搜档网
当前位置:搜档网 › 光学设计软件zemax study

光学设计软件zemax study

光学设计软件zemax study
光学设计软件zemax study

光学系统设计(Zemax初学手册)蔡长青

ISUAL 计划团队

国立成功大学物理系

(第一版,1999年7月29日)

内容纲目:

前言

习作一:单镜片(Singlet)

习作二:双镜片

习作三:牛顿望远镜

习作四:Schmidt-Cassegrain和aspheric corrector

习作五:multi-configuration laser beam expander

习作六:fold mirrors和coordinate breaks

习作七:使用Extra Date Editor, Optimization with Binary Surfaces

前言

整个福尔摩沙卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。

这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译,

由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参与「红色精灵」计划,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)与后续更

多的习作与文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注)(回内容纲目) 习作一:单镜片(Singlet)

你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计优化。

设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。

首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。

然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。

再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial en-trance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default 为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。

回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO 为1,而IMA为3。

再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又孔径的大小为25mm,则第一面镜合理的thickness为4,也是直接

键入。再来决定第1及第2面镜的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。而再令第2面镜的thickness为100。

现在你的输入数据已大致完毕。你怎么检验你的设计是否达到要求呢?选analysis中的fans,其中的Ray Aberration,将会把transverse的ray aberration对pupil coordinate作图。其中ray aberration是以chief ray为参考点计算的。纵轴为

EY的,即是在Y方个的aberration,称作tangential或者YZ plane。同理X方向的aberration称为XZ plane或sagittal。

Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。solves是一些函数,它的输入变量为curvatures,thickness,glasses,

semi-diameters,conics,以及相关的parameters等。parameters是用来描述或补足

输入变量solves的型式。如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface等。而

描述chief ray angle solves的parameter即为angle,而补足pick up solves的parameters 为surface,scale factor两项,所以parameters本身不是solves,要调整的变量才是solves的对象。

在surface 2栏中的thickness项上点两下,把solve type从fixed变成Marginal Ray height,然后OK。这项调整会把在透镜边缘的光在光轴上的height

为0,即paraxial focus。再次update ray fan,你可发现defocus已经不见了。但这

是优化设计吗?再次调整surface 1的radius项从fixed变成variable,依次把surface 2的radius,及放弃原先的surface 2中thickness的Marginal Ray height也变成variable。再来我们定义一个Merit function,什么是Merit function呢?Merit function就是把

你理想的光学要求规格定为一个标准(如此例中focal length为100mm),然后Zemax 会连续调整你输入solves中的各种variable, 把计算得的值与你订的标准相减就是Merit function值,所以Merit function值愈小愈好,挑出最小值时即完成variable 设定,理想的Merit function值为0。

现在谈谈如何设Merit function,Zemax 已经default 一个内建的merit function,它的功能是把RMS wavefront error 减至最低,所以先在editors中选Merit function,进入其中的Tools,再按Default Merit Function 键,再按ok,即我们选用default Merit function ,这还不够,我们还要规定给merit function 一个focal length 为100的限制,因为若不给此限制则Zemax会发现focal length为时,wavefront aberration的效果会最好,当然就违反我们的设计要求。所以在Merit function editor 第1列中往后插入一列,即显示出第2列,代表surface 2,在此列中的type项上键入EFFL(effective focal length),同列中的target项键入100,weight项中定为1。跳出Merit function editor,在Tools中选optimization项,按Automatic键,完毕后跳出来,此时你已完成设计优化。重新检验ray fan,这时maximum aberration已降至200 microns。

其他检验optical performance还可以用Spot Diagrams及OPD等。从Analysis中选spot diagram中的standard,则该spot大约为400 microns上下左右交错,与Airy diffraction disk比较而言,后者大约为6 microns交错。

而OPD为optical path difference(跟chief ray作比较),亦从Analysis中挑选,从Fans中的Optical Path,发现其中的aberration大约为20 waves,大都focus,并且spherical,spherochromatism及axial color。Zemax 另外提供一个决定first order chromatic abberation 的工具,即the chromatic focal shift plot,这是把各种光波的

back focal length跟在paraxial上用primary wavelength 计算出first order的focal length之间的差异对输出光波的wavelength 作图,图中可指出各光波在paraxial focus上的variation。从Analysis中Miscellaneous项的Chromatic Focal Shift即可叫出。

(回内容纲目)

●习作二:双镜片

你将学到:画出layouts和field curvature plots,定义edge thickness solves, field angles等。

一个双镜片是由两片玻璃组成,通常黏在一起,所以他们有相同的curvature。借着不同玻璃的dispersion性质,the chromatic aberration可以矫正到first order所以剩下的chromatic aberration主要的贡献为second order,于是我们可以期待在看chromatic focal shift plot图时,应该呈现出parabolic curve的曲线而非一条直线,此乃second order effect的结果(当然其中variation的scale跟first order比起来必然小很多,应该下降一个order)。

跟习作一一样,我们仍然要设计一个在光轴上成像,focal length为100mm 的光学系统,只不过这次我们用两块玻璃来设计。

选用BK7和SF1两种镜片,wavelength和aperture如同习作一所设,既然是doublet,你只要在习作一的LDE上再加入一面镜片即可。所以叫出习作一的LDE,在STO后再插入一个镜片,标示为2,或者你也可以在STO前在插入一面镜片标示为1,然后在该镜片上的surface type上用鼠标单击,然后选择Make Surface Stop,则此地一面镜就变成STO的位置。在第一、第二面镜片上的Glass 项目键入BK7即SF1,因为在BK7和SF1之间并没有空隙,所以此doublet为相黏的二镜片,如果有空隙则需5面镜因为在BK7和SF1间需插入另一镜片,其glass type为air。现在把STO旱地二面镜的thickness都fixed为3,仅第3面镜的

thickness为100且设为variable,既然要优化,还是要设merit function,注意此时EFFL需设在第三面镜上,因为第3面镜是光线在成像前穿过的最后一面镜,又EFFL是以光学系统上的最后一块镜片上的principle plane的位置起算。其他的merit function设定就一切照旧。

既然我们只是依习作一上的设计规范,只不过再加一面SF1镜片而已,所以其他的merit function设定就一切照旧。现在执行optimization,程序如同习作一,在optimization结束后,你再叫出Chromatic Focal Shift来看看,是否发现first order的chromatic aberration已经被reduced,剩下的是second order chromatic aber-ration在主宰,所以图形呈现出来的是一个parabolic curve,而且现在shift的大小为74 microns,先前习作一为1540 microns。

再看其他的performance效果,叫出Ray aberration,此时maximum transverse ray aberration已由习作一的200 microns降至20 microns。而且3个不同波长通过原点的斜率大约一致,这告诉我们对每个wavelength的relative defocus 为很小。再者,此斜率不为0(比较习作一Fig E1-2),这告诉我们什么讯息呢?如果斜率为0,则在pupil coordinate原点附近作一些变动则并不产生aberration代表defocus并不严重,而aberration产生的主要因素为spherical aberration。故相对于习作一(比较他们坐标的scale及通过原点的斜率),现在spherical aberration已较不严重(因为aberration scale已降很多),而允许一点点的defocus出现,而出现在rayfan curve的S形状,是典型的spherical balanced by defocus的情况。现在我们已确定得到较好的performance,但实际上的光学系统长的什么样子呢?选择Analysis,Layout,2D Layout,除了光学系统的摆设外,你还会看到3条分别通过entrance pupil

