据计算 选用翼型s819 (一)叶片半径的计算:

由风力发电机输出功率: 21238 1 ηηπρP r C D V P = 得,叶片直径: m C V P D P r 10.37 .048.08234.1800 883 2 13=?????= = πηηπρ 叶片半径: m D R 55.123.12=== (二) 叶尖速比的计算: 整个叶片的叶尖速比: 31.57 329.460/72260/2110=??=?=Ω= ππλv R n V R 半径r 处的叶尖速比:1 0V r Ω=λ ① 设计中取9处截面,分别是叶片半径的20%处,叶片半径的30%处,叶片半径的40%处,叶片半径的 50%处,叶片半径的60%处,叶片半径的70%处,叶片半径的80%处,叶片半径的90%处,则由式①得到各截面处的叶尖速比分别为: 60.01 %20% 10=?= V R ωλ 1.201 %20% 20=?= V R ωλ 1.801 %30% 30=?= V R ωλ 40.21%40% 40=?= V R ωλ 00.31 %50% 50=?= V R ωλ 3.601 %60% 60=?= V R ωλ 20 .41 %70% 70=?= V R ωλ 80.41%80%80=?=V R ωλ 60 .51 %90% 90=?= V R ωλ 00.61 %90% 100=?= V R ωλ 各截面处翼型弦长: 确定每个剖面的形状参数N: 可根据公式: 9 4 )(/91622 00 + = R r r R N λλπ

锅炉送引风设计

摘要 锅炉燃烧过程自动控制主要包括三项控制内容: 控制燃料量、控制送风量、控制引风量。为实现对燃料量、送风量和引风量的控制, 相应的有三个控制系统, 即燃料量控制系统、送风量控制系统和引风量控制系统。以上三个控制系统之间存在着密切的相互关联, 要控制好燃烧过程, 必须使燃料量、送风量及引风量三者协调变化。锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供热量适应外界对锅炉输出的蒸汽负荷的需求, 同时保证锅炉的安全经济运行。在锅炉燃料控制子系统中, 有三种方案控制燃料量, 分别为: 燃料反馈的燃料控制系统、给煤机转速反馈的燃料控制系统和前馈加反馈的燃料控制子系统。其中, 给煤机转速反馈的燃料控制子系统是目前应用最多的。送风控制一般采取串级比值控制系统, 辅之以含氧量校正信号。引风控制系统一般引入送风量前馈信号, 使送风量与引风量相匹配。锅炉送风机、引风机是锅炉系统的重要设备,对提高介质的燃烧利用率、保证锅炉的正常使用起着关键作用。本次课程设计主要针对燃煤锅炉燃烧的送、引风系统进行设计。 关键词:锅炉、燃烧、自动控制、送引风

目录 摘要...................................................................................................... I 1.锅炉燃烧过程分析. (1) 1.1磨煤机的工作原理 (1) 1.2给煤机的工作原理 (1) 1.3空气预热器 (1) 1.4一次风机工作原理 (1) 1.5送引风机工作原理 (1) 1.6燃烧器布置 (3) 2.燃烧过程控制任务和调节量 (4) 2.1.燃烧过程控制任务 (4) 2.2燃烧过程调节量 (4) 3.锅炉送、引风机风压及风量的理论计算 (5) 3.1送风机风压与风量的确定 (5) 3.2引风机的风压与风量的确定 (6) 4.锅炉燃烧过程控制基本方案及分析 (8) 4.1蒸汽出口压力控制系统分析 (9) 4.2燃料量控制系统 (9) 4.3送风量控制系统 (12) 4.4引风量控制系统 (14) 5.控制系统单元元件的选择 (16) 5.1变送器的选择 (16)

风力发电机叶片结构设计及其有限元分析(精品doc)

风力发电机叶片结构设计及其有限元分析 摘要 为了更好地发展我国的风力发电事业,实现风力发电机的国产化,必须深入开展风力机设计、分析方面的研究。本文根据传统的 的叶片设计方法设计了2MW 风力机叶片,并生成三维几何模型, 然后利用有限元模拟对叶片进行了振动模态分析,得到各阶振动频 率和振型,为防止结构共振提供了依据。 关键词:风力机,叶片,有限元模拟,优化 THE FE SIMULATION AND OPTIMAL DESIGN OF WIND TURBINE COMPONENTS ABSTRACT In order to promote the capability of design and manufacturing of wind turbine in China, more study should be done in the field of wind turbine design and analysis. In this paper, a blade for 2MW wind turbine is designed according to the traditional design procedure and the 3D geometrical model is created. Then the modal analysis is done through the FE simulation to get the frequency and mode shape, which provides the theoretic basis to prevent resonance.

