搜档网
当前位置:搜档网 › 铝基复合材料综述

铝基复合材料综述

铝基复合材料综述
铝基复合材料综述

铝基复合材料综述

XXXXXXXXXXX

摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。

关键词铝基复合材料种类性能制备应用

Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys.

Key words Al-based alloys kind performance approach use

1.引言

自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类

按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。

3.铝基复合材料的基本成分

铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。

4.铝基复合材料特点

在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

碳化硅和石墨纤维及其各种粒子短纤维和晶须等。

4.1低密度

铝基复合材料低密度的性能符合先进航空航天飞行器不断追求轻量化、高性能化、长寿命、高效能的发展目标,因此在该领域有着极大的发展潜力。

4.2良好的尺寸稳定性

随着航天技术的发展,为满足惯性材料的尺寸稳定性要求越来越高,世界各国都在竞相开发适用于惯性器件的新材料。美国曾于70年代使用铍材令陀螺仪表的精度提高一个数量级。但陂材具有“毒,贵,脆”等缺点,使其应用受到局限。80年代初,美国使用SiCp/Al复合材料,被认为是很有前途的仪表材料。

4.3强度、模量与塑形

增强体的加入在提高铝基复合材料强度和模量的同时,降低了塑性。

铝基体合金的性能

合金弹性模量/GPa 屈服强度/Mpa 抗拉强度/Mpa 断裂应变量/﹪

1100 63 43 86 20

2024 71 128 240 13

5052 68 135 265 13

6061 70 77 136 13

Al-7Si 72 65 120 23

碳化硅增强6061铝合金复合材料其蠕变速率明显低于6010铝合金。

4.4热性能

增强体和基体之间的热膨胀失配在任何复合材料中都难以避免,为了有效降低复合材料的热膨胀系数,使其与半导体材料或陶瓷基片保持热匹配,常选用像铝合金低膨胀的合金作为基体和采用不同粒径的颗粒制备高体积分数的复合材料。

4.5耐磨性

在实际的应用中,不仅要求材料有较好的强度、韧性等,而且还必须有很好的耐磨性能。因此,对材料提高其他性能的同时也提高耐磨性等,成为研究人员逐渐转移的研究方向。研究表明,在铝基材料中加入7﹪的硅酸铝短纤维,就可以使耐磨性成倍提高。5.铝基复合材料的制备

铝基复合材料的研究主要集中在两个方面:一是采用连续纤维增强的复合材料,二是采用颗粒增强的复合材料。

5.1长纤维增强铝基复合材料

长纤维增强铝基复合材料主要用的长纤维有硼纤维、碳纤维、碳化硅和氧化铝等。但是,在制备过程中,为了防止纤维与基体的界面反应,一般要对纤维进行表面处理。

5.1.1硼/铝基复合材料

实际制备中,为了防止硼纤维与铝在界面发生反应,改善纤维的抗氧化性能等,通常对硼纤维表面进行涂覆处理,所用涂层物有有SiC、B4C和BN等。

制备方法:先用等离子喷涂法获得铝-硼预制带,再将其用热压法制成零件。

5.1.2铝/ 碳化硅复合材料

5.1.2.1传统机械加工

A1SiC复合材料一般是铸造法或粉末冶金法等制备,需要进一步的机械加工达到零件所需的精度和表面粗糙度要求。SiC增强体颗粒比常用的刀具(如高速钢刀具和硬质合金刀具)的硬度高的多,在机械加工的过程中会引起剧烈的刀具磨损。

5.1.2.2铣磨加工技术

目前,切削加工是A1SiC复合材料的主要加工方法,但在切削加工中存在刀具磨损严重和难以获得良好加工表面质量的问题。有研究提出了颗粒增强A1SiC复合材料的铣磨加工方法。这种加工方法使用金刚石砂轮(电镀或烧结)在数控铣床上对工件进行切削加工,具有磨削加工中多刃切削的特点,又同时具有和铣加工相似的加工路线,可以用于曲面、孔、槽的加工,在获得较高加工效率的同时,又能保证加工表面质量。

5.1.2.3激光加工

目前国内外学者对铝基复合材料激光加工技术的研究主要集中在打孔、切割、划线和型腔加工等方面。用自行研制的机械斩光盘调脉冲激光器切割试验表明,在高峰值能量、短脉冲宽度、高脉冲频率和适当的平均功率条件下,采用高速多次重复走刀切割工艺,可以得到无裂纹的精细切口。

5.1.2.4超声加工

铝基超声加工(USM)是由超声发生器产生高频电振荡(一般为16 kHz~25 kHz),施加于超声换能器上,将高频电振荡转换成超声频振动。超声振动通过变幅杆放大振幅,并驱动以一定的静压力压在工件表面上的工具产生相应频率的振动。工具端部通过磨料不断地捶击工件,使加工区的工件材料粉碎成很细的微粒,被循环的磨料悬浮液带走,工具便逐渐进入到工件中,从而加工出与工具相应的形状。

5.1.2.5复合加工

2种或2种以上的加工方法同时作用到一个加工表面上叫复合加工。常用的加工方法有:超声钻孔加工、数控旋转超声加工、电解电火花加工、超声电火花加工等。

5.1.3铝/氧化铝复合材料

水热法:在特制的密闭反应容器(高压釜)里,采用水溶液作为反应介质,通过对反应容器加热,创造一个高温、高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶,用来生长各种单晶,制备超细、无团聚或少团聚、结晶完好粉体材料。

5.2颗粒增强铝基复合材料

颗粒增强铝基复合材料由于具有优异的性能,生产制造方法简单,其应用规模越来越大。目前人们主要应用的颗粒是碳化硅和氧化铝。

5.2.1碳化硅颗粒增强铝基复合材料

AISiC(铝基碳化硅)复合材料具有高比强度和比刚度、低热膨胀系数、低密度、高微屈服强度、良好的尺寸稳定性、导热性以及耐磨、耐疲劳等优异的力学性能和物理性能,在航空航天、汽车、军事、电子、体育用具等领域被广泛应用。但是由于超硬的增强相颗粒的加入,特别是颗粒含量高、尺寸小时,该材料的切削加工性能非常差,从而限制了该材料的应用。