的top,center,bottom在空间被trace出来,他们的波长是一样的,就是你定的primary wavelength(在此为surface 1)。这是Zemax default的结果。

但是现在还有一个问题,我们凭直觉定出STO的thickness为3,但是真正在作镜片的时候,STO和surface 2镜面会不会互相交错穿出,即在edge的thickness值为正数或负数,还有是不是应该改一下设计使lens的aperature比diameter小,如此我们可预留些边缘空间来磨光或架镜。

于是我们可能更改的是diameter,STO的thickness来解决上述问题。先在STO的diameter上键入14来盖过12.5,此时会有一个”U”字出现代表user define,现在设想我们要edge thickness固定为3mm,可是你或许会问这样系统岂不是弄乱了吗?defocus又会出现,关键是再一次执行optimization即可。在STO 的thickness上单击,选择Edge Thickness项目,则会出现”Thickness”及”Radial Height”两项,设thickness为3及radial height为0(若radial height为0,则Zemax 就使定user define的semi-thickness)按OK跳出,你会发现STO的thickness已改变,且会出现一个”E”字代表an active thickness solve在该项的parameter上。

既然edge thickness已改变,所以focal length也一定有些许变动,为了维持原有的EFFL,现在再执行optimization一次即可。现在我们想看看off-axis的performance,从system的Fields中的Field Data,选用3个field来作比较,怎么选呢?在第2及第3个列中的”Use”项中各单击,在第2列的y field行中键入7(即7 degree),在第3列中键入10,第一列则让它为0即持续on-axis。而设所有的x field 皆为0,对一个rotational对称的系统而言,他们的值很小,按OK键跳出。现在Update rayfan,你可看到如Figure E2-4之图。图中T代表tangential,S为sagittal,结果显示off-axis的performance很差,这是因为一开始我们就设计系统在on-axis

上来作optimization,这些aberration可以用field curvature plot来估计,选Analysis 中,Miscellaneous的Field Curv/Dist。则出现如Figure E2-5的图,左图表示shift in paraxial focus为field angle的函数,而右图为real ray的distortion,以paraxial ray 为参考ray。在field curvature plot的讯息也可从rayfans中得知,为field curvature plot 是正比于在rayfan plot中通过原点的斜率。

(回内容纲目)

●习作三:牛顿望远镜

你将学到:使用mirrors,conic constants,coordinate breaks,three dimensional layouts,obscurations。

牛顿望远镜是最简单的矫正所有on-axis aberrations的望眼镜。牛顿望远镜是利用一个简单的parabolic mirror完美地矫正所有order的spherical aberration,因为我们只在optical axis上使用,除spherical aberration外并没有其他的aberration。

假想要设计一个1000mm F/5的望远镜,我们需要一个具有2000mm的curvature及200mm的aperture。在surface 1即STO上的curvature项中键入-2000 mm,负号表示对object而言,其曲面为concave,即曲面对发光源而言是内弯的。在thickness项中键入-1000,负路表示光线没有透过mirror而是反射回来,在Glass 项中键入MIRROR,最后在System的General项中的aperture中键入200。

Wavelength选用0.550,field angel则为0。现在看看spot diagram,你会看到一个77.6 microns RMS的spot diagram,而一个很方便估算image quality的方法就是在spot diagram的顶端上再superimpose一个Airy diffraction ring。从spot diagram的menu bar选择Setting,在Show Scale上选”Airy Disk”,结果如图Figure E3-1所示,你会发现和选”scale bar”的结果是一样的。图中所列的RMS spot size

选”Airy Disk”为77.6 microns。光线并没有diffraction-limited的原因是因为我们还没有设定conic constant。先前我们设定的curvature的值为-2000只是定义一个球面,若要定义一个抛物面镜,则在STO的Conic项中尚需键入-1,接下来Update spot diagram,你会看到”Airy ring”为一个黑圈,而光线则聚集在圈内中心上,RMS值为0。

可惜的是,成像的位置很不好,所谓的不好是它位于在入射光的路径上,若你要看这个像的话,你的观看位置刚好挡住入射光。改善的方法是在反射镜的

后面再放一个折镜,fold mirror(后面是相对于成像点而言)。这个fold mirror相对于光轴的倾斜角度为45,把像往上提离光轴。因为进来的光束为200mm宽,因此成像平面至少在离光轴100mm的上方,如此”看”像的时候才不会挡住入射光。我们决定用200mm,而fold mirror离先前的反射镜面为800mm,因为

200+800=1000等于原先在STO上的thickness,即成像”距离”不变。操作如下,先把STO的thickness改为-800,然后在imagine plane前插入一个dummy surface,为何要插入dummy surface呢?又dummy surface是什么呢?dummy surface的目的只是在帮助我们把fold mirror的位置标示出来,本身并不具真实的光学镜片意义,也不参予光学系统的任何”反应”,所以称为dummy surface。怎么插入dummy surface呢?先在image plane前面插入一个surface,这个surface很快地就会被转变成fold mirror,但是你不要自己在surface type处去改变它成为fold mirror,而是选Tools中的Add Fold Mirror,并在其”fold surface”处选”2”代表定义surface 2为fold mirror,完成后你将看到如Zemax P.31页中LED的表。或许你会问,表中surface type处在surface 2及4中皆为Coord Break,这又是什么?coordinate break surface是在目前的系统内定义一个新坐标系统,它总是用dummy surface的观念用来作ray tracing的目的。而在描述此新坐标系统中,通常选用6个不同参数,

即x-decenter,y-dencenter,tiltx,tilty,tiltz及一个flag来指示tilting或decentration 的order。

要注意的是,coordinate break总是相对于”current”而”global”的coordinate system,即只是在一个系统内部,若要改变某样对象的位置或方向,我们即利用coordinate break来作此对象的区域调整,而不用重新改变所有的系统各部份。Coordinate break就像是一个平面指向调整后的局部系统的方位。然而coordinate break surface绝不会显示出来。而它的glass项中显示为”-“代表不能键入,而它的surface type型式一定跟它前一面镜的glass type一致。现在我们来看看layout,不能选2D(2D只能看rotational symmetric systems),要用3D看,叫出layout后,按↑↓ 或page down or up可以看三维效果,这个设计尚可再作改善,首先入射光打到fold mirror背后的部份可以vignetted,这在实际的系统中是一个很重要的思量。在STO的前面插入一个surface,令这个surface的thickness为900,在surface type中的Aperture Type还为”Circular Obscuration”,在Max Radius键入40,因为fold mirror的semi-diameter为31,如此才能遮蔽。Update 3D layout,如看不到像Figure E3-3的图,则在3D layout的setting项中改变the first surface和the last surface分别为1及6即可。

(回内容纲目)

●习作四:Schmidt-Cassegrain和aspheric corrector

你将学到:使用polynomial aspheric surface, obscurations, apertures, solves, optimization, layouts, MTF plots.

