搜档网
当前位置:搜档网 › 分子生物学课后习题答案

分子生物学课后习题答案

分子生物学课后习题答案
分子生物学课后习题答案

第一章绪论

?DNA重组技术和基因工程技术。

DNA重组技术又称基因工程技术,目的是将不同DNA片段(基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。

DNA重组技术有着广泛的应用前景。首先,DNA重组技术可以用于大量生产某些在正常细胞代谢中产量很低的多肽,如激素、抗生素、酶类及抗体,提高产量,降低成本。其次,DNA重组技术可以用于定向改造某些生物的基因结构,使他们所具有的特殊经济价值或功能成百上千倍的提高。

?请简述现代分子生物学的研究内容。

1、DNA重组技术(基因工程)

2、基因表达调控(核酸生物学)

3、生物大分子结构功能(结构分子生物学)

4、基因组、功能基因组与生物信息学研究

第二章遗传的物质基础及基因与基因组结构

?核小体、DNA的半保留复制、转座子。

核小体是染色质的基本结构单位。是由H2A、H2B、H3、H4各两分子生成八聚体和由大约200bp的DNA构成的。核小体的形成是染色体中DNA压缩的第一步。

DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样。因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。

转座子是存在染色体DNA上的可自主复制和移位的基本单位。转座子分为两大类:插入序列和复合型转座子。

?DNA的一、二、三级结构特征。

DNA的一级结构是指4种脱氧核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。分为左手螺旋和右手螺旋。

DNA的高级结构是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。超螺旋结构是DNA 高级结构的主要形式,可分为正超螺旋与负超螺旋两大类。

?DNA复制通常采取哪些方式?

1、线性DNA双链的复制:复制经过起始、延伸、终止和分离三个阶段。复制是从5’端向3’端移动,前导链的合成是连续的,后随链通过冈崎片段连接成完整链。

2、环状DNA双链的复制

(1)θ型:是一种双向复制方式。复制的起始点涉及DNA的结旋和松开,形成两个方向相反的复制叉,复制从定点开始双向等速进行。

(2) 滚环型:是单向复制的一种特殊方式,发生在噬菌体DNA和细菌质粒上,首先对正链原点进行专一性的切割,形成的5’端被单链结合蛋白所覆盖,3’端在DNA聚合酶的作用下不断延伸。

(3) D-环复制:也是单向复制的一种方式。是在线粒体DNA中发现的。两条链的合成是高度不对称的,最初只以一条母链为模版合成,迅速合成互补的新链,另一条则成为游离的单链环(即D环)。

?真核生物DNA的复制在哪些水平上受到调控?

1、细胞生活周期水平调控:决定细胞停留在G1期还是进入S期。

2、染色体水平调控:决定不同染色体或同一染色体不同部位的复制子按一定顺序在S期起始复制。

3、复制子水平调控:决定复制的起始与否,并且是高度保守的。

?DNA 修复包括哪几种?

1、错配修复:识别新合成链中的错配并加以校正,保证子链的正确性。

2、切除修复

1)碱基切除修复:切除突变的碱基

2)核苷酸切除修复:修复被破坏的DNA

3、DNA直接修复:修复嘧啶二聚体或者甲基化DNA

第三章生物信息的传递--RNA转录与加工

?定义:Pribnow box,编码链,上升突变,增强子。

在原核生物启动子被保护区内有一个由5个核苷酸组成的保守序列TATATT,是聚合酶结合位点,称为Pribnow区,其中央大约位于起点上游10bp处,所以又称为–10区。

在DNA的两条链中与mRNA序列相同的那条DNA链是编码链或称有意义链。

如果增加Pribnow区的共同序列,将乳糖操纵子的启动子中的TATGTT变成TATATT,就会提高启动子的效率,称为上升突变。

在一些转录单元上发现其转录起始位点上游约200bp处有两段72bp长的重复序列,它们不是启动子的一部分,但能增强或促进转录的起始,因此,称这种能强化转录起始的序列为增强子或强化子

?简述生物体内RNA的种类和功能。

生物体内拥有三种RNA,即:

编码特定蛋白质序列的mRNA;

能特异性解读mRNA 中的遗传信息并将其转化成相应氨基酸后加入多肽链中的tRNA;

直接参与核糖体中蛋白质合成的rRNA。

?什么是DNA模板与mRNA及蛋白质产物之间的共线性关系?

核苷酸特异性的组成和排列顺序决定了贮存在DNA上的遗传信息,并通过转录mRNA传递遗传信息,此过程是从起始核苷酸开始,一个脱氧核苷酸对应一个核苷酸,不重叠,不跳跃,一一对应。mRNA上每3个核苷酸翻译成蛋白质多肽链上的一个氨基酸,这个过程也是连续的,而且没有发生重叠现象。因此,什么是DNA模板与mRNA及蛋白质产物之间的共线性关系。

?转录一般被分为哪几个步骤?