制备方法具体的有浆体铸造法和粉末冶金法,制成坯后再经热挤压,也可将二者机械混合后直接热挤压成复合材料。

5.2.2氧化铝颗粒增强铝基复合材料

制备中要将晶须颗粒化,然后进行水热法获得复合材料。

6铝基复合材料的应用

尽管增强铝基复合材料目前处于研究和逐步向规模性生产、应用阶段,但却是一种很有发展前途的新材料,值得引起大家关注。

增强铝基复合材料是由铝合金基体和高性能增强体复合而成的一种高技术新材料。铝及其合金具有密度小,导热、导电性能好,耐腐蚀,可加工性能好和易回收等诸多特性,但也有耐磨性不高、热膨胀系数不低等限制。针对不同的性能要求,通过选择合适的铝基体、增强体及它们之间的优化组合,可以获得优异的综合性能。因此,铝基复合材料不仅保持了铝合金原本的良好性能,同时也大大改善了铝合金原先受到限制的一些性能,尤其是提高了模量、耐磨性和低的热膨胀性,从而满足航空航天、电子信息、先进武器、现代交通等领域的需求。

尽管增强铝基复合材料早于20世纪40年代已开始研究,但应用于航空航天、军事领域较多。直到90年代,开始由军事转向民用,才逐渐向规模化生产发展。在交通领域,与钢铁材料相比,增强铝基复合材料价格较高,其推广应用受到限制。

参考文献

[1]中国有色金属报,2009.5.14

[2]樊建中,石力开。颗粒增强铝基复合材料研究与应用发展[J].宇航工艺材料,2010(第1期)

[3]Alexander E,Christopher S M,Andreas M.Metal Ma—trix Composites in Industry:An Introduction and

a Survey[M].Kluwer Academic Publishers,2003:375—385

[4] https://www.sodocs.net/doc/282346621.html,

[5]王胜海,杨春成,边秀房。铝基非晶合金的研究发展[J].材料导报A:综述篇,2012.1(卷26),88-93

[6]张川江,吴佑实,董守义.铝基非晶合金微观结构的特点与演变[J].物理学报,2002,51(11):2575

[7]惠希东,陈国良.块体非晶合金[M].北京:化学工业出版社,2007:29

[8]贾彬彬,张文丛,夏龙,等.非晶态合金制备方法[J].轻合金加工技术,2006,32(10):20

[9]胡状麟,张海峰.块状非晶合金及其复合材料的研究进展[J].金属学报,2010,46(11):1391

[10]王德庆,石子原,高宏。碳纤维增强铝基复合材料制备及其拉伸性能[J].大连铁道学院学报,2000.12,21(4)

[11]郭亚林,梁国正,丘哲明,等.激光辐照下的材料破坏和防护研究进展EJ].材料保护,2003,36(12):8-10.

[12]黄勇,刘杰.高能激光武器的杀伤机理及主要特性分析EJ].光学与光电技术,2004,2(5):20—23

[13]Bokni R F.Development and application of HELW.SPIE,1994.

[14]ElO]高阳,潘峰,梁勇,等.高温合金表面激光熔敷热障涂层组织结构与氧化性能[J].材料科学与工程学报,2003,21(1):4-7.

[15]王大镇,冯培锋,赵清亮,等.航天铝基复合材料零部件超精密加工技术研究[J].宇航学报,2006,27(6):1341—1346.

[16]王立江,韩荣久,马文生.人造多晶金刚石刀具加工表面微观纹理的实验研究[J].光学精密工程,1995,3(3):68—74.

金属间化合物

1、什么是金属间化合物,性能特征? 答:金属间化合物:金属与金属或金属与类金属之间所形成的化合物。 由两个或多个的金属组元按比例组成的具有不同于其组成元素的长程有序晶体结构和金属基本特性的化合物。 金属间化合物的性能特点:力学性能:高硬度、高熔点、高的抗蠕变性能、低塑性等;良好的抗氧化性;特殊的物理化学性质:具有电学、磁学、声学性质等,可用于半导体材料、形状记忆材料、储氢材料、磁性材料等等。 2、含有金属间化合物的二元相图类型及各自特点? 答:熔解式金属间化合物相:在相图上有明显的熔化温度,并生成成分相同的液相。通常具有共晶反应或包晶反应。化合物的熔点往往高于纯组元。 分解式金属间化合物相:在相图上没有明显的熔解温度,当温度达到分解温度时发生分解反应,即β<=>L+α。常见的是由包晶反应先生成的。化合物的熔点没有出现。 固态生成金属间化合物相:通过有序化转变得到的有序相。经常发生在一定的成分区间和较无序相低的温度范围。通过固态相变而形成的金属间化合物相,可以有包析和共析两种不同的固态相变。 3、金属间化合物的溶解度规律特点? 答:(1)由于金属间化合物的组元是有序分布的,组成元素各自组成自己的亚点阵。固溶元素可以只取代某一个组成元素,占据该元素的亚点阵位置,也可以分布在不同亚点阵之间,这导致溶解度的有限性。 (2)金属间化合物固溶合金元素时有可能产生不同的缺陷,称为组成缺陷(空位或反位原子)。但M元素取代化合物中A或B时,A和B两个亚点阵中的原子数产生不匹配,就会产生组成空位或组成反位原子(即占领别的亚点阵位置)。 (3)金属间化合物的结合键性及晶体结构不同于其组元,影响溶解度,多为有限溶解,甚至不溶。表现为线性化合物。 (4)当第三组元在金属间化合物中溶解度较大时,第三组元不仅可能无序取代组成元素,随机分布在亚点阵内,而且第三组元可以从无序分布逐步向有序化变化,甚至生成三元化合物。 4、金属间化合物的结构类型及分类方法?(未完) 答:第一种分类方法:按照晶体结构分类(几何密排相(GCP相)和拓扑密排相(TCP相))。第二种分类方法:按照结合键的特点分类:a结合键性和其金属组成元素相似,主要是金属键。b结合键是金属键含有部分定向共价键。c具有强的离子键结合。d具有强的共价键结合。 第三种分类方法:按照影响其结构稳定性的主要因素分类(类型:价电子化合物、电子化合物(电子相)、尺寸因素化合物) 第四种分类方法:按照化学元素原子配比的特点分类。 5、什么是长程有序和短程有序度,举例说明长程有序度随温度变化规律? 答:长程有序度σ定义为: Pαα为α原子占据α亚点阵的几率(α=A或B),Cα0为α原子的当量成分。