本习作是完成Schmidt-Cassegrain及polynomial aspheric corrector plate。这个设计是要在可见光谱中使用。我们要一个10inches的aperture和10inches的back

focus。开始设计之初,先把primary corrector System, General, 在aperture value中键入10,同在一个screen把unit”Millimeters”改为”Inches”。再来把Wavelength 设为3个,分别为0.486,0.587,0.656,0.587定为primary wavelength。你可以在wavelength的screen中按底部的”select”键,即可完成所有动作。目前我们将使用default的field angle value,其值为0。依序键入如Zemax P.33页的starting pre-scription for schmidt cassegrain的LDE表,此时the primary corrector为MIRROR球镜片。你可以叫出2D layout,呈现出如Figure E4-1之图。现在我们在加入第二个corrector,并且决定imagine plane的位置。键入如Zemax P.33 Intermediate prescription for schmide cassegram的LDE,注意到primary corrector的thickness变为-18,比原先的-30小,这是因为要放second corrector并考虑到其size大小的因素。在surface4的radius设定为variable,透过optimization, Zemax可以定下他的值。先看看他的layout,应如Figure E4-2所示。叫出merit function, reset后,改变”Rings” option 到5。The rings option决定光线的sampling density, default value为3,在此设计,我们要求他为5。执行optimization, 用Automatic即可,你会发现merit function的值为1.3,不是很理想。这是residual RMS wave error所致。跳出merit function,从system中选Update All,则secondary corrector的radius已变成41.83。从Analysis, fans,中选Optical Path, OPD plot如Figure E4-3所示,发现其为defocus且为spherical,大概约有4个wave aberration需要矫正。

现在切入另一个主题,利用指定polynomial aspheric cofficients来作aspheric correction。改变surface 1的surface type从standard改为”Even Asphere”,按OK后跳出,回到surface 1 列中,往右移直到4th Order Term, 把此项设为变数,依法炮制,6th, 8th,后再次执行optimization。把OPD plot update,其图应如Figure E4-4

所示,你会发现spherical aberration已被大大地减少。小心一点的观察,不同的三个波长其相对的aberration有不同的spherical amount, 这就是spherichromatism,是下一个要矫正的目标。依据经验所得,我们要用axial color来矫正spherochromatism,何谓axial color balance呢?而实际上spherochromatism是在first order axial color中被忽略的higher order效应。而现在first order axial color并不存在,如果first order 存在的话,代表其效应(首先axial color既是指轴而言,他即表示paraxial-optics,即不同color在轴上的效应,也就是first order optics)要远大于higher order, 即higher order的aberration会被balance掉,即first order会抢higher order的aberration, 用first order axial color来消除higher order的spherochromatism这是在光学设计上常用

的手法。

要怎么引进axial color呢?我们改变surface1的curvature来达到axial color的效果。把曲面1的radius设为variable,执行optimization,再看看update后OPD plot图,如图E4-5所示,这就是我们所要设计的,残余的像差,residual aberration小于1/20波长,这个良好结果,可以让我们些微改变field angle,从system, field中,把field angle的值设为3个,分别是0.0, 0.3, 0.5。现在field angle已改变,等于boundary condition已改变,所以你需要复位你的merit function。把merit function 的”Rings”改变为”4”后跳出执行optimization, 则新的OPD plot应如图E4-6所示,虽有不同的field angle,但是所有的aberrations却可以接受。说明此设计还不

错。

假想我们要用此望远镜来照相,则这组望远镜的鉴别转换功效为何?什么是鉴别转换功效(Modulation Transfer Function)呢?这就是说,若是发光物Object 的鉴别率为M0,而经过此望远镜后所得到的鉴别率是M i,则MTF=M i/ M0即MTF 愈大,代表此望远镜较不会降低原有的鉴别率,也就比较不会失真。而MTF的横轴为spatial frequency in cycles per millimeter, spatial为鉴别尺(bar target)明暗条

纹中其分隔空间宽度之意,通常以millimeter为单位,而frequency in cycles即每millimeter有几组明暗条纹,所以可鉴别最小刻度,即反应该光波的频率。Modulation Transfer Function,即呈现如图E4-7所示之图,而tangential & sagittal

对各种入射光field angle的response也一并显示。

对一个有经验的设计者而言,此设计所呈现的MTF为circular pupil au-tocorrelation的结果。这是我们尚未考虑the secondary corrector所带来遮蔽效应。既然secondary corrector放在primary的前面中心位置上,则入射光一定有部分被挡住,并且在primary上有个洞把成像的光放出去,此洞也需纳入考虑,所以我们高估了我们的performance。改良如下,回到LDE,在曲面3的第一项中点两下,从Aperture types中选Circular Aperture,在Min Radius中键入1.7,即入射光离光轴的半径需大于1.7才可进入,此动作再处理primary上的洞,同时把Max Radius 改为6。再来处理secondary corrector的obscuration,在surface 3的前面,插入一个surface这个new surface就变成了surface 3,把其thickness改为20,且surface 2的thickness改为40,如此20+40=60并不改变光从BK7后到primary的长度。调整surface 3的Aperture type,设定为Circular Obscuration。把Max Radius订为2.5,按OK后跳出,同时设定surface 3的semi-diameter也是2.5,update后的MTF,你会发现performance已降低,特别是在medial spatial frequencies部分。

(回内容纲目)

●习作五:multi-configuration laser beam expander

你将学到:使用multi-configuration capability。

假设你需要设计一个在波长λ=1.053μ下操作的laser beam expander,Input diameter为100mm,而output diameter为20mm,且Input 和output皆为collimated。在此设计之前,我们必须遵守下列设计条件,

1.只能使用2个镜片

2.本设计在形式上必须是Galilean(没有internal focus)

3.只有一个aspheric surface可以使用

4.此光学系统必须在λ328μ下完成测试。

本设计任务不只是要矫正aberration而已,而是在两个不同wavelengths 的情况下都要做到。先谈谈条件2中什么是Galilean呢?Galilean就是光线从入射到离开光学系统,在光学系统内部不能有focus现象,在本例中即beams在两个镜片之间不能有focus。好在本系统不是同时在2个wavelengths下操作,所以在操作时我们可以变动某些conjugates。现在开始设计,依据Zemax P.4-18页的LDE 表中键入各surface的相关值。其中surface 5的surface type从Standard改为Paraxial,这时在镜片后面的focal length项才会出现。注意到使用paraxial lens的目的是把collimated light(平行光)给focus。同时把surface 5的thickness及focal length皆设为25,entrance pupil的diameter定为100,wavelength只选一个1.053 microns即可,记住不要在设第二个wavelength。叫出merit function,在第1列中把operand type 改为REAY这表示real ray Y将用来作为一种constraint,在本设计中,我们被要求Input diameter为100而output diameter为20,其比值为100:20=5:1,即入射beam被压缩了5倍,在srf#中键入5,表示在surface中我们要控制他的ray height,而Py上则键入1.00。把target value定为10,这个动作将会给我们一个diameter collimated为20mm的output beam。为什么呢?因为Py是normalized的pupil co-ordinate,即入射光的semi-diameter为50。,Py=1即现在的入射光is aimed to the top of the entrance pupil,把target value定为10,就是输出光的semi-diameter为10,

所以50:10=5:1,光被压缩了5倍,达到我们的要求。semi-diameter的值定为10,现在选Tools,Update,你会看到在value column上出现50的值,这就是entrance pupil radius即表示coordinates是座落在一个单位圆(unit circle)上,而其半径为50,当Px=0,Py=1即表示在y轴的pupil大小为50,而在x轴的则为0。

从edit menu bar选Tools,Default Merit Function,按Reset后把”Start At” field的值改为2,这表示以后的operands会从第二列开始,而不会影响已建立的REAY operand。执行optimization后,把OPD plot叫出来,如图E5-1所示,你会发现performance很差,大约为7个waves。

