搜档网
当前位置:搜档网 › 模糊模式识别

模糊模式识别

模糊模式识别
模糊模式识别

自动化文献综述

文献综述 前言 从20世纪40年代起,特别是第二次世界大战以来,自动化随着工业发展和军事技术需要而得到了迅速的发展和广泛的应用。如今,自动控制技术不仅广泛应 用于工业控制中,在军事、农业、航空、航海、核能利用等领域也发挥着重要的 作用。例如,电厂中锅炉的温度或压力能够自动恒定的不变,机械加工中数控 机床按预定程序自动地切削工件,军事上导弹能准确地击中目标,空间技术中人 造卫星能按预定轨道运行并能准确地回收等,都是应用了自动控制技术的结果。 自动控制,是指在没有人直接参与的情况下,利用控制装置对机器设备或生产过程进行控制,使之达到预期的状态或性能要求。 双容水箱液位控制系统就是自动控制技术在液位控制方面的应用。其在化工,能源(电厂)等工业工程控制中得到了广泛应用。 过程控制的发展历程 随着过程控制技术应用范围的扩大和应用层次的深入,以及控制理论与技术的进步和自动化仪表技术的发展,过程控制技术经历了一个由简单到复杂,从低 级到高级并日趋完善的过程。 1过程控制装置的发展 1.1基地式控制阶段(初级阶段) 20世纪50年代,生产过程自动化主要是凭借生产实践经验,局限于一般的控制元件及机电式控制仪表,采用比较笨重的基地式仪表(如自力式温度 控制器、就地式液位控制器等),实现生产设备就地分散的局部自动控制。在设 备与设备之间或同一设备中的不同控制系统之间,没有或很少有联系,其功能往 往限于单回路控制。其过程控制的主要目的是几种热工参数(温度、压力、流量 及液位)的定值控制,以保证产品质量和产量的稳定。 1.2单元组合仪表自动化阶段 20世纪60年代出现了单元组合仪表组成的控制系统,单元组合仪表有电动和气动两大类。所谓单元组合,就是把自动控制系统仪表按功能分成若干 单元,依据实际控制系统结构的需要进行适当的组合。单元组合仪表之间用标准 统一的信号联系,气动仪表(QDZ系列)信号为0.02~0.1MPa气压信号,电动 仪表信号为0~10mA直流电流信号(DDZ-II系列)和4~20mA直流电流信号 (DDZ-III系列)因此单元组合仪表使用方便、灵活。由于电流信号便于远距离 传送,因而实现了集中监控和集中操纵的控制系统,对于提高设备效率和强化生 产过程有所促进,适应了工业生产设备日益大型化于连续化发展的需要。

传感器技术文献综述_百度文库重点

传感器技术文献综述 学校邕江大学专业 09信息学号 40号姓名赵丽霞 一、摘要 传感器技术是综合多种学科的复合型技术, 是一门正在蓬勃发展的现代化传感器技术。本文通过将所看的传感器相关文献总分为传感器、智能传感器以及无线传感器网络三个类别, 对每一类别进行综述, 分析每类别传感器研究中所存在的不足,探讨了相应的解决方案。 二、关键词:传感器 三、引言 传感器技术是一门正在蓬勃发展的现代化传感器技术, 是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术, 而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。在伴随着“信息时代” 的到来,作为获取信息的重要手段——传感器技术得到飞速发展, 其应用领域越来越广, 人们对其要求越要越高, 需求也越来越迫切。但传感器技术的广泛应用以及飞速发展并不代表着该技术已经成熟, 相反在很多方面它还只是一项新兴的技术, 依然存在很多的问题等待我们去解决。如何能够让我们的传感器装置很快的适应周围的环境, 迅速准确的处理传输客户所需求的信号, 并可以根据客户的要求作出相应的反应以及如何可以尽量的延长传感器装置的生存时间等等。这些问题都是我们在研究传感器技术的过程中所应该解决的问题。 四、传感器 传感器是一种物理装置, 能够探测、感受外界的信号、物理条件 (如光、热、温度、湿度等或化学组成, 并将探知到的信息传递给其他装置。该装置相当我们的人类的眼睛、鼻子、舌头、耳朵以及皮肤等一些感知器官。这样,精确快速地感