铝基复合材料及应用

3铝基复合材料及应用 Aluminum matrix composites and applications 在材料体系设计、制备技术、界面研究、改性处理、性能表征、塑性变形和应用研究等方面开展了系统的研究工作,攻克了高致密制备技术、复合材料稳定性设计、稳定化处理技术、超声波辅助钎焊技术和材料稳定性评价方法等关键技术。研制出的系列颗粒、晶须和纤维增强铝基复合材料,已经应用于卫星、飞机、载人航天等领域。2008年获得国家技术发明二等奖。 The fabrication technology,interface structure,surface modification,property characterization,and plastic deformation have been investigated.A series of key technological problems have been broken through,such as high-density composite fabrication,design of dimensional stability,stabilizing treatment,ultrasonic assisted brazing and evaluation of materials stability.The composites have been successfully applied for industries. SiCp/Al 复合材料样件 SiCp/Al composites samples SiCw/Al 复合材料卫星天线展开机构丝杠 Satellite antenna screw rods of SiCw/Al composite SiC p /Al 相机框架焊接件Brazed camera carriages of SiCp/Al composite

金属基复合材料的种类与性能

金属基复合材料的种类与性能 摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。 关键词:金属;金属基复合材料;种类;性能特征;用途 1. 金属基复合材料的分类 1.1按增强体类型分 1.1.1颗粒增强复合材料 颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。 1.1.2层状复合材料 这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。 层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。 由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。 1.1.3纤维增强复合材料 金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。 短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。 当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。 1.2按基体类型分 主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料 这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。

铝合金的钎焊工艺

( 二 〇 一 三 年 十 二 月 本科科研训练论文 题 目:铝合金的钎焊工艺 学生姓名:/// 学 院:材料科学与工程 系 别:材料成型及 控制工程 专 业:材料成型及控制工程 班 级:材///班 指导教师:///

内蒙古工业大学本科科研训练论文 摘要 焊接是制造业的重要组成部分,应用广泛,发展迅速,在制造行业占有重要的地位。我国是世界产钢、用钢大国,也是焊接大国。随着高新技术和新工艺的不断出现,机械制造、安装、维修业也逐步向精细方向发展,对焊接技术的要求也越来越高。近几年来,焊接的使用量迅速增加;焊接机械化自动化技术改造加快;焊接自动化率快速提高。钎焊是用比母材熔点低的金属材料作为钎料,用液态钎料润湿母材和填充工件接口间隙并使其与母材相互扩散的焊接过程,这篇论文对钎焊焊接前的准备和焊接方法的做了设计,介绍了焊接所需的钎料和钎剂,给出了钎接接头形式以及接头的质量检测方法,在钎焊操作中应该注意的安全问题。 关键词:焊料,焊剂,钎焊接头,钎焊装置,钎焊气体

Abstract Welding is an important part of the manufacturing industry, widely used, rapid development in the manufacturing industry occupies an important position. China is the world steel production, steel big country, but also the welding power. With the emergence of high-tech and new technology, machinery manufacturing, installation and maintenance industry is also gradually to the fine direction of welding technology requirements are also increasing. In recent years, the rapid increase in the amount of welding; welding mechanization and automation to accelerate technological innovation; welding automation rate rapidly increased. Brazing with a lower melting point than the base metal material is used as brazing filler metal, wetted with a liquid base material and the solder filling the gap and the interface to the work piece during welding and the base material inter diffusion, the paper prior to brazing welding preparation and welding methods to do the design, introduces the required solder and soldering flux, solder joints is given in the form of joint detection methods and the quality of the brazing operation should p ay attention to security issues. Key words: Solder, Flux, Solder joints, Soldering equipment, Soldering gas