这个aberration主要来自spherical aberration,所以我们要把surface 1改为

a spheric,把surface 1列中的conic设为variable,再次执行optimization,你会看

到较好的OPD plot。现在把所有的variable都去掉,然后将此field存盘,因为你已完成wavelength在1.053μ下的beam expander设计。但是wavelength在0.6328μ的情况怎么办呢?我们进入此习作的另一个主题,也就是multi-configuration可以在同一系统中同时设定不同的configuration,以适应不同的工作环境或要求,先

前我们已完成了wavelength为1.053μ的configuration,把他看做configuration 1,而wavelength 0.6328为configuration 2。

把wavelength从1.053改为0.6328后看看OPD plot,出现非常差的performance,这是因为glass dispersion的缘故。我们调整lens spacing来消除此defocus把surface 2的thickness设为variable,执行optimization后,update OPD plot,此时的aberration大约为一个wave,接下来消掉surface 2 thickness的variable。现在我们来使用Zemax的multi-configuration capability功能,从main menu上选Editors,后Multi-configuration,再选其中的Edit,Insert Config,如此我们就可以加入一个

新的configuration,在第一列的第一项中双击,选”wave”,同时在”Wavelength#”中选为1,这表示在不同的configuration,我们使用不同的wavelengths。在Config 1下键入1.053,Config 2下键入0.6328,在插入一个新的列于此列的第一项中双击,选THIC为一个operand type,这会让我们在各别的configuration中定义不同

的thickness,从”surface” list中选2后按OK。在Config 1下键入250,Config 2也键入250,不过在surface中选2即表示在LDE中surface 2的thickness是当作mult-configuration的一项oprand value,把Config 2下surface 2的thickness设为variable。回到merit function editor,选Tools,Default Merit Function,把”StartAt”的值改为1,使default merit function会从第一列开始考虑。现在先前设定的REAY constraint条件必须加到此新的multi-config merit function,在merit function的第一

列中,有一个CONFoperand且在”Cfg#”项中定为1,表示现在configuration 1是avtive。在此列之下尚有三个OPDXoperands,于CONF和第一个OPDX之间插入一个新列,把其operand type改为”REAY”,”Srf#”键入5。表示我们要控制

的ray height是对surface 5而言,Py键入1.00target value设为10。如同先前的file 让输出beam的diameter为20mm。在CONF 1的要求接设定完毕,在CONF 2则

不设任何operand,因为我们不可能在两种wavelengths操作下要求exact 5:1的beam。回到LED,把surface 1,2,4的curvatures及surface 1的conic皆设为variable,执行optimization(现在有5个variable为active,3个curvatures,1个conic,1个multi-config thickness)。叫出update的OPD plot,你可以在mulit-configuration editor 上在”Config 1”或”Config 2”上双击,则OPD plot会显示其对应的configuration,或者你可用Ctrl-A的hot key,在不同的configuration间作变换,你会发现两者的

performance都很好,表示我们所设计的系统在wavelength 1.053或0.6328μ的laser 之下皆可以工作。

(回内容纲目)

●习作六:fold mirrors和coordinate breaks

你将学到:了解coordinate breaks, sign conventions在调整倾斜度,或改变系统中心的作用和如何装置fold mirrors等,本习作的大部分技巧在”Add Fold Mirror”工具中可自动执行,然而了解实际的操作内容和细节,才是本习作的目的。

在习作3时或许你已学会如何设计Newtonian望远镜,其中已经有coordinate breaks的操作,以及光在经过mirror反射后thickness虚设定为负值,和coordinate breaks需伴随着一对使用,而把要的fold mirror如三明治般地夹在其中。本习作将教你如何在一个简单的converging beam中manually加入fold mirrors,而不使用Tools中的”Add Fold Mirror”功能。

叫出LDE,把STO的surface type改为paraxial,thickness定为100,这时对paraxial lens的default focal length值,然后从System, General,中把aperture

设为20,即产生一个F/5的lens。完毕后看看3D layout,一个简单的paraxial lens 所造成converging beam的光学系统已完成。假设我们要把输出的convergingbeam 导向上,怎么作呢?那就是加入一个fold mirror,先假定此fold mirror为45°oriented 且具paraxial lens为30mm。总共需要3个镜片。一个为coordinate break把coordinate system转45°,然后一个mirror来反射光线,最后再一个coordinate break把反射后的beam给转45°这是很重要的一点,共要3个surface来装置一个fold mirror。coordinate breaks本身没什么作用,只是把入射光和输出光作同样的倾斜或改变中心坐标的动作而已。在imaging surface前面出入3个lens,把surface 1的thickness

定为30,在surface 3的glass fold mirror尚未titled,所以系统会在paraxial lens的左边40mm处focus。更改surface 2及4的surface type为Coordinate Brek,回到LDE 往右一,在surface 4的第3个parameter column中期heading上头标示为”Title About X”。在此项中双击,选”Pick Up”,且设定”From Surface”为2,”Scale Factor”为1.0,这代表surface 4的coordinate break动作会跟surface 2的一样。移由标到surface 2的”title about x”项中,键入45,Update layout你会看到如Figure E6-1

的图。注意到coordinate break的thickness为0,表示mirror和coordinate break surface 是重合的。应该注意的是,mirror本身并没有转,转的是入射前合入射后的坐标系统,在反射后除了转45°外,并且移了-70units去focus,所有的tilt或decenter 动作总是在光线跑,即thickness之前完成。现在再装第二个fold mirror,同样在imagine surface前面插入3个surface,把surface 4的thickness从-70改为-30,在surface 5的tilt about x项键入-45,目的是在把光的进行方向还原到平行于原始入射方向,而surface 7的tilt about x项一样选择pick up from surface 5且scale factor定为1。

Update 3D layout,则呈现如Figure E6-2的图,如我们期待的,+45和-45互相抵消,输出光平行于入射光,又要改变两组的coordinate breaks的参数,只要改变surface 2及5即可。因为surface 4及7会各别依随他们变动而变动。

(回内容纲目)

●习作七:使用Extra Date Editor, Optimization with Binary Surfaces

或许你不会相信,会有”achromatic singlet”这样的东西。当然,mirror 是一个achromatic singlet,姑且不论之,去设计一个矫正到first-order chromatic aberration混合refractive/diffractive成分是可能的。其中的技巧就是使用一个传统refrative singlet,然后将其中的一面蚀刻成一个diffractive surface。此singlet造成很

大的focusing power,而the weak diffractive component则提供足够的dispersion来补偿glass的dispersion。让我们来回顾一些概念,一个focal length f的singlet其optical power为φ=f-1,在λF-λC的波长范围下,power的变异部分可由singlet其glass 的Abbe number V来描述,其中λF及λC为hydrogen的F及C line的wavelength 依序为0.4861μm和0.6563μm。故

Δφ=φ/V

在大部分的glasses种类中,他们的dispersion都很小,如BK7来说,其V值为64.2。而Δφ大约为整体的2%。

而Diffractive optics则直接使用phase of wavefront操作来增加光数的optical power。对一个具有quadratic phase profile的diffractive surface,其phase为ψ=Ar2

A为每平方单位长度的弧度量,而r为radial coordinate。如此的diffrective surface,他的power为

φ=λA/π

和他所承受的波长呈线性相关。在同样的波长范围下,refractive singlet的power变异为2%,而diffractive optic power则几乎为40%,此外,dispersion的正负号可由A的正负号来决定。这有什么好处呢?如果我们在refractive部分增加一些positive power,同时可由在diffractive部分增加一些negative power来达到补偿的效果。所增的power量可以从”Standard”改为”Binary 2”。然后在IMA前面加入一个新的surface,即插入surface 2,其thickness设为100。STO的thickness 设为10,glass选为BK7,从System,General中Aperture Value定为20。Wavelengths 选0.486,0.587及0.656,选0.587定为primary。首先我们看一个convex-plano singlet