无论是原核还是真核细胞,转录的基本过程都包括:

1、模板识别:模板识别阶段主要指RNA聚合酶与启动子DNA双链相互作用并与之相结合的过程。

2、转录起始:转录起始就是RNA链上第一个核苷酸键的产生。

3、通过启动子:RNA聚合酶成功地合成9个以上核苷酸并离开启动子区,转录就进入正常

的延伸阶段。

4、转录的延伸和终止:RNA聚合酶离开启动子,沿DNA链移动并使新生RNA链不断伸长的过程就是转录的延伸。当RNA链延伸到转录终止位点时,RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA杂合物分离,

?转录终止子与翻译终止密码的结构特点?

转录终止子:1、不依赖于ρ因子的终止

终止位点上游一般有一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发夹式结构。新生RNA中出现发夹式结构会导致RNA聚合酶的暂停,破坏RNA-DNA杂合链5’端的正常结构。

在终止位点前面有一段由4-8个A组成的序列,所以转录产物的3’端为寡聚U,这种结构特征的存在决定了转录的终止。寡聚U的存在使杂合链的3’端部分出现不稳定的rU?dA区域,两者共同作用使RNA从三元复合物中解离出来。

2、依赖ρ因子的终止

ρ因子:六聚体蛋白, 水解各种核甘三磷酸,通过催化NTP的水解促使新生RNA链从三元转录复合物中解离出来,从而终止转录。

翻译终止密码:肽链延伸过程中,终止密码子出现在核糖体A位时,没有相应的AA-tRNA 与之结合,而释放因子能识别这些终止密码子并与之结合,水解P位上多肽链与tRNA之间的二脂键。接着,新生的肽链和tRNA从核糖体上释放出来,核糖体大小亚基解体,蛋白质合成结束。

?什么是RNA编辑?其生物学意义?

编辑(editing)是指转录后的RNA特别是mRNA在编码区发生碱基的突变、加入或丢失等现象。

RNA编辑的生物学意义

校正作用:RNA的编辑可以恢复丢失的遗传信息。

调控翻译:构建或者去除起始密码子和终止密码子,是基因表达调控的一种方式。

扩充遗传信息:使基因产物获得新的结构和功能,有利于生物进化。

第四章生物信息的传递--蛋白质的翻译

?定义:SD序列,信号肽。

SD序列:存在于原核生物起始密码子上游7-12个核苷酸的一段富含嘌呤保守区域,它与16SrRNA3‘端反向互补,在mRNA与核糖体结合中起重要作用。

信号肽:在蛋白质多肽链的氨基端,有一段疏水性氨基酸序列,它负责把蛋白质引导到细胞内不同膜结构的亚细胞器内。

?简述tRNA 的结构。

tRNA一级结构是四种核糖核苷酸的组成和排列顺序,单链。

tRNA二级结构是三叶草形的,由于小片段碱基互补配对所形成。三叶草形的tRNA分子上有4条根据它们的结构或功能命名的手臂。

tRNA的三级结构,都呈L形折叠式,而这种结构是靠二级结构中未配对碱基间所形成的氢键来维持的。tRNA的三级结构与氨酰-tRNA合成酶对tRNA的识别有关。

?简述核糖体的组成及其功能。

核糖体是由几十种蛋白质和几种核糖体RNA(ribosomal RNA,rRNA)组成的亚细胞颗粒。核糖体是一个致密的核糖核蛋白颗粒,可以解离为大小两个亚基。每个亚基都含有一个分子

质量较大的rRNA和许多蛋白质分子。这些大分子rRNA能在特定位点与蛋白质结合,从而完成核糖体不同亚基的组装。

核糖体小亚基负责对模板mRNA进行序列特异性识别,如起始部分的识别、密码子与反密码子的相互作用等,mRNA的结合位点也在小亚基上。

大亚基负责携带AA-tRNA、肽键的形成、AA-tRNA与肽链的结合。A位、P位、转肽酶中心等在大亚基上。

?简述肽链合成过程的生物学机制。

蛋白质的生物合成包括氨基酸活化、肽链的起始、伸长、终止以及新合成多肽链的折叠、加工。

氨基酸是生物合成蛋白质的原料,氨基酸在氨酰-tRNA合成酶的作用下生成活化氨基酸――AA-tRNA才能被准确地运送到核糖体中,参与多肽链的起始或延伸。

翻译的起始是核糖体小亚基、信使RNA、核糖体大亚基以及氨酰--tRNA和几十种蛋白质因子的相互结合,形成起始复合物。

肽链的延伸:当第一个氨基酸与核糖体结合以后,按照mRNA模板密码子的排列,氨基酸通过新生肽键的方式被有序地结合上去。每加一个AA是一个循环,每个循环包括AA-tRNA 与核糖体结合、肽键的生成和移位。