颗粒增强铝基复合材料的制备方法及其存在的问题20091311

颗粒增强铝基复合材料的制备方法及其存在的问题 冶金0901班 张莹 20091311

近年来,随着不断追求轻量化、高性能化、长寿命、高效能的发展目标带动牵引了轻质高强多功能颗粒增强铝基复合材料的持续发展。提出的低密度、高比强度、高比模量、低膨胀、高导热、高可靠等优异以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等综合性能要求,传统轻质材料已很难全面满足要求,如铝合金模量低、线胀系数较大; 钛合金密度较大、热导率极低; 纤维增强树脂基复合材料在空间环境下使用易老化等,颗粒增强铝基复合材料经过30 多年的发展,已在国外航空航天领域得到了规模应用,这充分验证了与铝合金、钛合金、纤维树脂基复合材料等传统材料相比具有的显著性能优势,奠定了颗粒增强铝基复合材料在材料体系中的地位和竞争态势。而且更重要的是,在世界范围内有丰富的铝资源,加之易于进行工艺加工成型和处理,因而制各和生产铝基复合材料比其他金属基复合材料更为经济,易于推广,可广泛应用于航空航天、军事、汽车、电子、体育运动等领域,因此,这种材料在国内外受到普遍重视。 颗粒增强铝基复合材料已成为当下世界金属基复合材料研究领域中的一个最为重要的热点,各国已经相继进入了颗粒增强铝基复台材料的应用开发阶段,在美国和欧洲发达国家,该类复台材料的工业应用已开始,并且被列为二十一世纪新材料应用开发的重要方向并日益向工业规模化生产和应用的方向发展。本文旨在探讨颗粒增强铝基复合材料的制备方法及在亟待解决的各方面的问题,推进其应用发展的进程。 主要制备方法介绍: 增强体颗粒的分布均匀性和界面结合状况是影响复合材料性能的重要因素。因此,如何使增强体颗粒均匀分布于铝基体井与铝基体形成良好的界面结台是颗粒增强铝基复台材料制备过程中必须解决的两个最关键问题。以下是制备颗粒增强铝基复合材料的一些方法: 1、原位法 原位法的原理是通过元素间或元素与化合物之间反应制备陶瓷增强金属基复合材料,是近年来迅速发展的一种新的复合工艺方法,目前已成功地在铝基中实现了硼化物、碳化物、氮化物等的原位反应。由于这些增强相引入的特殊性,不仅它的尺寸非常细小,而且与基体具有良好的界面相容性,使得这种复合材料较传统外加增强相复合材料具有更高的强度和模量,以及良好的高温性能和抗疲劳、耐磨损性能。 原位自生铝基复合材料的制备方法较多,下面进行简略介绍。 (1)自蔓延高温合成法:该技术是利用热脉冲使放热反应起始于反应剂粉末压坯的一端,其生成热使邻近的粉末温度骤然升高.发生化学反应并以燃烧波的形式蔓延通过整个反应物,当燃烧波推行前移时反应物转变成产物。该技术的特点是在无需外加热源的情况下,利用高放热化学反应放出的热量使其在引发后自身延续合成材料,节能,粉末纯度高,粒径细小,活性高,易于烧结并能获得高性能的材料。 (2)原位热压放热反应合成法:该技术是在原位热压技术的基础上发展起来的一种新下艺。在制备过程中将反应物的物料混合或与某种基体原料混合后通过热压工艺制备,组成物相在热压过程中原位生成。该技术的突出优点是利用燃烧合成过程的放热反应,在产物处于反应高温时,施加一定的压力。使材料的致密与反应合成同时完成。获得了事半功倍的效果。 (3)放热弥散技术:这种方法法是美国一个实验室在自蔓延法的基础上改进而来的。

铝基复合材料

目录 一、引言 (1) 二、铝基复合材料的基本成分 (1) 三、铝基复合材料的性能 (1) 3.1 低密度 (1) 3.2 良好的尺寸稳定性 (1) 3.3强度、模量与塑性 (2) 3.4耐磨性 (2) 3.5疲劳与断裂韧性 (2) 3.6热性能 (2) 四、铝基复合材料的应用 (3) 4.1 在汽车领域的应用 (3) 4.2 在航空航天领域的应用 (3) 4.3 在电子和光学仪器中的应用 (3) 4.4 在体育用品上的应用 (4) 五、铝基复合材料的制造工艺 (4) 5.1 粉末冶金法 (4) 5.2 高能-高速固结工艺 (4) 5.3 压力浸渗工艺 (5) 5.4 反应自生成法 (5) 5.5 液态金属搅拌铸造法 (5) 5.6 半固态搅拌复合铸造 (5) 六、铝基复合材料的研究的热点及发展趋势 (6) 6.1铝基复合材料的研究的热点 (6) 6.1.1纳米相增强铝基复合材料 (6) 6.1.2碳管纳米增强铝基复合材料 (6) 6.2铝基复合材料的发展趋势 (7)

铝基复合材料的综述 摘要:本文较为详细的介绍了铝基复合材料的性能、应用及其制造工艺,并指出了铝基复合材料的发展趋势。 关键词: 铝基复合材料; 性能; 应用; 工艺;发展趋势 一、引言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。复合材料可分为三类:聚合物基复合材料(PMCs)、金属基复合材料(MMCs)、陶瓷基复合材料(CMCs)。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要[1]。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 二、铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝极复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 三、铝基复合材料的性能 铝基复合材料的性能取决于基体合金和增强物的特性、含量、分布等。与基体合金相比,铝基复合材料具有许多优良的性能。 3.1 低密度 2,铝基复合材料的密度一般在8.2左右,基本上与一般铝合金相当,比钢低3同等几何尺寸的零件,其重量仅为钢制的1左右。 3.2 良好的尺寸稳定性 许多增强物都具有很小的热膨胀系数,加入相当含量的增强物可降低材料膨胀系数,从而得到热膨胀系数小、尺寸稳定性好的铝基复合材料。