的performance,把surface 1的radius设为variable,且从Merit Function Editor的tools 中使用Default Merit Function。子行Optimization,叫出OPD plot,你会发现其aberration约为8个waves。除了axial color主宰此设计外,spherical aberrotion和default也相当可观。

现在改良此设计,从Editors,Extra Data中在”Max Term”项上键入1和”Norm Aper”上键入10,而”Coeff on PΛ2”此项则设为变数。然后执行Optimization,其中有两项变量,分别是surface 1的radius及diffractive power。Update OPD plot则maximum aberration已经降至约一个wave,造成aberration的主要原因只剩下secondary spectrum及spherical aberration。我们利用higher order term的技巧来矫正他,回到Extra Date Editor,把”MaxTerm #”改为2,且社fourth order term 项为variable,再次执行optimization。叫出updated后的OPD plot,你会发现wavefront aberration已大大降至1个wave以下。

(回内容纲目)

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

常用光学设计软件介绍

ZEMAX ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential)。 ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance 参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V CODE V是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 OSLO oslo是一套标准建构系统及最佳化的光学软件。最主要地,他是用来决定光学系统中最佳组件的大小和外型,如照相机、客户产品、通讯系统、军事/外层空间应用以及科学仪器等。除此之外、他也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 LENSVIEW LensVIEW为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过18,000个多样化的光学设计实例,并且每一实例都显示它的空间位置。它搜集从1800年起至目前的光学设计数据,这个广博的LensVIEW数据库不仅囊括光学描述数据,而且拥有设计者完整的信息,摘要,专利权状样本,参考文件,美国和国际分类数据,和许多其它的功能。LensVIEW 并能产生各式各样像差图,做透镜的快速诊断,和绘出这个设计的剖面图。 ASAP ASAP是功能强大的光学分析软件,是专为仿真成像或光照明的应用而设计,让您的光学工程工作更加正确且迅速。ASAP让您在制作原型系统或大量生产前可以预先做光学系统的仿真以便加快产品上市的时间。 传统描光程序的速度是非常烦琐秏时的。ASAP对于整个非序列性描光工具都经过速度的优化处理,让您可以在短时间内就可做数百万条几何描光的计算。光线可不计顺序及次数的经过表面,还可向前,向后追踪。此外ASAP具有强大的指令集可以让您进行特性光线以及物体的

matlab光学仿真

MATLAB光学仿真实验报告

目录 一、实验目的 (3) 二、实验内容 (3) 三、实验原理 (3) 四.实验结果(各种干涉图样,) (4) 1.平面波与球面波之间的相互干涉 (4) (1)平面波与平面波方向相对的干涉 (4) (2)球面波与球面波 (5) (3)球面波与平面波 (6) 2.双缝干涉 (7) (1)经典杨氏双缝干涉 (7) (2)接收屏在侧面,且二者连线与干涉面垂直 (7) 3.多孔干涉 (8) (1)三孔干涉 (8) (2)四个孔干涉 (9) 4.多个不同方向的平面波 (10) 5.牛顿环与电磁波传播 (10) (1)牛顿环 (10) (2)模拟电磁波动画 (11) 五,实验总结与感想 (11)

一、实验目的 通过对光学现象的仿真,加深对各种光学现象本质的理解,同时,学会利用MATLAB,这种有效工具研究物理光学。 二、实验内容 这次由于时间关系,只研究了光的干涉现象,不过干涉内容很多,按照老师给的实验的提示内容,我每个都做了。并且自己还加了一些内容。按先后顺序非别如下: 1.平面波与球面波之间的相互干涉 (1)平面波与平面波方向相对的干涉,并且调整角度,方向相对干涉。 (2)球面波与球面波,这个研究的比较多,我分别研究了两个光源,三个,四个以及六个光源在与之共面的平面上的干涉,得到许多精美的图案。 (3)球面波与平面波 2.经典的杨氏双缝干涉 由于杨氏干涉比较重要,所以研究的时间相对较长,这个我为了更好的调整参数,采用了先输入数据的方法,之后才运行得到结果,我还增加了研究非单色光的研究。 另外,我还研究了与两个点光源连线相垂直的屏上的干涉,虽然这个不属于杨氏干涉,但是原理其实差不多。 3.多孔干涉 这部分其实原理差不多,只需要设置对参数。这部分分别研究了三孔和四孔的干涉,并且干涉屏的位置也不一样,分为与孔面平行和与孔面平行,总共四中情况,从中自己也找到了规律。 4.多个不同方向的平面波 这部分研究了三个不同方向的片面波与四个方向的平面波,从中得到一些图案,找到了规律。 5.模拟电磁波传播动画(代码借鉴一本参考书的)与牛顿环 为了加深对电磁波传播的理解,做了个模拟电磁波传播的动画,另外,还做了个牛顿环干涉。 三、实验原理 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括

光学系统设计

光学系统设计(五) 一、单项选择题(本大题共 20小题。每小题 1 分,共 20 分) 在每小题列出的四个备选项中只有一个是正确的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.对于密接双薄透镜系统,要消除二级光谱,两透镜介质应满足 ( )。 A.相对色散相同,阿贝常数相差较小 B.相对色散相同,阿贝常数相差较大 C.相对色散相差较大,阿贝常数相同 D.相对色散相差较小,阿贝常数相同 2.对于球面反射镜,其初级球差表达公式为 ( )。 A.?δ2h 81L =' B. ?δ2h 81L -=' C. ?δ2h 41 L =' D. ?δ2 h 41 L -=' 3.下列光学系统中属于大视场大孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 4.场曲之差称为 ( )。 A.球差 B. 彗差 C. 像散 D. 色差 5.初级球差与视场无关,与孔径的平方成 ( )。 A.正比关系 B.反比关系 C.倒数关系 D.相反数关系 6.下面各像差中能在像面上产生彩色弥散斑的像差有( )。 A.球差 B.场曲 C.畸变 D.倍率色差 7.不会影响成像清晰度的像差是 ( )。 A.二级光谱 B.彗差 C.畸变 D.像散 8.下列光学系统中属于大视场小孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 9.正弦差属于小视场的 ( )。 A.球差 B. 彗差 C. 畸变 D. 色差 10.初级子午彗差和初级弧矢彗差之间的比值为 ( )。 :1 :1 C.5:1 :1 11.光阑与相接触的薄透镜重合时,能够自动校正 ( )。 A.畸变 B.场曲 C.球差 D.二级光谱 12.在子午像差特性曲线中,坐标中心为z B ',如0B '位于该点左侧,则畸变值为 ( )。 A.正值 B.负值 C.零 D.无法判断 13.厚透镜之所以在校正场曲方面有着较为重要的应用,是因为 ( )。 A.通过改变厚度保持场曲为零 B.通过两面曲率调节保持光焦度不变 C.通过改变厚度保持光焦度不变 D.通过两面曲率调节保持场曲为0 14.正畸变又称 ( )。 A.桶形畸变 B.锥形畸变 C.枕形畸变 D.梯形畸变 15.按照瑞利判断,显微镜的分辨率公式为 ( )。 A.NA 5.0λσ= B. NA 61 .0λ σ= C.D 014' '=? D. D 012' '=? 16.与弧矢平面相互垂直的平面叫作 ( )。 A.子午平面 B.高斯像面 C.离焦平面 D.主平面 17.下列软件中,如今较为常用的光学设计软件是 ( )。 软件 软件 软件 软件 18.光学传递函数的横坐标是 ( )。 A.波长数 B.线对数/毫米 C.传递函数值 D.长度单位 19.星点法检验光学系统成像质量的缺陷是 ( )。