肽链在延伸过程中,当终止密码子出现在核糖体的A位时,没有相应的AA-tRNA能与之结合,而释放因子具有GTP酶活性能识别终止密码子并与之结合,水解P位上多肽链与tRNA 之间的酯键。新生的肽链和tRNA从核糖体上释放,核糖体解体,蛋白质合成结束。释放因子RF催化GTP水解促使肽链与核糖体解离。

?蛋白质加工的种类和意义。

新生多肽链大多数是没有功能的,必须经过加工修饰才能转变为有活性的蛋白质。

1.N端fMet或Met的切除:细菌蛋白质N端的甲酰基能被脱甲酰化酶水解,原核生物和真核生物N端的甲硫氨酸在多肽链合成完毕之前被切除。

2.二硫键的形成二硫键是蛋白质合成后通过两个半胱氨酸的氧化作用生成的。

3.特定氨基酸的修饰氨基酸侧链的修饰包括磷酸化(如核糖体蛋白质)、糖基化(如各种糖蛋白)、甲基化(如组蛋白、肌肉蛋白质)、乙基化(如组蛋白)、羟基化(如胶原蛋白)和羧基化等。

4、切除新生链中非功能片段。

?简述蛋白质转运的种类和机制。

蛋白质运转可分为两大类: 1、翻译运转同步机制:蛋白质的合成和运转同时发生; 分泌蛋白质大多是以同步机制运输的。a、蛋白质合成起始首先合成信号肽,b、信号识别蛋白SRP 与信号肽结合,翻译停止;c、SRP和SRP受体结合,核糖体与膜结合,翻译重新开始;d、信号肽进入膜结构;e、蛋白质过膜,信号肽被切除,翻译继续进行;f、蛋白质完全过膜,核糖体解离

2、翻译后运转机制:蛋白质从核糖体上释放后才发生运转。

在细胞器发育过程中,由细胞质进入细胞器的蛋白质大多是以翻译后运转机制运输的

此类蛋白在细胞质游离的核糖体中翻译,翻译产物在N端都含有信号序列。

第五章基因表达与调控

?定义:基因家族。

真核细胞中许多相关的基因常按功能成套组合,被称为基因家族。

?简述操纵子学说。

操纵子是原核生物基因表达和调控的最重要的形式。组成操纵子的最基本原件包括四个部分:启动子,操纵基因,结构基因和相关的调节基因。

启动子是指能够被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。

结构基因是能够编码蛋白质的基因序列。

操纵基因能被蛋白特异性结合的一段序列,常与启动子相邻或者与启动子序列重复,当调节蛋白结合在操纵子上,会影响其下游基因的表达。

调节基因编码能有操纵基因结合的蛋白。

整个操纵子模型就是通过调节基因表达的调节蛋白与操纵基因的结合和分离,来控制启动子序列,从而调节基因的转录。

?简述乳糖操纵子的调控模型。

大肠杆菌乳糖操纵子包括三个结构基因:Z、Y、 A 以及启动子、控制子和阻遏子等,转录时RNA聚合酶从启动子区开始,通过操纵区向右转录。转录的调控是在启动区和操纵区进去的。mRNA的启动区P位于阻遏基因I和操纵区O之间,不能单独起始结构基因的表达。阻遏基因I表达阻遏蛋白,可与操纵区O结合,当阻遏物与操纵区相结合时,mRNA的转录起始受到抑制。诱导物通过和阻遏物结合,改变它的三维构想,使之不能和操纵区结合,从而激发mRNA的合成。

?简述顺式作用元件与反式作用因子。

顺式作用元件:影响自身基因表达活性的非编码DNA序列。例:启动子、增强子、沉默子等

反式作用因子是能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。

?DNA 甲基化的方式及其作用。

DNA甲基化主要形成5-甲基胞嘧啶,N6-甲基腺嘧啶和7-甲基鸟嘌呤。

甲基化能关闭某些基因的活性,去甲基化则能诱导基因的重新活化和表达。DNA甲基化能够引起染色体结构,DNA构想,DNA稳定性和DNA与蛋白质相互作用方式的改变,从而控制基因表达。

?简述真核基因转录的过程和调控方式。

在真核生物中,DNA的转录在细胞核中进行。转录的基本过程包括模板识别、转录起始、通过启动子和转录的延伸和终止。

1、模板识别:模板识别阶段主要指RNA聚合酶与启动子DNA双链相互作用并与之相结合的过程。真核生物RNA聚合酶不能直接识别基因的启动子区,需要和转录调控因子结合形成转录前起始复合物结合到启动自上。

2、转录起始:转录起始就是RNA链上第一个核苷酸键的产生。

3、通过启动子:RNA聚合酶成功地合成9个以上核苷酸并离开启动子区,转录就进入正常的延伸阶段。

4、转录的延伸和终止:RNA聚合酶离开启动子,沿DNA链移动并使新生RNA链不断伸长的过程就是转录的延伸。当RNA链延伸到转录终止位点时,RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA杂合物分离,