风力发电机设计与制造课程设计

一.总体参数设计 总体参数就是设计风力发电机组总体结构与功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3、5MW;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s(对于一般变桨距风力发电机组(选3、5MW)的额定风速与平均风速之比为1、70左右,V r =1、70V ave =1、70×7、0≈12m/s) 3. 重要几何尺寸 (1) 风轮直径与扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3、5MW; ——空气密度(一般取标准大气状态),取1、225kg/m 3; V r ——额定风速,取12m/s; D ——风轮直径; 1η——传动系统效率,取0、95; 2η——发电机效率,取0、96; 3η——变流器效率,取0、95; C p ——额定功率下风能利用系数,取0、45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ 综上可得风轮直径D=104m,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化就是随机的, 符合马尔可夫过程的特征, 下一时刻的风速与上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段内V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的范围内按照设定的风速步长, 得到对应风速下的最佳叶尖速比与功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0、95; 2η——发电机效率,取0、96; 3η——变流器效率,取0、95; ——空气密度(一般取标准大气状态),取1、225kg/m 3; V r ——额定风速,取12m/s; D ——风轮直径; C p ——额定功率下风能利用系数,取0、45。

空调系统课程设计说明书

空调系统课程设计说明书 Prepared on 22 November 2020

课程设计说明 摘要 本设计为南京市某住宅楼通风及空气调节工程设计,该高层建筑是一幢集住宅、商场的综合大楼。本设计内容主要包括住宅的采暖设计,商场的空调设计和排风设计。本次设计中,对于商场大空间的房间采用了全空气系统。全空气系统中,采用方形散流器平送方式。对于较小空间的房间采用风机盘管加独立新风系统。 关键字:暖通空调;全空气系统;风机盘管加独立新风系统。

目录 1 1 1 2 2 2 2 4 4 3、通风空调设计 5 5 5 5 9 11 16 3. 8 设备选型17 18 总结19 致谢 附表A:商场一层空调负荷计算表 附表B:商场二层空调负荷计算表 附表C:商场三层空调负荷计算表 附表D:商场一层风管水力计算表 附表E:商场二层风管水力计算表 附表F:商场三层风管水力计算表 附表G:商场三层水管水力计算表

1绪言 1.1建筑概况 本设计选择的对象是南京市某商住楼,东经°,北纬32°,据热气象分区为夏热冬冷地区。本工程是集商业、住宅和停车场为一体的综合性公共建筑。建筑正立面为南向,该建筑物地上26层,地下1层。总建筑面积为㎡,建筑高度84m。 其中,地下一层为停车场,其中1到3层为商场,4到26层为住宅,本次设计空调部分为一层到三层商场空调系统设计,空调设计要求能够实现夏季供冷和冬季供热,以满足人体的舒适要求和节能要求。 1.2 设计任务 根据确定的室内外气象条件,土建资料,人体舒适要求及热源情况设计该建筑物商场部分的空调系统和排风设计。 1.3 设计目的 本次设计为大三课程设计,要求根据专业有关规范和标准,综合应用所学知识在老师指导下独立分析解决专业工程设计问题,培养整体设计的观念,能够利用语言,文字和图形表达设计意图和技术问题。 2设计依据及指导思想

空调系统课程设计说明书

空调系统课程设计说明 书 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

课程设计说明 摘要 本设计为南京市某住宅楼通风及空气调节工程设计,该高层建筑是一幢集住宅、商场的综合大楼。本设计内容主要包括住宅的采暖设计,商场的空调设计和排风设计。本次设计中,对于商场大空间的房间采用了全空气系统。全空气系统中,采用方形散流器平送方式。对于较小空间的房间采用风机盘管加独立新风系统。 关键字:暖通空调;全空气系统;风机盘管加独立新风系统。

目录 1 1 1 2 2 2 2 4 4 3、通风空调设计 5 5 5 5 9 11 16 3. 8 设备选型17 18

总结19 致谢 附表A:商场一层空调负荷计算表 附表B:商场二层空调负荷计算表 附表C:商场三层空调负荷计算表 附表D:商场一层风管水力计算表 附表E:商场二层风管水力计算表 附表F:商场三层风管水力计算表 附表G:商场三层水管水力计算表 1绪言 1.1建筑概况 本设计选择的对象是南京市某商住楼,东经118.8°,北纬32°,据热气象分区为夏热冬冷地区。本工程是集商业、住宅和停车场为一体的综合性公共建筑。建筑正立面为南向,该建筑物地上26层,地下1层。总建筑面积为27669.29㎡,建筑高度84m。 其中,地下一层为停车场,其中1到3层为商场,4到26层为住宅,本次设计空调部分为一层到三层商场空调系统设计,空调设计要求能够实现夏季供冷和冬季供热,以满足人体的舒适要求和节能要求。 1.2 设计任务 根据确定的室内外气象条件,土建资料,人体舒适要求及热源情况设计该建筑物商场部分的空调系统和排风设计。