光电软件集合

光电软件集合(转载). 1.APSS.v 2.1.Winall.Cracked 光子学设计,可用于光材料、器件、波导和光路等的设计 2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full 世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。 3.Pics3d.v200 4.1.28.winall.cracked 电子.光学激光2D/3D有限元分析及模形化装置软件 https://www.sodocs.net/doc/291087087.html,stip.v2004.1.28.winall.cracked 半导体激光装置2D模拟软件 5.Apsys.2D/3D.v2004.1.28.winall.cracked 激光二极管3D模拟器 6.PROCOM.v2004.1.2.winall.cracked 化合物半导体模拟软件 7.Zemax.v2003.winall.cracked/EE ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。 8.ZEBASE Zemax镜头数据库 9.OSLO.v6.24.winall.licensed/Premium OSLO 是一套处理光学系统的布局和优化的代表性光学设计软件。最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事/外太空应用以及科学仪器等。除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具 10.TracePro.v324.winall.licensed/Expert TracePro 是一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。它是第一套以符合工业标准的ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。 11.Lensview.UPS.winall.cracked LensVIEW 为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过18,000个多样化的光学设计实例,支持Zemax,OSLO,Code V等光学设计软件。 12.Code V.v940.winall.licensed CODE V是美国著名的Optical Research Associates公司研制的具有国际领先水平的大型光学工程软件。 13.LightTools.v4.0/sr1.winall.cracked LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中的光源、透镜、反射镜、分束器、衍射光学元件、棱镜、扫描转鼓、机械结构以及光路。 14.OptiSystem.v3.0.winall.cracked 光通信系统模拟软件,此软件可以设计、测试,与最佳化几乎任何一种在光网路系统的宽谱中的物理层次光连结

Light Tools软件介绍

LightTools 简介 LightTools 是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中的光源、透镜、反射镜、分束器、衍射光学元件、棱镜、扫描转鼓、机械结构以及光路。由于LightTools 把光学和机械元件集合在统一的体系下处理,并配有“放置”光源、发射光线的非顺序面光线追迹的强大功能,使它在系统初步设计、复杂系统设计规划、光机一体设计、杂光分析、照明系统设计分析、单位各部门间学术交流和数据交换、课题论证或产品推广等各环节中均可发挥重要的作用,成为人们理想的工具。 LightTools 简介 美国Optical Research Associates (ORA?) 公司以研制国际领先的CODE V? 光学工程软件而著称于世。1995年,该公司根据用户需求和计算机技术的发展,隆重推出最新产品—光学系统建模软件LightTools,马上得到各国用户的欢迎和好评,并获得国际大奖。1997年,ORA 又研制成功与LightTools 主体程序配套使用的Illumination 模块,圆满地解决了照明系统的计算机辅助设计问题。 其中的主要功能简单介绍如下: 系统建模 提供多种展现系统光机模型的方式和人机交互的手段。使用者可直接在系统的二维、三维线框图或三维实体模型图上进行各种操作。方便易用的图形交互式建模和修改功能包括元件或元件组的放置、移动、旋转、复制和缩放。操作时既可用鼠标以实时观察修改造成的效果,也可用键盘以输入准确的数据。透镜、反射镜和棱镜等光学元件及各种机械件可以极快地以图形方式“画入”系统。系统数据可以用表格和元件详情对话框的形式列出和修改。所有上述各种输入方式同时并存,可交替使用。 光机一体化设计 光学和机械元件的形状的描述是通过对软件提供的一组尺寸可变的基本实体模型做布尔运算(与、或、异等等)实现的。这些光学或机械部件的形状虽然可能非常复杂,但均可以在软件中得到精确的展现和描绘,并以光学精度进行光线追迹。遮光罩、镜筒和产品结构的设计均将大大得益于这种光机一体的考虑方法和非顺序光线追迹提供的大量信息。 复杂光路设置 在光学设计中,LightTools 可以和ORA 公司研制的CODE V 软件配合使用。特别是在多光路或折迭光路系统、带有棱镜或复杂曲面的系统的光路设置和视觉建模型验证中,LightTools 将发挥重要作用。有了LightTools,设计人员完全可以摒弃过去为了简化问题而采用的一些传统技巧,如符号规则、用多通道定义模拟变焦功能、把反射镜和棱镜展开成平板、略去非光学面和机械结构的影响、人为简化光瞳形状,等等。

【推荐下载】新一代光学设计仿真软件FRED Optimum

新一代光学设计仿真软件FRED Optimum 设计光学元件,用于通过Luxeon® III Lambertian LED 光源在目标区域提供所需要的均匀性和高透过率分布. ?问题: 设计光学元件,用于通过Luxeon® III Lambertian LED 光源在目标区域提供所需要的均匀性和高透过率分布. 解决: 利用FRED Optimum的混合优化定义两个优化函数,包含多个变量(在这里例子中为10个)来创建两个不同的光学元件,第一个为高透过率而第二个为高透过率并且均匀. ?谁应该用我们的FRED Optimum版本呢?任何人在他们的光学工程工作中都需要优化。这包括照明工程师,需要优化拥有10万条光线的LED系统、导光管的耦合效率,背光系统:并且光学设计师需要进行非序列性优化,特别在他们系统模型中还需要形状不常见的光学元件时。 ?FRED Optimum是FRED最新版本.它包含了内置的混合优化模块,并且拥有利用当今高性能多CPU系统来加速光线追迹的能力。 ?为什么FRED Optimum的混合优化不同于透镜设计软件的优化?FRED的新混合全面优化运算是非序列性的。允许多重目标,拥有fractional weighting性能以连接变量和利用多种内置优化函数,加上用户自定义scripted优化函数可以应对非常任务。混合运算拥有对在FRED中直接建的(如上图)或者从CAD软件中导入的NURBS表面进行全面优化的能力。优化方案给了用户完全控制变量,优化函数和优化运算(1D or Downhill Simplex)以解决艰苦的照明设计问题。 ?FRED Optimum的菜单用看起来非常简单:用于优化时定义参数的内置标签电子数