转录调控:

1.顺式作用元件:主要是起正性调控作用的元件,包括启动子、增强子。

启动子包括:①核心启动子元件(CPE):指RNA聚合酶起始转录所必需的最小的DNA序列,

包括转录起始点及其上游-25处的TATA盒。②上游启动子元件(UPE)或称上游激活序列(UAS)包括通常位于-70bp附近的CAAT盒和GC盒、以及距转录起始点更远的上游元件。

增强子是能够明显使与它连锁基因转录频率增加的DNA序列。

2.反式作用因子:以反式作用影响转录的因子,RNA聚合酶是一种反式作用因子,及其他协助转录的因子包括:RNA聚合酶Ⅱ的基本转录因子与DNA结合常见的蛋白质功能域螺旋-转角-螺旋、螺旋-环-螺旋、锌指、碱性-亮氨酸拉链、同源域。

3.蛋白质的磷酸化和去磷酸化过程对基因转录起到调控作用。

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

除了5’ 3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。 7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

分子生物学试题及答案

生命科学系本科2010-2011学年第1学期试题分子生物学(A)答案及评分标准 一、选择题,选择一个最佳答案(每小题1分,共15分) 1、1953年Watson和Crick提出(A ) A、多核苷酸DNA链通过氢键连接成一个双螺旋 B、DNA的复制是半保留的,常常形成亲本——子代双螺旋杂合链 C、三个连续的核苷酸代表一个遗传密码 D、遗传物质通常是DNA而非RNA 2、基因组是(D ) A、一个生物体内所有基因的分子总量 B、一个二倍体细胞中的染色体数 C、遗传单位 D、生物体的一个特定细胞内所有基因的分子总量 3、下面关于DNA复制的说法正确的是(D ) A、按全保留机制进行 B、按3'→5'方向进行 C、需要4种NTP加入 D、需要DNA聚合酶的作用 4、当过量的RNA与限量的DNA杂交时(A ) A、所有的DNA均杂交 B、所有的RNA均杂交 C、50%的DNA杂交 D、50%的RNA杂交 5、以下有关大肠杆菌转录的叙述,哪一个是正确的?(B ) A、-35区和-10区序列间的间隔序列是保守的 B、-35区和-10区序列距离对转录效率非常重要 C、转录起始位点后的序列对于转录效率不重要 D、-10区序列通常正好位于转录起始位点上游10bp处 6、真核生物mRNA转录后加工不包括(A ) A、加CCA—OH B、5'端“帽子”结构 C、3'端poly(A)尾巴 D、内含子的剪接 7、翻译后的加工过程不包括(C ) A、N端fMet或Met的切除 B、二硫键的形成 C、3'末端加poly(A)尾 D、特定氨基酸的修饰

8、有关肽链合成的终止,错误的是(C ) A、释放因子RF具有GTP酶活性 B、真核细胞中只有一个终止因子 C、只要有RF因子存在,蛋白质的合成就会自动终止 D、细菌细胞内存在3种不同的终止因子:RF1、RF2、RF3 9、酵母双杂交体系被用来研究(C ) A、哺乳动物功能基因的表型分析 B、酵母细胞的功能基因 C、蛋白质的相互作用 D、基因的表达调控 10、用于分子生物学和基因工程研究的载体必须具备两个条件(B ) A、含有复制原点,抗性选择基因 B、含有复制原点,合适的酶切位点 C、抗性基因,合适的酶切位点 11、原核生物基因表达调控的意义是(D ) A、调节生长与分化 B、调节发育与分化 C、调节生长、发育与分化 D、调节代谢,适应环境 E、维持细胞特性和调节生长 12、乳糖、色氨酸等小分子物质在基因表达调控中作用的共同特点是(E ) A、与DNA结合影响模板活性 B、与启动子结合 C、与操纵基因结合 D、与RNA聚合酶结合影响其活性 E、与蛋白质结合影响该蛋白质结合DNA 13、Lac阻遏蛋白由(D )编码 A、Z基因 B、Y基因 C、A基因 D、I基因 14、紫外线照射引起DNA损伤时,细菌DNA修复酶基因表达反应性增强,这种现象称为(A ) A、诱导 B、阻遏 C、正反馈 D、负反馈 15、ppGpp在何种情况下被合成?(A ) A、细菌缺乏氮源时 B、细菌缺乏碳源时 C、细菌在环境温度太高时 D、细菌在环境温度太低时 E、细菌在环境中氨基酸含量过高时

(完整版)分子生物学复习题及其答案

一、名词解释 1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA 所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列的长度为6~200碱基对。 20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。 21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。 22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。如免疫球蛋白家族。 23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。 24、复制:是指以原来DNA(母链)为模板合成新DNA(子链)的过程。或生物体以DNA/RNA