受外界的信号就是迅速正确作出反应实施行动的前提条件。现在的物理传感器、生物传感器都是力图解决感知、精确以及快速这三个难题。例如气体流量监测就有很多种的感知方法,但每种方法都存在着精确以及反应速率方面的问题, 所以还需要不断的改进。然而,有很多的问题大自然已经很好的为我们解决了, 我们应该取其精华。因此, 我认为仿生传感器一定会解决很多传感器方面的问题。 模仿沙漠蚂蚁利用太阳偏振光在沙漠中很好的辨别方向机理设计了偏振测角传感器。在我们的生活中, 大自然还有很多聪明的发明, 这些都可以应用到我们现在所讨论的传感器技术中。比如鲸鱼、鸽子能够探测到地球微弱的磁场并根据其来确定旅行路线; 双髻鲨能都根据探测到微弱的生物电来捕食, 在它的双髻上分布着许多微小的孔,传感器也可以设计成与此相同的结构来探测微弱的电磁波, 并可以将此项技术应用到医学中来检测人体的健康;苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到,仿生学家根据苍蝇嗅觉器官的结构和功能,利用活的苍蝇,把非常纤细的微电极插到苍蝇的嗅觉神经上仿制成一种十分奇特的小型气体分析仪,用来检测舱内气体的成分。此外,还有很多的动物都具有特异功能,可以利用这些大量的自然资源来实现我们对自然界一些信息的需求,可以直接利用动物,降低成本,可以根据研究其特异功能的机制, 改进现在的传感器。 目前的传感器往往仅能感知一种或几种物理量。因此, 要尽量集成传感器的功能。在实际中, 需要检测的物理量往往不是唯一的, 这样就需要多种传感器共同工作来完成对这些物理量的检测, 浪费了大量资源, 比如人力资源——我们要花费大量的时间与精力去部署以及维护这些节点, 通信资源——每个节点都会向基站发送信号, 占用带宽, 容易造成数据拥堵。要求一种传感器可以同时感知多种物理量比较困难, 这样可以将多种传感器固定在同一装置上, 通过程序让它们在分配间隙时间内轮流工作发送数据, 间隙时间越短, 该传感器的整体测量效率也就越高。但如果对测量的实时性要求不高的话, 一个传感器装置就可以达到预期效果。也可以在监测区域分布多个的装置, 编制程序, 使在同一时刻能够测量到多种物理量。 五、智能传感器

控制工程文献综述

工程控制基础文献综述 院系: 班级: 姓名: 学号:

一、引言 本学期初步学习了工程控制基础,为了更好地了解和学习该门课程,我通过网络渠道搜集了十篇有关工程控制的期刊文献。深入阅读后,我进行了总结,并对工程控制有了一定深度的理解。本文是对搜集和阅读的文献的综述,旨在简要的介绍工程控制的发展和应用。我所搜集的期刊均来自中国知网,其中包括工程控制的发展史和在车辆、电力及机器人方面应用的文献。 二、文献综述 1.智能控制工程研究的进展 自1985年在纽约召开第一届智能控制学术会议至今,智能控制已经被广泛研究应用于工业、农业、服务业、军事航空等各个领域。近年来,随着人工智能技术和其他信息处理技术,尤其是信息论、系统论和控制论的发展,智能控制在控制机理和应用实践方面均取得了突破性的进展。遗传算法与模糊逻辑、神经网络相互融合,通过模拟人类思维方式和结构来设计用于解决复杂的各种非线性问题的控制策略,并已在各种实际工程项目中得到应用,取得了良好的效果。分布式人工智能中的Agent和Multi Agent System已成为研究的热点,构建基于Agent 的集散递阶结构的智能控制系统为智能控制注入了新的活力。 在理论研究取得进步的同时,国内外的研究者均意识到智能控制的研究不能只停留在计算仿真的层次上,智能控制应该直接面向传统控制难以或无法解决的复杂的非线性系统,面向实际工程应用。 2.车间运输小车的智能控制 工厂运输是协调生产的重要环节和工厂设施的重要组成部分,它的效率直接影响生产成本及生产率。目前,加工中小产品机械加工车间运输系统主要有空间运输和地面运输两种。空间运输主要是小吨位桥式起重机和电动葫芦,其控制方式多为下拉线式,这种方式有以下缺点:1)设备复杂,功率消耗大,投资高。2)操作不方便,运输效率低。3)只适应车间内部运输。 地面运输主要采用叉车及手推运料小车,叉车需专人驾驶且无固定轨道,在车间内运行极不安全,手推运料小车需人为动力,劳动强度大,运输效率低。本设计的有轨运料小车,利用了 PLC 的编程简单,工作可靠,硬件组合灵活,不增加外部控制电器即可实现任意复杂逻辑控制等特点,实现了运料小车的智能控制。 小车应具有两种控制方式,即:呼叫自动响应控制和手动点动控制,正常情况下应使用前一种控制方式。两种控制方式必须实现互锁。呼叫自动响应控制:每个机床处各设一个呼叫按钮。由于意外或故障导致小车在非呼叫工位处停车时,不响应任一工位处的呼叫信号,只能采用手动控制进行纠正。