选择最佳的光学设计软件

用于设计攸关产品成败的光学系统的软件 选择最佳的光学设计软件 作为公司决策人,需要为解决公司的盈亏问题做出明智选择时,您会选择哪一种光学设计软件呢?如果光学系统的性能攸关产品成败,那么答案将是 CODE V ?。CODE V 能够增进设计团队的设计效率,提高首次设计和制造的成功率,加快产品上市时间,让您的产品具有所向披靡的竞争优势。 CODE V 软件由 Optical Research Associates (ORA ?) 开发而成。四十多年来,ORA 帮助许多客户走上成功之路: ? ORA 拥有世界上规模最大的商业光学工程软件开发 队伍。 ? ORA 利用最先进的软件配置管理方法,将软件开发流 程形式化,确保在这样的开发环境下能够产生创新算法,以提供高质量、高可靠性、高度精确的结果。 ? ORA 的客户支持员工具有 50 多人年的工程经 验,专门致力于帮助客户成功应用我们的产品。这是他们的全职工作,而不是额外承担的责任。 ? ORA 拥有专业软件测试员工。我们的测试人员 每天会构造和评估成百上千的测试案例,对开发中的代码进行测试。 ? ORA 的内部工程服务小组会在最尖端的真实工 程应用中验证 CODE V 的每个版本。 ? ORA 的员工中包括三名 OSA 研究员和四名 SPIE 研究员。ORA 的工程师们已发表 300 多篇学术论文,有些人还是与光学系统有关的近 100 项专利的发明人或共同发明人。 ORA 以开发世界一流的光学工程软件产品为己任。在这种力创一流的精神指引下,我们的产品使客户受益颇多,下面是其中的几个方面。 增进设计团队的设计效率 CODE V 的开发宗旨是帮助光学工程师完成从概念到制造的整个设计周期。Windows 标准图形用户界面有助于新用户快速掌握 CODE V 的强大功能。CODE V 还支持命令行输入、易于学习的宏编辑功能以及 COM 应用编程接口 (API)。所有这些将能让您的工程师们以最有效的方式使用程序,并且允许将 CODE V 与支持 COM 的其它工程软件工具整合使用。 CODE V 图形用户界面 (GUI) CODE V 有能力让工程师们为极其复杂的系统建模并进行分析。CODE V 支持多种不同的用户可编程子程序(例如: 用户编程的表面形状和用户编程的表面属性等),以充分运用系统建模的灵活性。任何基本表面形状均可应用衍射属性,以便进行光栅、kinoform 、二元光学系统等的建模。通过焦点分析、真实无焦建模(非常适合于设计目视系统)及其它功能,CODE V 支持像散光源、偏振器件、单轴晶体双折射材料、应力双折射建模。

光学设计软件zemax study

光学系统设计(Zemax初学手册)蔡长青 ISUAL 计划团队 国立成功大学物理系 (第一版,1999年7月29日) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个福尔摩沙卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译, 由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参与「红色精灵」计划,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)与后续更 多的习作与文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注)(回内容纲目) 习作一:单镜片(Singlet) 你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计优化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。

CODE V光学设计软件简介

CODE V光学设计软件简介! ??CODE V是一个光学系统设计和分析优化软件,广泛使用于照相设备、摄影机和医疗器具等,功能强大使用简单灵活。??[attachment=136] ? CODE V是美国著名的OpticalResearch Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODEV程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用。??一. 包罗万象的适用范围 ?CODEV可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心和/或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地处理屋脊棱镜、角反射镜、导光管、光纤、谐振腔等具有特殊光路的元件;而其多重结构的概念则包括了常规变焦镜头,带有可换元件、可逆元件的系统,扫描系统和多个物像共轭的系统。40多年来,世界各地的用户已成功地利用CODE V设计研制了大量照相镜头、显微物镜、光谱仪器、空间光学系统、激光扫描系统、全息平显系统、红外成像系统、紫外光刻系统等等,举不胜举。近几年内,CODE V软件又被广泛地应用于光电子和光通讯系统的设计和分析。[attachment=137] ???图1.带有非顺序面的系统及梯度折射率元件示例??二.空前强大的自动设计能力??光学设计的第一步是要为系统确定合理的初始结构。为此CODEV提供了独有的“镜头魔棒”功能,用户只需输入所要设计的系统的使用波段、相对孔径、视场、变倍比等参数,软件即可从自带的专利库中找出对应的结构以供选择。?CODEV软件中优化计算的评价函数可以是系统的垂轴像差、波像差或是用户定义的其它指标,也可以直接对指定空间频率上的传递函数值进行优化。经过改进的阻尼最小二乘优化算法用拉格朗日乘子法提供既方便又精确的边界条件控制。除了程序本身带有大量不同的优化约束量供选用外,用户还可以根据需要灵活地定义各种新的约束量。此外,以往的优化算法无法克服存在于光学系统结构参量的高度非线性解空间中的大量局部极小,故此自动设计的结果是一个与初始参数接近的像质相对较好的结构,而不一定是全局最优设计。为解决这一问题,ORA公司在CODE V软件中加入了强大的全局优化功能(Global Synthesis?)。这种被该公司严格保密的算法不仅可以跳出局部极小继续在解空间中寻找更佳设计,而且可以在优化结束时将找到的满足设计要求的各种完全不同的结构形式一一列出供使用 者根据实际需要选择。这是目前世界上唯一证实可行并已实用化的全局优化程序,其优化能力在国际上遥遥领先。四年一届的国际光学设计会议是本领域影响最大的专业技术研讨会,在90年代以来的近几届会议中,组织者每次都向世界上各有关单位和专家发出一个设计竞赛题目,而每届收到的参赛结果的前几名都是用CODEV软件优化设计出来的,充分说明CODE V的优化功能已经成为世界各地光学设计专家

常见光学仿真设计软件

1.APSS.v 2.1.Winall.Cracked 光子学设计软件,可用于光材料、器件、波导和光路等的设计 2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full 世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。 注:另附9张光源库 3.Pics3d.v200 4.1.28.winall.cracked 电子.光学激光2D/3D有限元分析及模形化装置软件 https://www.sodocs.net/doc/291087087.html,stip.v2004.1.28.winall.cracked 半导体激光装置2D模拟软件 5.Apsys.2D/3D.v2004.1.28.winall.cracked 激光二极管3D模拟器 6.PROCOM.v2004.1.2.winall.cracked 化合物半导体模拟软件 7.Zemax.v2003.winall.cracked/EE ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。 8.ZEBASE Zemax镜头数据库 9.OSLO.v6.24.winall.licensed/Premium OSLO 是一套处理光学系统的布局和优化的代表性光学设计软件。最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事 /外太空应用以及科学仪器等。除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 10.TracePro.v324.winall.licensed/Expert TracePro 是一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。它是第一套以符合工业标准的ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。 11.Lensview.UPS.winall.cracked LensVIEW 为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过 18,000个多样化的光学设计实例,支持Zemax,OSLO,Code V等光学设计软件。 12.Code V.v940.winall.licensed CODE V是美国著名的Optical Research Associates公司研制的具有国际领先水平的大型光学工程软件。 13.LightTools.v4.0/sr1.winall.cracked LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中

ZEMAX光学设计软件操作说明详解

【ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。

LED(Tracepro官方LED建模光学仿真设计教程)

Requirements Models: None Properties: None Editions: TracePro LC, Standard and Expert Introduction In this example you will build a source model for a Siemens LWT676 surface mount LED based on the manufacturer’s data sheet. The dimensions will be used to build a solid model and the source output will be defined to match the LED photometric curve. Copyright ? 2013 Lambda Research Corporation.

Create a Thin Sheet First analyze the package to determine the best method of constructing the geometry in TracePro. The symmetry of the package suggests starting from a Thin Sheet and extruding the top and bottom halves with a small draft angle. Construct Thin Sheet in the XY plane. 1. Start TracePro 2. Select View|Profiles|XY or click the View XY button on the toolbar, and switch to silhouette mode, View|Silhouette. 3. Select Insert|Primitive Solid and select the Thin Sheet tab. 4. Enter the four corners of the Thin Sheet in mm in the dialog box, as shown below, and click Insert. 5. Click the Zoom All button or select View|Zoom|All to see the new object.