各系铝合金特点

一系:1000系列铝合金代表1050、1060 、1100系列。在所有系列中1000系列属于含铝量最多的一个系列。纯度可以达到99.00%以上。由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。目前市场上流通的大部分为1050以及1060系列。1000系列铝板根据最后两位阿拉伯数字来确定这个系列的最低含铝量,比如1050系列最后两位阿拉伯数字为50,根据国际牌号命名原则,含铝量必须达到99.5%以上方为合格产品。我国的铝合金技术标准(gB/T3880-2006)中也明确规定1050含铝量达到99.5%.同样的道理1060系列铝板的含铝量必须达到99.6%以上。 工业纯铝具有铝的一般特点,密度小,导电、导热性能好,抗腐蚀性能好,塑性加工性能好,可加工成板、带、箔和挤压制品等,可进行气焊、氩弧焊、点焊。 特点:含铝99.00%以上,导电性有好,耐腐蚀性能好,焊接性能好,强度低,不可热处理强化. 应用范围:高纯铝(含铝量99.9%以上)主要用于科学试验,化学工业及特殊用途. 特点::以铜为主要合元素的含铝合金.也会添加锰、镁、铅和铋为了切削性。 如:2011合金,在熔练过程中要注意安全防护(会产生有害气体)。2014合金用天航空工业,强度高。2017合金比2014合金强度低一点,但比较容易加工。2014可热处理强化。 缺点:晶间腐蚀倾向严重。 应用范围:航空工业(2014合金),螺丝(2011合金)和使用温度较高的行业(2017合金)。 特点:以锰为主要合金元素的铝合金,不可热处理强化,耐腐蚀性能好,焊接性能好。塑性好。(接近超铝合金)。 缺点:强度低,但可以通过冷加工硬化来加强强度。退火时容易产生粗大晶粒。 应用范围:飞机上使用的导油无缝管(3003合金),易拉罐(3004合金)。 阳极氧化可行性:1xxx系铝合金又称“纯铝”,一般不用于硬质阳极氧化。但在光亮阳极氧化和保护性阳极氧化具有很好的特性。 二系:2000系列铝合金代表2024、2A16(LY16)、2A02(LY6)。2000系列铝板的特点是硬度较高,其中以铜原属含量最高,大概在3-5%左右。2000系列铝棒属于航空铝材,目前在常规工业中不常应用。 硬铝:代号2XXX,常用的有2A11、2A12等。硬铝有良好的机械性能,强度大(如2A12-T4抗拉强度可达469MPa以上)又便于加工,而且密度小,可作轻型结构材料。一般的硬铝中,镁不超过2%。锰可提高强度和耐蚀性,但一般限制锰小于1%,加入少量的钛可细化晶粒,铁与硅均限制在小于0.5-0.6%,并希望铁硅比值大于等于一。硬铝的缺点主要有:1)耐蚀性不良,因此不得不在硬铝板材表面用轧制方法包一层工业纯铝(纯铝厚度占板材厚度3-5%)成为包铝硬铝。有包铝层时强度有所下降。2)固溶处理温度范围窄,小于此温度不能发挥最大强化效果,而超出上限温度,又有产生晶界“过”的可能使晶粒聚集受到破坏。3)焊接裂纹倾向大,用熔焊法有困难。 阳极氧化可行性:2xxx系铝合金又称“铝铜镁合金”,由于合金中的Al-Cu金属间化合物在阳极氧化时易溶解,因此难以生成致密的阳极氧化膜,在保护性阳极氧化时,其耐腐蚀性

铝合金真空钎焊用低温铝基钎料的研究

铝合金真空钎焊用低温铝基钎料的研究 北京华航无线电测量技术研究所于文花 肖爱群 北京航空航天大学庄鸿寿 摘要为了避免在铝合金焊接中产生晶粒长大、溶蚀等缺陷,提高铝合金的钎焊质量,本文在Al-Si共晶钎料的基础上加入合金元素Cu和其它微量元素,研制新的低熔点钎料,最后确定新钎料为Al19Cu9Si。该钎料的熔点为543℃,比BAl86.5SiMg钎料的熔点降低了40℃,试验结果表明新钎料具有良好的润湿性、流动性,接头的剪切强度、抗腐蚀性能均满足铝合金钎焊要求。 关键词真空钎焊 铝合金 铝基钎料 1 引言 铝合金由于具有密度小、比强度高等优点,在航空、航天工业中已获得愈来愈广泛的应用。例如很多传统的铜合金波导、高频器件已被铝合金所取代,利用钎焊方法制造复杂的铝结构是最理想的方法。共晶铝硅钎料因具有良好的润湿性、流动性、钎焊接头的抗腐蚀性和可加工性,是铝合金钎焊中应用最广的一种铝钎料[1]。但它也具有严重缺点:熔点较高(液相线温度为577℃),钎焊温度均在600℃以上,所以钎焊温度非常接近于合金的固相线温度,易使母材发生晶粒长大、溶蚀等现象。目前,美国、日本、欧洲等研究机构对铝合金用低温铝基钎料进行了大量的研究。日本的茅本隆司、恩泽忠男[2]等人研究发现锗、铟、镱和铜均可作为铝硅钎料的添加剂,降低钎料的熔点,但锗、铟、镱的加入会使钎料脆性和耐腐蚀性均遭到恶化,且价格昂贵,难以应用于实际生产;铜元素的加入量多时也会使钎料变脆及钎焊时出现对母材的溶蚀,很难得到性能优良的钎焊接头。为此,所研制的新钎料既要具有较低的熔点,又要保持良好的机械性能。 本文通过分析既能降低铝熔点又能与铝形成共晶合金的元素特性,选择合适的能降低铝熔点的元素,对成分进行优化试验,同时考虑钎料的流动性和组织特性,在钎料中加入适量提高钎料流动性和细化组织的微量元素,经过试验确定铜、铋及微量元素为添加剂,配制新钎料,对新钎料进行熔点、润湿性、流动性、金相组织以及接头剪切强度、环境试验。 2 钎料的配制 为了降低钎料的熔点,必须寻找能降低铝熔点的元素,能与铝形成共晶的合金见表1。 表1 共晶元素及共晶温度 合金元素 Al-11.5Si Al-72Ag Al-32.7Cu Al-51.6Ge Al-94Zn 共晶温度/℃577 567 548 420 381 由表1可知Al-72Ag的共晶温度567℃,与铝硅共晶温度差不多,并且这种合金很脆,抗腐蚀性也不高,不宜作钎料;Al-32.7Cu,熔点548℃,此合金因含铜量高,脆性大;Al-Ge、Al-Zn共晶温度仅400℃左右,对降低钎料的温度作用极佳,但Ge是贵重元素,价高并且极脆,而Zn极易挥发,不易用于真空钎焊[3]。 分析能与铝形成共晶的合金特点,二元合金的熔点不能满足要求,必须加入第三种元素。在Al-Si-Ag 三元合金中有一共晶成分,其熔点为563℃,它与Al-Ag共晶熔点相差不大,无实用价值。 在三元合金中,只有Al-Si-Cu合金最有希望, 收稿日期:2005-09-26