桥梁基础课程设计样本

一、课程设计(论文)内容 在学习桥梁基本工程等课程基本上,依照给定基本资料(地质及水文资料,荷载)进行桥梁群桩基本设计,初步掌握桥梁桩基本设计与计算办法。 二、课程设计(论文)规定与数据 (一)基本资料 1 地质及水文资料 河床土质为卵石土,粒径50-60mm 约占60%,20-30mm 约占30%,石质坚硬,孔隙大某些由砂填充密实, 卵石层深度达58.6m ; 地基比例系数4/120000m kN m =(密实卵石); 地基承载力基本容许值[]01000a f kPa =; 桩周土摩阻力原则值kPa q ik 500=; 土重度320.00/kN m γ= (未计浮力); 土内摩擦角40?=。 地面(河床)标高69.50m ;普通冲刷线标高63.54m ;最大冲刷线标高60.85m ;承台底标高67.54m ;常水位标高69.80m ,如图1。承台平面图如图2所示。

纵桥向断面横桥向断面 图1 桩基剖面图(单位:m)图2 单位:m 2 作用效应 上部为等跨30m钢筋混凝土预应力梁桥,荷载为纵向控制设计,作用于混凝土桥墩承台顶面纵桥向荷载如下。 永久作用及一孔可变作用 (控制桩截面强度荷载) 时: ∑N=40746kN ∑(制动力及风力) 358.60 = H kN ∑M=4617.30kN.m(竖直反力偏心距、制动力、风力等引起弯矩) 永久作用及二孔可变作用(控制桩入土深度荷载)时: ∑N=46788.00kN 3 承台用C20混凝土,尺寸为9.8×5.6×2.0m,承台混凝土单位容重 3 γ=。 kN m 25.0/ 4 桩基本采用高桩承台式摩擦桩,依照施工条件,桩拟采用直径m d2.1 =,以冲抓锥施工。

工业通风课程设计说明书

前言 通风工程在我国实现四个现代化的进程中,一方面起着改善居住建筑和生产车间的空气条件,保护人民健康、提高劳动生产率的重要作用,另一方面在许多工业部门又是保证生产正常进行,提高产品质量所不可缺少的一个组成部分。 工业通风的主要任务是控制生产过程中产生的粉尘、有害气体、高温、高湿,创造良好的生产环境。 本说明书在编写过程中,力求以阐明各部分的计算方法和计算过程为目的,尽量做到理论联系实际。 摘要 本次设计为朝阳市某电镀车间厂区的供暖与通风设计,设计期限为2014年5月16日至2014年5月30日。 考虑到设在大厂房内的办公室及其他卫生条件较高的工部如果其门窗冷风渗透量能满足设备的排风要求,不设送风系统,而由散热器供暖,采用散热器与热风系统联合采暖,以避免由于排风量大于计算渗透风量,导致渗透风量增加,影响室内温度。因此本设计方案Ⅰ中厕所和更衣室,方案Ⅵ中仓库及方案Ⅶ中办公室采用散热器供暖,其他车间部门均采用散热器与热风系统联合采暖。 该说明书介绍了设计的基本步骤和方法,对计算步骤和应用的相关数据在说明书中都作了具体说明。 目录 一、原始资料……………………………………………………………………… 二、车间各工部室内计算参数的确定及热负荷的计算………………………… 三、车间各工部电动设备、热槽散热量的计算………………………………… 四、车间各工部通风与供暖方案的确定………………………………………… 五、车间各工部散热器散热量、型号及数量的选择确定……………………… 六、车间各工部机械排风量的计算……………………………………………… 七、车间热风平衡及送风小室的计算…………………………………………… 八、对夏季室内工作温度进行校核……………………………………………… 九、水力计算……………………………………………………………………… 十、设备汇总表…………………………………………………………………… 朝阳市电机厂电镀车间供暖与通风系统设计