倒立摆的H∞控制-文献综述

引言 近三十年来,随着控制理论技术和航空航天技术的迅猛发展,一种典型的系统在控制理论的领域中一直成为被关注的焦点,即倒立摆系统。 倒立摆的特点为支点在下,重心在上,是一种非常快速并且不稳定的系统。但正由于它本身所具有的这种特性,许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来。因此在欧美等许多发达国家的高等院校中,倒立摆系统已经成为必备的控制理论教学实验设备。学生们可以通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,更容易对课程加深理解。 倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学中不可多得的典型物理模型。它深刻揭示了自然界的一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象[1-4]。通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。在多种控制理论与方法的研究与应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供了一个从控制理论通往实践的桥梁。所以,研究倒立摆系统对以后的教育研究领域具有非常深远的影响。 本文为建立倒立摆系统的数学研究模型,在熟悉线性系统的基本理论和非线性系统线性化的基本方法的基础上确定研究的系统方案和实施的控制方法,通过MATLAB软件对其进行编程,以达到完成倒立摆的仿真实验,实现了倒立摆的平衡控制。

汽车悬架系统文献综述

毕业设计(论文) 文献综述 题目十九座客车悬架系统设计 专业车辆工程(汽车工程) 班级08级2班 学生 指导教师 2012 年

汽车悬架系统文献综述 1.前言 悬架是安装在车桥和车轮之间用来吸收汽车在高低不平的路面上行驶所产生的颠簸力的装置。因此,汽车悬架系统对汽车的操作稳定性、乘坐舒适性都有很大的影响。由于悬架系统的结构在不断改进,其性能及控制技术也得到了迅速提高。尽管一百多年来汽车悬架从结构形式到作用原理一直在不断地演进,但从结构功能而言,它都是由弹性元件、减振装置和导向机构三部分组成。在有些情况下,某一零部件兼起两种或三种作用,比如钢板弹簧兼起弹性元件和导向机构的作用,麦克弗逊悬架中的减振器柱兼起减振器及部分导向机构的作用,有些主动悬架中的作动器则具有弹性元件、减振器和部分导向机构的功能。其作用是传递路面作用在车轮和车架上的支承力、牵引力、制动力和侧向反力以及这些力所产生的力矩,并且缓冲和吸收由不平路面通过车轮传给车架或车身的振动与冲击,抑制车轮的不规则振动,提高车辆平顺性(乘坐舒适性)和安全性(操纵稳定性),减少动载荷引起的零部件和货物损坏[1]。 2.汽车悬架系统的发展状况 非独立悬架早期广泛应用于轿车及轿车以外的其它车型中,由于其可靠性和简单的特性,现在还被广泛的用于轿车的后桥,轻型货车和越野汽车的后桥,重型货车的前后桥都采用非独立悬架。 独立悬架早期只单纯用于轿车上,目前大部分轻型货车和越野汽车为了提高舒适性也开始采用独立悬架,同时一些中型卡车及客车为了提高驾乘的舒适性和行驶平顺性也开始采用独立悬架,在国外甚至一些轮式工程机械如吊车和重型卡车也开始采用独立悬架。因此对于独立悬架的设计技术,国内外都进行了研究,这些研究主要集中在以下几个方面:独立悬架设计方法,独立悬架参数对汽车行驶平顺性的影响;独立悬架对汽车操纵稳定性的影响。国内的研究主要表现为:独立悬架和转向系的匹配;独立悬架与转向横拉杆长度和断开点的确定;悬架弹性元件的设计分析;导向机构的运动分析;独立悬架对前轮定位参数的影响;独立悬架的优化设计等。国外除上述研究外,还进入了微观领域的研究,如用原子力学显微镜观察悬架材料内部聚合体的原子转化情况,研究悬架作为弹性介质的流变特性[2]等,从而使得独立悬架向着智能化、轻量化、小型化、通用化方向发