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

各系铝合金特点

一系:1000系列铝合金代表 1050、1060 、1100系列。在所有系列中1000系列属于含铝量最多的一个系列。纯度可以达到99.00%以上。由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。目前市场上流通的大部分为1050以及1060系列。1000系列铝板根据最后两位阿拉伯数字来确定这个系列的最低含铝量,比如1050系列最后两位阿拉伯数字为50,根据国际牌号命名原则,含铝量必须达到99.5%以上方为合格产品。我国的铝合金技术标准(gB/T3880-2006)中也明确规定1050含铝量达到99.5%.同样的道理1060系列铝板的含铝量必须达到99.6%以上。 工业纯铝具有铝的一般特点,密度小,导电、导热性能好,抗腐蚀性能好,塑性加工性能好,可加工成板、带、箔和挤压制品等,可进行气焊、氩弧焊、点焊。 特点:含铝99.00%以上,导电性有好,耐腐蚀性能好,焊接性能好,强度低,不可热处理强化. 应用范围:高纯铝(含铝量99.9%以上)主要用于科学试验,化学工业及特殊用途. 特点::以铜为主要合元素的含铝合金.也会添加锰、镁、铅和铋为了切削性。 如:2011合金,在熔练过程中要注意安全防护(会产生有害气体)。2014合金用天航空工业,强度高。2017合金比2014合金强度低一点,但比较容易加工。2014可热处理强化。 缺点:晶间腐蚀倾向严重。 应用范围:航空工业(2014合金),螺丝(2011合金)和使用温度较高的行业(2017合金)。 特点:以锰为主要合金元素的铝合金,不可热处理强化,耐腐蚀性能好,焊接性能好。塑性好。(接近超铝合金)。 缺点:强度低,但可以通过冷加工硬化来加强强度。退火时容易产生粗大晶粒。 应用范围:飞机上使用的导油无缝管(3003合金),易拉罐(3004合金)。 阳极氧化可行性:1xxx系铝合金又称“纯铝”,一般不用于硬质阳极氧化。但在光亮阳极氧化和保护性阳极氧化具有很好的特性。 二系:2000系列铝合金代表2024、2A16(LY16)、 2A02(LY6)。2000系列铝板的特点是硬度较高,其中以铜原属含量最高,大概在3-5%左右。2000系列铝棒属于航空铝材,目前在常规工业中不常应用。 硬铝:代号2XXX,常用的有2A11、2A12等。硬铝有良好的机械性能,强度大(如2A12-T4抗拉强度可达469MPa以上)又便于加工,而且密度小,可作轻型结构材料。一般的硬铝中,镁不超过2%。锰可提高强度和耐蚀性,但一般限制锰小于1%,加入少量的钛可细化晶粒,铁与硅均限制在小于0.5-0.6%,并希望铁硅比值大于等于一。硬铝的缺点主要有:1)耐蚀性不良,因此不得不在硬铝板材表面用轧制方法包一层工业纯铝(纯铝厚度占板材厚度3-5%)成为包铝硬铝。有包铝层时强度有所下降。2)固溶处理温度范围窄,小于此温度不能发挥最大强化效果,而超出上限温度,又有产生晶界“过”的可能使晶粒聚集受到破坏。3)焊接裂纹倾向大,用熔焊法有困难。 阳极氧化可行性:2xxx系铝合金又称“铝铜镁合金”,由于合金中的Al-Cu金属间化合物在阳极氧化时易溶解,因此难以生成致密的阳极氧化膜,在保护性阳极氧化时,其耐腐蚀性

铝及铝合金的钎焊

铝及铝合金的钎焊 08材控 邢钧魁 20080607131 摘 要 本文主要论述了铝及铝合金的分类、性能,以及铝及铝合金钎焊的研究现状、钎焊过程中有可能出现的问题以及在具体实施钎焊时钎剂、钎料的选择与搭配,还介绍了施焊前如何对表面进行清理、准备以及焊后的清理与处理工作、注意事项等。 关键词 钎焊 铝合金 钎剂 钎料 1 铝及铝合金 1.1铝及铝合金钎焊的研究现状 铝合金具有密度小、强度高和耐腐蚀等优点,因而广泛应用于汽车、高速铁路车辆、航空航天和军事工业。由于它特有的物理、化学性能,其焊接过程中会遇到一系列困难,如氧化、焊缝热裂纹和气孔等。对于铝合金的焊接,传统的方法主要以熔化焊接为主,设备复杂,且对焊工的技术要求也比较严格。铝钎焊作为铝合金连接的重要方法,具有钎焊件变形小。尺寸精度高等优点,近年来在我国得到广泛的应用。铝及铝合金的钎焊技术近年来研究较多。随着新材料、新方法的不断出现,铝及铝合金的钎焊工艺也得到了快速的发展,其钎焊方法、钎料及钎剂都有很大的进步。 1.2 铝及铝合金的分类及性能 铝及铝合金可以分为工业纯铝、变形铝合金和铸造铝合金。变形铝合金是指经不同的压力加工方法制成的板、带、管、型、条等半成品材料;铸造铝合金以合金铸锭供应。变形铝合金又分为不能热处理强化的铝合金和能热处理强化的铝合金。 铝是一种轻金属,密度小,仅为3/7.2cm g ,约为铜或钢的3/1;具有优良的导电性、导热性,良好的耐蚀性以及优良的塑性和加工性能等。铝合金仍保持纯铝的密度小和耐蚀性好的特点,且力学性能比纯铝高得多。经热处理后铝合金的力学性能要求可以和钢铁材料相媲美。 1.3 铝及铝合金钎焊的问题 铝及铝合金的钎焊与其他合金相比比较难,是由于其表面有一层极为致密的氧化膜,这一层氧化膜的性能非常稳定,能够充分抵抗大气的腐蚀,又能在旧摸上随时生成新膜。铝及铝合金在焊接的时候需要破坏这一层膜,否则熔化的钎料不能与母材润湿;焊后又需要维持保护膜的完整,否则接头将产生严重的腐蚀。 铝能极缓慢地溶于中等浓度的硝酸,但在浓硝酸中是稳定的,硝酸的浓度越高越稳定。运输发烟硝酸的槽罐是用纯铝做的。铝的抗碱能力较弱,易溶于NaOH 、KOH 。 无缝药芯焊丝是铝铜钎焊连接的最新技术成果,是铝铜钎焊用料的升级换代产品。其主要成分由锌铝铜和无腐蚀性氟铝铯盐组成,其钎焊工艺性、接头机械性能和接头导电性均优于锌镉、锌锡铜钎料。 2 铝及铝合金的钎焊方法 铝及铝合金的钎焊可以采用火焰钎焊、盐浴钎焊和炉中钎焊等方法[1]。 火焰钎焊,其设备简单,燃气来源广,灵活性大,应用很广。主要用于钎焊小型焊件和单件生产。有多种火焰可以使用。有报道,我国与其他国家合作生产了一种介于液化气与氧乙炔之间的夏普气。这种气体火焰柔和,其强度介于液化