光学设计软件介绍

光学设计 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。 ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面 CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地处理屋脊棱镜、角反射镜、导光管、光纤、谐振腔等具有特殊光路的元件;而其多重结构的概念则包括了常规变焦镜头,带有可换元件、可逆元件的系统,扫描系统和多个物像共轭的系统。40多年来,世界各地的用户已成功地利用CODE V设计研制了大量照相镜头、显微物镜、光谱仪器、空间光学系统、激光扫描系统、全息平显系统、红外成像系统、紫外光刻系统等等,举不胜举。近几年内,CODE V软件又被广泛地应用于光电子和光通讯系统的设计和分析。光学设计的第一步是要为系统确定合理的初始结构。为此CODE V提供了独有的“镜头魔棒”功能,用户只需输入所要设计的系统的使用波段、相对孔径、视场、变倍比等参数,软件即可从自带的专利库中找出对应的结构以供选择。 CODE V软件中优化计算的评价函数可以是系统的垂轴像差、波像差或是用户定义的其它指标,也可以直接对指定空间频率上的传递函数值进行优化。经过改进的阻尼最小二乘优化算法用拉格朗日乘子法提供既方便又精确的边界条件控制。除了程序本身带有大量不同的优化约束量供选用外,用户还可以根据需要灵活地定义各种新的约束量。此外,以往的优化算法无法克服存在于光学系统结构参量的高度非线性解空间中的大量局部极小,故此自动设计的结果是一个与初始参数接近的像质相对较好的结构,而不一定是全局最优设计。为解决这一问题,ORA公司在CODE V软件中加入了强大的全局优化功能(Global Synthesis)。这种被该公司

光学设计cad答案

光学系统设计(三) 一、单项选择题(本大题共 20小题。每小题 1 分,共 20 分) 在每小题列出的四个备选项中只有一个是正确的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.系统的像散为零,则系统的子午场曲值( )。 A.大于零 B.小于零 C.等于零 D.无法判断 2.双胶合薄透镜组,如果位置色差校正为零,则倍率色差值为 ( )。 A.大于零 B.小于零 C.等于零 D.无法判断 3.下列像差中,对孔径光阑的大小和位置均有影响的是( )。 A.球差 B. 彗差 C. 像散和场曲 D.畸变 4.除球心和顶点外,第三对无球差点的物方截距为 ( ) 。 A.r n n n L '+= B. r n n n L ''+= C. r n n n L '-= D. r n n n L ' '-= 5.下列像差中,属于轴外点细光束像差的是( )。 A.球差 B.子午彗差 C.子午场曲 D.畸变 6.瑞利判据表明,焦深是实际像点在高斯像点前后一定范围内时,波像差不会超过 ( )。 A.λ21 B. λ31 C. λ41 D. λ5 1 7.对于目视光学系统,介质材料的阿贝常数定义为 ( )。 A.C F D D n n 1n --= ν B. C F D D n n 1n ++=ν C. C F D D n n 1n -+=ν D. C F D D n n 1n +-=ν 8.9K 玻璃和6ZF 玻璃属于 ( )。 A.冕牌玻璃和火石玻璃 B.火石玻璃和冕牌玻璃 C.均属火石玻璃 D.均属冕牌玻璃 9.在ZEMAX 软件中进行显微物镜镜设计,输入视场数据时,应选择 ( )。 A. Angle (Deg ) B. Object Height C. Paraxial Image Height D. Real Image Height 10.在ZEMAX 软件中表示传递函数的是下列的哪个缩写图标 ( )。 A.Fie B.Opt C.Spt D.Mtf 11.下列各镜头中,在进行设计时,应采用正追光线的是 ( )。 A.惠更斯目镜 B.望远物镜 C.显微物镜 D.冉斯登目镜 12.一般的负透镜产生的场曲值为 ( )。 A.正值 B.负值 C.零 D.无法判断 13.一激光扩束器应主要校正的像差是 ( )。 A. 色差 B. 彗差 C. 球差 D. 畸变 14.所有的反射镜均不需校正 ( )。 A.场曲 B.畸变 C.球差 D. 色差 15.对于一轴外物点,一般光学系统在像面上的各种像差综合的结果是 ( )。 A.圆形的弥散斑 B.不规则形状的单色弥散斑 C.彩色的弥散斑 D.不规则形状的彩色弥散斑 16.与弧矢平面相互垂直的平面叫作 ( )。 A.子午平面 B.高斯像面 C.离焦平面 D.主平面 17.下列软件中,如今较为常用的光学设计软件是 ( )。 A.abr 软件 B.OPD88软件 C.ZEMAX 软件 D.AutoCAD 软件 18.光学传递函数的横坐标是 ( )。 A.波长数 B.线对数/毫米 C.传递函数值 D.长度单位 19.星点法检验光学系统成像质量的缺陷是 ( )。

Matlab在光学信息处理仿真实验中的应用_谢嘉宁

收稿日期:2004202213 基金项目:佛山科学技术学院校级科研课题经费资助 作者简介:谢嘉宁(1971-),女,广东潮州人,佛山科学技术学院物理系讲师,光学工程硕士,主要从事光学实验教学与 光信息处理的研究. Matlab 在光学信息处理仿真实验中的应用 谢嘉宁1,陈伟成1,赵建林2,陈国杰1,张潞英1 (1.佛山科学技术学院物理系,广东佛山528000;2.西北工业大学应用物理系,陕西西安710072) 摘 要:提出了一种利用计算机并通过Matlab 软件仿真光学信息处理实验的方法,其特点是可以随意改变物理参量,克服了光学实验上难以实现的操作.文中分别给出了光栅衍射、空间滤波、图像边缘增强、相关识别等实验的部分仿真结果. 关键词:Matlab ;计算机仿真;CAI 中图分类号:O4239 文献标识码:A 文章编号:100524642(2004)0620023203 1 引 言 光学信息处理是以光子传递信息,以光学或光电子器件进行操作运算,利用光的透射、干涉和衍射等光学现象来实现对输入信息的各种变换或处理.因此,它也是一门基于实验的科学.随着计算机的广泛使用,计算机仿真实验得到了大量研究,各类CAI 软件应运而生,给光学信息处理的研究和教学带来极大方便.但笔者在调研中发现,大部分的仿真程序由VB ,C 和Fortran 等高级语言编写[1~3].使用这些语言编程,需要编者具有良好的计算机编程能力并花费较多的时间.因此,本文探讨利用Matlab 软件实现对光学信息处理实验的计算机仿真方法. Matlab 作为科学计算软件,主要适用于矩阵 运算和信息处理领域的分析设计,它使用方便、输入简捷,运算高效、内容丰富,并且有大量的函数库可供使用[4].与Basic ,C 和Fortran 相比,用Matlab 编写程序,其问题的提出和解决只需以数 学方式表达和描述,不需要大量繁琐的编程过程,因此特别适合工程计算和教学软件的编写.本仿真实验系统实现了多种衍射屏的夫琅和费衍射、空间滤波、图像边缘增强、相关识别等实验的仿真.2 仿真系统的总体设计 本系统采用Matlab5.3编写,在Pentium 以上个人计算机上、Matlab 环境下运行.为了方便 用户使用,本系统的实验项目模块设置如图1所示.主界面的程序为OIP000.m ,界面如图2所 示.四大系统子模块是该窗体的子窗体模块,分别为OIP1.m ,OIP2.m ,OIP3.m 和OIP4.m ,通过单击主界面上相应的按钮即可启动相应的子窗体,在每一级子窗体界面上有相关的参量选择和操作 . 图1 系统模块功能图 图2 仿真实验系统主界面 第24卷 第6期 2004年6月 物 理 实 验 PHYSICS EXPERIM EN TA TION Vol.24 No.6  J un.,2004

相关主题