(精选)分子生物学期末考试题目及答案

分子生物学复习提纲 一.名词解释 (1)Ori :原核生物基因质粒的复制起始位点,是四个高度保守的19bp组成的正向重复序列,只有ori能被宿主细胞复制蛋白质识别的质粒才能在该种细胞中复制。 ARS:自主复制序列,是真核生物DNA复制的起点,包括数个复制起始必须的保守区。不同的ARS序列的共同特征是一个被称为A区的11bp的保守序列。(2)Promoter:启动子,与基因表达启动有关的顺式作用元件,是结构基因的重要成分,它是位于转录起始位点5’端上游区大约100~200bp以内的具有独立功能的DNA序列,能活化RNA 聚合酶,使之与模板DNA准确地相结合并具有转录起始的特异性。 (3)r-independent termination不依赖r因子的终止,指在不依赖r因子的终止反应中,没有任何其他因子的参与,核心酶也能在某些位点终止转录。(强终止子) (4)SD sequence:SD序列(核糖体小亚基识别位点),存在于原核生物起始密码AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16SrRNA3’端反向互补,所以可以将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。 Kozak sequence:存在于真核生物mRNA的一段序列,核糖体能够识别mRNA 上的这段序列,并把它作为翻译起始位点。 (5)Operator:操纵基因,与一个或者一组结构基因相邻近,并且能够与一些特异的阻遏蛋白相互作用,从而控制邻近的结构基因表达的基因。 Operon:操纵子,是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。包括操纵基因、结构基因、启动基因。 (6)Enhancer:增强子,能强化转录起始的序列的为增强子或强化子Silencer:沉默子,可降低基因启动子转录活性的一段DNA顺式元件。与增强子作用相反。 (7)cis-acting element :顺式作用元件,存在于基因旁侧序列中能影响基因表达的序列,包括启动子、增强子、调控序列和可诱导元件,本身不编码任何蛋白质,仅仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控。 trans-acting factor:反式作用因子,是指直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。具有三个功能结构域,即DNA结合域、转录结合域、结合其他结合蛋白的结构域。 (8)Open reading frame (ORF):开放式阅读框架,是指一组连续的含有三联密码子的能够被翻译成为多肽链的DNA序列。它由起始密码子开始,到终止密码子结束。 (9)Gene:基因,产生一条多肽链或功能RNA所需的全部核苷酸序列。(能转录且具有生物学功能的DNA/RNA的序列。)

分子生物学复习题

1、分子生物学的定义。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。 2、简述分子生物学的主要研究内容。 a.DNA重组技术(基因工程) (1)可被用于大量生产某些在正常细胞代谢中产量很低的多肽 ; (2)可用于定向改造某些生物的基因组结构 ; (3)可被用来进行基础研究 b.基因的表达调控 在个体生长发育过程中生物遗传信息的表达按一定时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)。 c.生物大分子的结构和功能研究(结构分子生物学) 一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提: (1)拥有特定的空间结构(三维结构); (2)发挥生物学功能的过程中必定存在着结构和构象的变化。 结构分子生物学就是研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。它包括3个主要研究方向: (1) 结构的测定 (2) 结构运动变化规律的探索 (3) 结构与功能相互关系 d.基因组、功能基因组与生物信息学研究 3、谈谈你对分子生物学未来发展的看法? (1)分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类认识论上的重大飞跃。生命活动的一致性,决定了二十一世纪的生物学将是真正的系统生物学,是生物学范围内所有学科在分子水平上的统一。 (2)分子生物学是目前自然学科中进展最迅速、最具活力和生气的领域,也是新世纪的带头学科。

(3)分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以及信息科学等多学科相互渗透、综合融会而产生并发展起来的,同时也推动这些学科的发展。 (4)分子生物学涉及认识生命的本质,它也就自然广泛的渗透到医学、药学各学科领域中,成为现代医药学重要的基础。 1、DNA双螺旋模型是哪年、由谁提出的?简述其基本内容。 DNA双螺旋模型在1953年由Watson和Crick提出的。 基本内容: (1) 两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手双螺旋。 (2) 嘌呤与嘧啶碱位于双螺旋的内侧,3′,5′- 磷酸与核糖在外侧,彼此通过磷酸二酯键相连接,形成DNA分子的骨架。 (3) 双螺旋的平均直径为2nm,两个相邻碱基对之间相距的高度即碱基堆积距离 为0.34nm,两个核苷酸之间的夹角为36。。 (4) 两条核苷酸链依靠彼此碱基之间形成的氢键相连系而结合在一起,A与T相配对形成两个氢键,G与C相配对形成3个氢键。 (5) 碱基在一条链上的排列顺序不受任何限制,但根据碱基互补配对原则,当一条多核苷酸的序列被确定后,即可决定另一条互补链的序列。