智能调节器文献综述

内蒙古科技大学信息工程学院测控专业毕业实习报告 ——文献综述 题目:基于单片机的智能调节器设计 学生姓名:000 学号:00 专业:00 班级:00 指导教师:00

一、引言 1、调节器作用 调节器将来自变送器的测量值与给定值相比较后产生的偏差进行比例、积分、微分(PID )运算,并输出统一标准信号,去控制执行机构的动作,以实现对温度、压力、流量、液位及其他工艺便利的自动控制[1]。 在工业过程控制中,PID 控制是历史最悠久,生命力最强的一种控制方式。它是迄今为止最通用的控制方法。它提供一种反馈控制,通过积分作用可以消除稳态误差,通过微分作用可以预测未来。智能控制器能解决许多控制问题,尤其在动态过程是良性的和性能要求不太高的情况下。智能控制不仅是分布式控制系统的重要组成部分,而且嵌入在许多有特殊要求的控制系统中。在过程控制中,90%以上的控制回路采用PID 类型的控制器,因此,大多数反馈回路采用该方法或其较小的变形来控制。 2、调节器原理 在图1.1所示的单回路控制系统中,由于扰动作用使被控变量偏离给定值,从而产生偏差s i x x e -=,式中e-偏差;i x -测量值;s x -给定值。调节器接受偏差信号后,按一定的运算规律输出控制信号,作用于被控对象,以消除扰动对被控变量的影响,从而使被控变量回到给定值上来。 图1.1 单回路控制系统结构图 调节器的运算规律就是指调节器的输出信号与输入偏差之间随时间的变化规律。习惯上称e>0为正偏差;e<0为负偏差。若e>0时,对应的输出信号变化量?y>0,则成调节器为正作用调节器;若e<0时,对应的输出信号变化量?y>0,则称调节器为反作用调节器。 3、调节器分类 按使用能源的不同分类可分为:电动调节器、气动调节器和液动调节器;按控制规律的不同可分为:位式调节器、比例积分调节器、比例微分调节器和三作用调节器;按传递的运算信号形式可分为:模拟式和数字式两类[2]。 按其结构和组成的形式可分为以下几种类型。