钛铝系金属间化合物薄膜的制备和摩擦性能

钛铝系金属间化合物薄膜的制备和摩擦性能 田明霞,李长生,张晔,金岚,孙建 (江苏大学材料科学与工程学院,江苏镇江212013) 摘 要: 应用射频磁控溅射方法沉积钛铝系金属间化合物薄膜;用X 射线衍射仪(XRD)、配有 能谱仪(EDS)的扫描电子显微镜(SEM )和U M T 2型摩擦试验机对薄膜的相组成、形貌和摩擦性 能进行了分析。结果表明:该薄膜是由T iA l 、T iAl 3、Al 2O 3和TiO 2相组成;薄膜表面晶粒均匀细小;对于不同钛、铝含量的薄膜,当铝含量(原子分数)为45%时具有最低的摩擦因数;摩擦因数随着载荷、转速和摩擦时间的增加而减小。 关键词:射频磁控溅射;钛铝系金属间化合物;薄膜;摩擦性能 中图分类号:T B331 文献标识码:A 文章编号:1000 3738(2008)05 0062 03 Tribological Properties and Preparation of Ti Al Intermetallic Film TIAN Ming xia,LI Chang sheng,ZHANG Ye,JIN Lan,SUN Jian (Jiang su U niversity ,Zhenjiang 212013,China) Abstract:Radio fr equency (RF )magnetr on sputt ering w as used to prepare T i A l inter metallics f ilm.T he film w as examined by XRD.T he sur face mo rpholog y of the film w as analyzed by SEM w ith an att ached EDS.T he tribo log ical pr operties o f t he film wer e tested by U M T 2frict ion test apparatus.G ener ally,t he film is composed o f T iA l,T iA l 3,A l 2O 3and T iO 2.T he cry stal gr ains o f the film are uniform and fine.T he film with 45at%Al show ed the low est f riction co efficient.T he fr ictio n coefficient reduced w ith t he increase o f load,rot ation rate and f rictio n time. Key words:RF magnetro n sput tering ;T i A l intermetallics;film;tr ibolog ical pro per ty 0 引 言 金属间化合物中金属键和共价键共存,使其兼备金属的较好塑性和陶瓷的高温强度[1]。研究表明[2],由于特殊的晶体结构,某些金属间化合物的强度在一定范围内随着温度的升高(700~800 )而升高。目前已有约300种金属间化合物,由于具有耐高温、抗氧化、耐磨损的特点,可望成为航空航天、交通运输、化工、机械等许多工业部门重要的结构材 料。其中,钛铝系金属间化合物由于铝化合物本身所具有的极高的抗氧化性能、较高的熔点、较低的密度等特点,而成为研究焦点[3,4]。而以薄膜形式存在的钛铝系金属间化合物,特别适合用于切割和加工含铁材料,并且由于其高温抗氧化性能优良[5],还可用于高温部件上。 收稿日期:2007 06 28;修订日期:2007 08 28 作者简介:田明霞(1982-),女,山东济宁人,硕士研究生。导师:李长生教授 目前关于钛铝系金属间化合物薄膜的研究报道主要集中在其力学和高温抗氧化性的研究,对于其摩擦性能很少涉及。为此,作者采用射频磁控溅射 的方法制备钛铝间化合物薄膜,并对其物相组成、表面形貌和摩擦性能进行了分析。 1 试样制备与试验方法 采用大连理工大学的微波ECR 等离子体增强沉积设备,用铝和钛双靶溅射的方法制备钛铝金属间化合物薄膜。铝靶纯度99.99%,密度2.7g cm -3 ,钛靶纯度99.99%,密度4.51g cm -3 ,均由合肥科晶材料技术有限公司生产。在双靶磁控溅射过程中,基体摆放位置不同,可以制备出不同原子比的薄膜,见图1。工作气体为纯度99.999%的氩气,基体为45钢。将基体加工成 15mm !15m m 的试样,经研磨、抛光至镜面后,用乙醇、丙酮和去离子水进行超声波清洗后放入磁控反应室。抽真空至5!10-4Pa 后,对基体表面进行氩离子预溅射处理,去除表面残留的吸附物和氧化物,5min 后沉积薄 62 第32卷第5期2008年5月 机 械 工 程 材 料 M aterials for M echanical Eng ineering V ol.32 N o.5M ay 2008