分子生物学课后习题答案 2)

分子生物学课后习题答案(2) 《现代分子生物学》第四次作业 1、简述原核生物和真核生物mRNA的区别。答:①原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。 ②原核生物mRNA的转录和翻译不仅发生在同一个细胞空间里,而且这两个过程几乎是同步进行的。真核生物mRNA的合成和功能表达发生在不同的空间和时间范畴内。 ③原核生物mRNA半衰期很短。真核生物mRNA的半衰期较长。④原核与真核生物mRNA的结构特点也不同:原核生物mRNA的5’端无帽子结构,3’端没有或只有较短的poly A结构。真核生物mRNA的5’端存在帽子结构,且绝大多数具有poly A结构。 2、大肠杆菌的终止子有哪两大类?请分别介绍一下它们的结构特点。 答:大肠杆菌的终止子可以分为不依赖于p因子(内在终止子)和依赖于p因子两大类。 不依赖于p因子的终止子结构特点:1.终止位点上游一般存在一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发卡式结构。2.在终止位点前面有一端由4—8个A组成的序列,所以转录产物的3’端为寡聚U,这种结构特征的存在决定了转录的终止。依赖于p因子的终止子的结构特点:1.转录的RNA也具有发夹结构,但发夹结构后无poly(U)。2.形成的发夹结构较疏松,茎环上不富含GC。3.终止需要ρ因子的参与。4.与不依赖于ρ因子的终止一样,终止信号存在于新生的RNA 链上而非DNA链上过程。

3、真核生物的原始转录产物必须经过哪些加工才能成为成熟的mRNA,以用作蛋白质合成的模版? 答:1.装上5′端帽子; 2.装上3′端多聚A尾巴; 3.剪接:将mRNA前体上的居间顺序切除,再将被隔开的蛋白质编码区连接起来。剪接过程是由细胞核小分子RNA参与完成的,被切除的居间顺序形成套索形; 4.修饰:mRNA分子内的某些部位常存在N6-甲基腺苷,它是由甲基化酶催化产生的,也是在转录后加工时修饰的。 4、简述Ⅰ、Ⅱ类内含子的剪接特点。 答:Ⅰ类内含子的剪接主要是转酯反应。在Ⅰ类内含子切除体系中,第一个转酯反应由一个游离的鸟苷或鸟苷酸介导,鸟苷或鸟苷酸的3’-OH作为亲核基团攻击内含子5’端的磷酸二酯键,从上游切开RNA链。在第二个转酯反应中,上游外显子的自由3’-OH作为亲核基团内含子3’位核苷酸上的磷酸二酯键,使内含子被完全切开,上下游两个外显子通过新的磷酸二酯键相连。Ⅱ类内含子主要存在于真核生物的线粒体和叶绿体rRNA基因中。在Ⅱ类内含子切除体系中,转酯反应无需游离鸟苷酸或鸟苷,而是由内含子背身的靠近3’端的腺苷酸2’-OH作为亲核基团攻击内含子5’端的磷酸二酯键,从上游切开 RNA链后形成套索状结构。再由上游外显子的自由3’-OH作为亲核基团攻击内含子3’位核苷酸上的磷酸二酯键,使内含子被完全切开,上下游两个外显子通过新的磷酸二酯键相连。 5、什么是RNA编辑?其生物学意义是什么? 答:RNA 编辑是指某些RNA,特别是mRNA前体经过插入、删除或取代一些核苷酸残基等操作,导致DNA所编码的遗传信息的改变,使得经过RNA编辑的mRNA 序列发生了不同于模版的DAN的变化。

分子生物学习题集及答案

第一章绪论 1. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或 DNA 的复制、转录、表达和 调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利 用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 2. 分子生物学研究内容有哪些方面? 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组 成部分。由于 50 年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存 储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(centraldogma)是其理论体系的核心。 B.蛋白质的分子生物学蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3. 分子生物学发展前景如何? 21 世纪是生命科学世纪,生物经济时代,分子生物学将取得突飞猛进的发展,结构基因组学、功能基因 组学、蛋白质组学、生物信息学、信号跨膜转导成为新的热门领域,将在农业、工业、医药卫生领域带来新的变革。 4. 人类基因组计划完成的社会意义和科学意义是什么? 社会意义:人类基因组计划与曼哈顿原子计划、阿波罗登月计划并称为人类科学史上的三大工程,具有 重大科学意义、经济效益和社会效益。 1).极大地促进生命科学领域一系列基础研究的发展,阐明基因的结构与功能关系、生命的起源和进化、细胞发育、生产、分化的分子机理,疾病发生的机理等,为人类自身疾病的诊断和治疗提供依据,为医药产业带来翻天覆地的变化; 2).促进生命科学与信息科学、材料科学和与高新技术产业相结合,刺激相关学科与技术领域的发展,带动起一批新兴的高技术产业; 3).基因组研究中发展起来的技术、数据库及生物学资源,还将推动对农业、畜牧业(转基因动、植物)、能源、环境等相关产业的发展,改变人类社会生产、生活和环境的面貌,把人类带入更佳的生存状态。 科学意义: 1)确定人类基因组中约 5 万个编码基因的序列基因在基因组中的物理位置,研究基因的产物及其功能 2)了解转录和剪接调控元件的结构和位置,从整个基因组结构的宏观水平上了解基因转录与转录后调节 3)从总体上了解染色体结构,了解各种不同序列在形成染色体结构、DNA 复制、基因转录及表达调控中 的影响与作用 4)研究空间结构对基因调节的作用