风力发电机叶片材料的选用

风力发电机叶片材料的选用 叶片是风力发电机组的重要构件。它将风能传递给发电机的转子,使之旋转切割磁力线而发电。为确保在野外极其恶劣环境中长期不停、安全地运行,对叶片材料的要求是:①密度小且具有最佳的疲劳强度和力学性能,能经受住极端恶劣条件和随机的负荷(如暴风等)的考验,确保安全运转20年以上;②成本(精确说为分摊到每度电的成本)低;③叶片的弹性、旋转时的惯性及其振动频率特性曲红都正常,传递给整个发电系统的负荷稳定性好; ④耐腐蚀、耐紫外线(UV)照射和抗雷击性好;⑤维护费用低。 FRP完全可以满足以上要求,是最佳的风力发电机叶片材料。 1.1 GFRP 目前商品化的大型风机叶片大多采用玻璃纤维增强塑料(GFRP)制造。GFRP叶片的特点为: ①可根据风机叶片的受力特点来设计强度与刚度风机叶片主要是纵向受力,即气动弯曲和离心力,气动弯曲载荷比离心力大得多,由剪切与扭转产生的剪应力不大。利用玻璃纤维(GF)受力为主的受力理论,可将主要GF布置在叶片的纵向,这样就可使叶片轻量化。 ②翼型容易成型,可达到最大气动效率为了达到最佳气动效果,利用叶片复杂的气动外形,在风轮的不同半径处设计不同的叶片弦长、厚度、扭角和翼型,如用金属制造则十分困难。同时GFRP叶片可实现批量生产。 ③使用时间长达20年,能经受108以上疲劳交变载荷GFRP疲劳强度较高,缺口敏感性低,内阻尼大,抗震性能较好。 ④耐腐蚀性好由于GFRP具有耐酸、碱、水汽的性能,可将风机安装在户外,特别对于近年来大力发展的离岸风电场来说,能将风机安装在海上,使风力机组及其叶片经受各种气候环境的考验。 为了提高GFRP的性能,还可通过表面处理,上浆和涂覆等对GF进行改性。美国的研究表明,采用射电频率等离子体沉积去涂覆E-GF,其拉伸及耐疲劳性可达到碳纤维(CF)的水平。 GFRP的受力特点是在GF方向能承受很高的拉应力,而其它方向承受的力相对较小。 叶片由蒙皮和主梁组成,蒙皮采用夹芯结构,中间层是硬质泡沫塑料或Balsa木,上下面层为GFRP。面层由单向层和±45°层组成。单向层可选用单向织物或单向GF铺设,一般用7或4GF布,以承受由离心力和气动弯矩产生的轴向应力;为简化成型工艺,可不用

空调系统课程设计说明书

课程设计说明

摘要 本设计为南京市某住宅楼通风及空气调节工程设计,该高层建筑是一幢集住宅、商场的综合大楼。本设计内容主要包括住宅的采暖设计,商场的空调设计和排风设计。本次设计中,对于商场大空间的房间采用了全空气系统。全空气系统中,采用方形散流器平送方式。对于较小空间的房间采用风机盘管加独立新风系统。 关键字:暖通空调;全空气系统;风机盘管加独立新风系统。

目录 摘要 1、绪言 1.1建筑概况 (1) 1.2 设计任务 (1) 1.3 设计目的 (1) 2、设计依据及指导思想 2.1 建筑专业提出的平面图和剖面图 (2) 2.2 设计任务书 (2) 2.3 设计基本参数 (2) 2.4 国家主要规范和行业标准 (2) 2.5 土建资料 (4) 2.6 设计指导思想 (4) 3、通风空调设计 3.1 体形系数及窗墙比 (5) 3.2 传热系数的选择 (5) 3.3 冷负荷的组成 (5) 3.4 负荷计算 (5) 3.5 系统形式的确定 (9) 3.6 商场各层空调设计 (11) 3.7 回风系统设计 (16) 3. 8 设备选型 (17) 3.9 消声计算 (18) 总结 (19) 致谢 附表A:商场一层空调负荷计算表 附表B:商场二层空调负荷计算表 附表C:商场三层空调负荷计算表 附表D:商场一层风管水力计算表 附表E:商场二层风管水力计算表 附表F:商场三层风管水力计算表 附表G:商场三层水管水力计算表

1绪言 1.1建筑概况 本设计选择的对象是南京市某商住楼,东经118.8°,北纬32°,据热气象分区为夏热冬冷地区。本工程是集商业、住宅和停车场为一体的综合性公共建筑。建筑正立面为南向,该建筑物地上26层,地下1层。总建筑面积为27669.29㎡,建筑高度84m。 其中,地下一层为停车场,其中1到3层为商场,4到26层为住宅,本次设计空调部分为一层到三层商场空调系统设计,空调设计要求能够实现夏季供冷和冬季供热,以满足人体的舒适要求和节能要求。 1.2 设计任务 根据确定的室内外气象条件,土建资料,人体舒适要求及热源情况设计该建筑物商场部分的空调系统和排风设计。 1.3 设计目的 本次设计为大三课程设计,要求根据专业有关规范和标准,综合应用所学知识在老师指导下独立分析解决专业工程设计问题,培养整体设计的观念,能够利用语言,文字和图形表达设计意图和技术问题。

相关主题