铝基复合材料

内容摘要 本次原位铝基纳米复合材料课程设计主要包括四个任务,即原位铝基纳米复合材料在国内外的应用和研究现状,原位铝基纳米复合材料的制备技术,原位铝基纳米复合材料的性能(其中包括力学性能,磨损性能,热学性能,和蠕变性能)以及原位铝基纳米复合材料制备及应用中存在的关键技术问题。

目录 一.原位铝基纳米复合材料的国内外应用及研究现状 (3) 1.1 原位铝基复合材料的定义 (3) 1.2 原位铝基纳米复合材料在国内外的应用 (3) 1.3 原位铝基纳米复合材料的研究现状 (4) 二.原位铝基纳米复合材料制备技术 (5) 2.1气-液反应制备工艺 (5) 2-2 固-液反应制备工艺 (7) 2-3固-固反应制备工艺 (7) 三. 原位铝基纳米复合材料的性能 (8) 3.1 力学性能 (8) 3.2 磨损性能 (10) 3.3 热学性能 (12) 3.4 蠕变性能 (16) 四.原位铝基复合材料制备及应用中存在的关键技术问题 (17) 参考文献 (17)

一.原位铝基纳米复合材料的国内外应用及研究现状 1.1 原位铝基复合材料的定义 复合材料(composite materials)是由两种或两种以上的材料通过先进的材料制备技术组合而成的性能优异的新材料。一般来说,复合材料由基体和增强材料组成。它既能保留原组成材料的主要特色,并通过复合效应获得原组分所不具备的性能。[1] 金属基复合材料(MMCs)是以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或陶瓷颗粒组合为增强相的非均质混合物。在金属基复合材料中,铝基复合材料具有更高的比强度、比模量和低的热膨胀系数,尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工和价值低廉的优点。在金属基复合材料制备过程中,往往会遇到增强材料与金属基体之间的相容性问题。如果增强体能从金属基体中直接原位生成,则相容性问题可以得到很好的解决。因为原位生成的增强体与金属基体界面结合良好,生成相的热力学稳定性好,不存在基体与增强体之间的润湿和界面反应等问题。[2] 原位铝基复合材料,是利用混合体中组分之间的化学反应,生成一种或多种高硬度和高熔点增强相,均匀分布于铝合金基体上,达到强化基体的作用。由于增强相是反应合成的,内生于基体之中,因而具有许多外加强化相强化铝基复合材料所不具有的独特优点[3]: 1) 增强体在铝基体上原位形核、长大,具有强界面结合、良好的相容性。 2) 通过选择反应物来控制增强相种类、大小和数量,并可以通过工艺来控制其大小和分布,不易出现增强相的团聚或偏析。 3) 省去了增强物的预处理,简化了工艺流程,成本也相对降低。 4) 增强相颗粒细小,往往处于微米级或微米以下,能保证铝基复合材料不但有良好的韧性和高温性能,而且有很高的强度和弹性模量。 5) 能与铸造工艺结合,直接制造出形状复杂、尺寸变化大的近终形产品。 1.2 原位铝基纳米复合材料在国内外的应用 在航空航天方面,A356和A357/SiC颗粒增强铝基原位复合材料可制造飞机液压管,直升飞机支架和阀体。2099铝合金+25%SiC材料可以制造火箭发动机零件。美国DWA特种复合材料公司用f(SiCp)25%增强6061铝合金基复合材料代替7075铝合金生产宇航结构导槽、角材,其密度下降了17%,用A357合金+f(SiC)20%可以制造坦克火力控制镜的基片和导弹机翼。在汽车制造方面,几乎所有的欧美汽车制造厂,在研究采用金属基复合材料制造制动盘、制动鼓。国内已将铝基复合材料应用于刹车轮,使其重量减少了30%~60%,

铝基复合材料简述

铝基复合材料 1. 铝基复合材料的基本性能 1.1 强度,模量与塑性 铝基复合材料比强度和比刚度高.高温性能好。更耐疲劳和更耐磨,阻尼性 能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。 增强体的加入在提高铝基复合材料强度和模量的同时。降低了塑性。 另外增强相的加入又赋予材料一些特殊性能,这样不同金属与合金基体及不 同增强体的优化组合。就使金属基复合材料具有各种特殊性能和优异的综合性能。 尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工 和价格低廉的优点,更加引起人们的注意。 1.2 耐磨性 高的耐磨性是铝基复合材料(SiC、A1203)增强的特点之一 颗粒体积分数对复合材料摩擦系数的影响显著,而颗粒尺寸对复合材料摩擦系数影响不大。 与基体合金相比,铝基复合材料表现出良好的抗磨损性能,并随着加入颗粒 尺寸的减小和数量的增多而变强。在滑动磨损实验中,颗粒及纤维增强的铝基复合材料的耐磨性有两个数量级的提高,但随着磨粒尺寸的增大,载荷中冲击成分的提高使其耐磨性迅速下降。材料的耐磨性的好坏取决于强化机制、增强相之间的相互制约及与基体在变形过程中的协调作用。当然,也与增强相类型及基体合金的性能有关。 增强相的聚结显著降低材料的耐磨性。 1.3 疲劳与断裂韧性 铝基复合材料的疲劳强度和疲劳寿命一般比基体金属高,这与刚度及强度的提高有关,而断裂韧性却下降。影响铝基复合材料疲劳性能和断裂的主要因素有:增强物与基体的界面结合状态、基体与增强物本身的特性和增强物在基体中的分布等。界面结合状态良好,可以有效地传递载荷,并阻止裂纹扩展,提高材料的断裂韧性。 目前对复合材料疲劳断裂过程的研究分为疲劳裂纹的萌生和扩展两个方面。现有的研究工作在实验的基础上得出疲劳裂纹萌生于SiC 附近。SiC与铝合金界

相关主题