分子生物学课后答案

第一章绪论 1、简述孟德尔、摩尔根与沃森等人对分子生物学发展得主要贡献。 答:孟德尔得对分子生物学得发展得主要贡献在于她通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根得主要贡献在于发现染色体得遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森与克里克在1953年提出DAN反向双平行双螺旋模型。 2、写出DNA与RNA得英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid), 核糖核酸(RNA, Ribonucleic acid) 3、试述“有其父必有其子”得生物学本质。 答:其生物学本质就是基因遗传。子代得性质由遗传所得得基因决定,而基因由于遗传得作用,其基因得一半来自于父方,一般来自于母方。 4、早期主要有哪些实验证实DNA就是遗传物质?写出这些实验得主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热得方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌得实验:1,噬菌体侵染细菌得实验过程:吸附→侵入→复制→组装→释放。2,DNA中P 得含量多,蛋白质中P得含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体得蛋白质,用放射性同位素32P标记另一部分噬菌体得DNA。用35P标记蛋白质得噬菌体侵染后,细菌体内无放射性,即表明噬菌体得蛋白质没有进入细菌内部;而用32P标记DNA得噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体得DNA进入了细菌体内。 三,烟草TMV得重建实验:1957年,Fraenkel-Conrat等人,将两个不同得TMV株系(S株系与HR株系)得蛋白质与RNA分别提取出来,然后相互对换,将S株系得蛋白质与HR株系得RNA,或反过来将HR株系得蛋白质与S株系得RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 5、请定义DNA重组技术与基因工程技术。 答:DNA重组技术:目得就是将不同得DNA片段(如某个基因或基因得一部分)按照人们得设计定向连接起来,然后在特定得受体细胞中与载体同时复制并得到表达,产生影响受体细胞得新得遗传性状。 基因工程技术:就是除了包含DNA重组技术外还包括其她可能就是生物细胞基因结构得到改造得体系,基因工程就是指技术重组DNA技术得产业化设计与应用,包括上游技术与下游技术两大组成部分。上游技术指得就是基因重组、克隆与表达得设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞得大规模培养以及基因产物得分离纯化过程。 6、写出分子生物学得主要研究内容。 答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子得结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。 第二章染色体与DNA 1、染色体具有哪些作为遗传物质得特征? ①分子结构相对稳定

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

分子生物学题库

分子生物学备选考题 名词解释: 1.功能基因组学 2.分子生物学 3.epigenetics 4.C值矛盾 5.基因簇 6.间隔基因 7.基因芯片 8.基序(Motifs) 9.CpG岛 10.染色体重建 11.Telomerase 12.足迹分析实验 13.RNA editing 14.RNA干涉(RNA interference) 15.反义RNA 16.启动子(Promoter) 17.SD序列(SD sequence) 18.碳末端结构域(carboxyl terminal domain,CTD) 19.single nucleotide polymorphism,SNP 20.切口平移(Nick translation) 21.原位杂交 22.Expressing vector 23.Multiple cloning sites 24.同源重组 25.转座 26.密码的摆动性 27.热休克蛋白嵌套基因 28.基因家族增强子 29.终止子 30.前导肽RNAi 31.分子伴侣 32.魔斑核苷酸 33.同源域 34.引物酶 35.多顺反子mRNA 36.物理图谱、 37.载体(vector) 38.位点特异性重组 39.原癌基因(oncogene) 40.重叠基因、 41.母源影响基因、

42.抑癌基因(anti-oncogene)、 43.回文序列(palindrome sequence)、 44.熔解温度(melting temperature, Tm) 45.DNA的呼吸作用(DNA respiration) 46..增色效应(hyperchromicity)、 47.C0t曲线(C0t curve)、 48.DNA的C值(C value) 49.超螺旋(superhelix) 、 50.拓扑异构酶(topoisomerase)、 51.引发酶(primase) 、 52.引发体(primosome) 53.转录激活(transcriptional activation) 54.dna基因(dna gene)、 55.从头起始(de novo initiation) 、 56.端粒(telomere) 57.酵母人工染色体(yeast artificial chromosome, YAC)、 58.SSB蛋白(single strand binding protein)、 59.复制叉(replication fork)、 60.保留复制(semiconservative replication) 61.滚环式复制(rolling circle replication)、 62.复制原点(replication origin)、 63.切口(nick) 64.居民DNA (resident DNA) 65.有义链(sense strand) 66.反义链(antisense strand) 67.操纵子(operon) 、 68.操纵基因(operator) 69.内含子(内元intron) 70.外显子(外元exon) 、 71.突变子(muton) 、 72.密码子(codon)、、 73.同义密码(synonymous codons)、 74.GC盒(GC box) 75.增强子(enhancer) 76.沉默子(silencer) 77.终止子(terminator) 78.弱化子(衰减子)(attenuator) 79.同位酶(isoschizomers) 、 80.同尾酶(isocandamers) 81.阻抑蛋白(阻遏蛋白)(repressor) 82.诱导物(inducer)、 83.CTD尾(carboxyl-terminal domain ) 84.载体(vector)、 85.转化体(transformant)

分子生物学课后习题答案

第一章绪论 ?DNA重组技术和基因工程技术。 DNA重组技术又称基因工程技术,目的是将不同DNA片段(基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。 DNA重组技术有着广泛的应用前景。首先,DNA重组技术可以用于大量生产某些在正常细胞代谢中产量很低的多肽,如激素、抗生素、酶类及抗体,提高产量,降低成本。其次,DNA重组技术可以用于定向改造某些生物的基因结构,使他们所具有的特殊经济价值或功能成百上千倍的提高。 ?请简述现代分子生物学的研究内容。 1、DNA重组技术(基因工程) 2、基因表达调控(核酸生物学) 3、生物大分子结构功能(结构分子生物学) 4、基因组、功能基因组与生物信息学研究 第二章遗传的物质基础及基因与基因组结构 ?核小体、DNA的半保留复制、转座子。 核小体是染色质的基本结构单位。是由H2A、H2B、H3、H4各两分子生成八聚体和由大约200bp的DNA构成的。核小体的形成是染色体中DNA压缩的第一步。 DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样。因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。 转座子是存在染色体DNA上的可自主复制和移位的基本单位。转座子分为两大类:插入序列和复合型转座子。 ?DNA的一、二、三级结构特征。 DNA的一级结构是指4种脱氧核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。分为左手螺旋和右手螺旋。 DNA的高级结构是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。超螺旋结构是DNA 高级结构的主要形式,可分为正超螺旋与负超螺旋两大类。 ?DNA复制通常采取哪些方式? 1、线性DNA双链的复制:复制经过起始、延伸、终止和分离三个阶段。复制是从5’端向3’端移动,前导链的合成是连续的,后随链通过冈崎片段连接成完整链。 2、环状DNA双链的复制 (1)θ型:是一种双向复制方式。复制的起始点涉及DNA的结旋和松开,形成两个方向相反的复制叉,复制从定点开始双向等速进行。 (2) 滚环型:是单向复制的一种特殊方式,发生在噬菌体DNA和细菌质粒上,首先对正链原点进行专一性的切割,形成的5’端被单链结合蛋白所覆盖,3’端在DNA聚合酶的作用下不断延伸。

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学试题

分子生物学试题 一、名词解释 1、基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位。 2、基因组:细胞或生物体的一套完整单倍体的遗传物质的总和。 3、端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。 4、操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA 为多顺反子。 5、顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。 6、反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。 7、启动子:是RNA聚合酶特异性识别和结合的DNA序列。 8、增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。 9、基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。 10、信息分子:调节细胞生命活动的化学物质。其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子。11、受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物学效应的的特殊蛋白质。 12、分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适宿主,使其在宿主中扩增和繁殖,以获得该DNA分子的大量拷贝。 13、蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。 14、蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。 15、基因工程:有目的的通过分子克隆技术,人为的操作改造基因,改变生物遗传性状的系列过程。 16、载体:能在连接酶的作用下和外源DNA片段连接并运送DNA分子进入受体细胞的DNA 分子。 17、转化:指质粒DNA或以它为载体构建的重组DNA导入细菌的过程。 18、感染:以噬菌体、粘性质粒和真核细胞病毒为载体的重组DNA分子,在体外经过包装成具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增。 19、转导:指以噬菌体为载体,在细菌之间转移DNA的过程,有时也指在真核细胞之间通过逆转录病毒转移和获得细胞DNA的过程。 20、转染:指病毒或以它为载体构建的重组子导入真核细胞的过程。 21、 DNA变性:在物理或化学因素的作用下,导致两条DNA链之间的氢键断裂,而核酸分子中的所有共价键则不受影响。 22、 DNA复性:当促使变性的因素解除后,两条DNA链又可以通过碱基互补配对结合形成DNA 双螺旋结构。 23、退火:指将温度降至引物的TM值左右或以下,引物与DNA摸板互补区域结合形成杂交

相关主题