智能控制文献综述

智能控制的发展,应用及展望 周杰 21225062 摘要:智能控制是当今控制学领域研究和发展的热点之一。本文论述了智能控制的发展过程,相比传统控制的优势,在低压电器中的应用,并对其未来发展做了展望。 关键词:发展历史;智能控制;低压电器技术;模糊控制;人工智能;展望 1.智能控制的发展历史 从20世纪60年代起,由于空间技术、计算机技术及人工智能技术的发展,控制界学者在研究自组织、自学习控制的基础上,为了提高控制系统的自学习能力,开始注意将人工智能技术与方法应用于控制系统。 1965年,美国著名控制论专家Zadeh 创立了模糊集合论,为解决复杂系统的控制问题提供了强有力的数学工具;同年,美国著名科学家Feigenbaum着手研制世界上第一个专家系统;就在同年,傅京孙首先提出把人工智能中的直觉推理方法用于学习控制系统。1996年,Mendl进一步在空间飞行器的学习控制系统中应用了人工智能技术,并提出了“人工智能控制”的概念。直到1967年,Leondes和Mendel才首先正式使用“智能控制”一词,并把记忆、目标分解等一些简单的人工智能技术用于学习控制系统、提高了系统处理不确定性问题的能力。 从20世纪70年代开始,傅京孙、Glorios 和Saridis等人从控制论角度进一步总结了人工智能技术与自适应、自组织、自学习控制的关系,正式提出了智能控制就是人工智能技术与控制理论的交叉,并创立了人—机交互式分级递阶智能控制的系统结构。在70年代中后期,以模糊集合论为基础,从模仿人的控制决策思想出发,智能控制在另一个方向—规则控制上也取得了重要的进展。进入80年代以来,由于微机的迅速发展以及人工智能的重要领域—专家系统技术的逐渐成熟,使得智能控制和决策的研究及应用领域逐步扩大,并取得了一批应用成果。80年代后期,神经网络的研究获得了重要进展,为智能控制的研究起到了重要的促进作用。 2.智能控制的分支 目前关于智能控制的研究和应用沿着几个主要的分支发展,主要有专家控制、模糊控制、神经网控制、学习控制、基于知识的控制、复合智能控制、基于进化机制的控制、自适应控制等等。有的已在现代工业生产过程与智能自动化方面投入应用。主要介绍如下:专家控制是由K.J.Astrom将人工智能中的专家系统技术引入到控制系统。组成的一种类型的智能控制。借助专家系统技术,将常规的RLS 控制、最小方差控制等不同方法有机结合起来P 能根据不同的情况分别采取不同的控制策略。 模糊控制自1965年Zadeh 教授创建模糊集理论和1974年英国的Mamdani成功地将模糊控制应用于蒸汽机控制以来,模糊控制得到了很大的发展和广泛的应用。模糊控制是基于模糊推理、模仿人的思维方式、对难以建立精确数学模型的对象实施的一种控制,成为处理推理系统和控制系统中不精确和不确定性的一种有效方法,构成了智能控制的重要组成部分。 神经网络控制是另一类智能控制的重要形式。神经网络模拟人的大脑神经结构和功能,

PID文献综述

一种龙门吊车重物防摆鲁棒PID控制系统设计 文献综述 吊车作为一种搬运工具,在工业生产中发挥着重要的作用。但是,由于吊车自身结 构的原因,使得货物在吊运过程中不可避免会产生摆动,从而影响吊运效率的提高;如 何有效地消除货物在吊运过程中的摆动以提高吊车的工作效率是长期以来国内外控制领 域研究的一个典型问题。而吊车作为一种典型的多变量、强耦合的非线性系统,存在着 模型复杂、难于控制等特点,且国内的防摆控制研究中,由于缺少合适的实验平台,众 多的研究只能局限于计算机软件仿真而无法通过实验来验证。 一、课题研究的背景 吊车,又名起重机,作为一种运载工具,广泛地适用于现代工厂、安装工地和集装箱货场以及室内外仓库的装卸和运输作业。它在离地面很高的轨道上运行,占地面积小,省时省工省力,是工厂、仓库、码头必不可少的装卸搬运工具。 吊车是利用连接在活动架上的缆绳来提升和移动重物的。用绳索一类的柔体代替钢体工作,使得吊车结构轻便,工作效率高。但是,采用柔体吊运也带来一些负面影响,在起重机的工作过程中,由于吊绳的柔性连接,使起重机在起升、变幅和回转的过程中,不同程度地引起所吊重物的周期性摆动。吊物的摆动是影响吊车装卸效率的主要原因。长期以来,如何有效地消除重物在吊运过程中的摆动以提高吊车的工作效率,一直是困扰起重机快速吊运的一个难题。 还有一些特殊的工作场合,对吊车运行过程中的摆动有着更为严格的生产要求。如在港口和仓库,常常需要在船舱与码头,仓库与汽车之间堆放集装箱,由于集装箱质量很大,稍有不慎,造成集装箱与汽车或船舱相碰,都有可能造成集装箱解体以及汽车或船舱的损坏,因此需要集装箱就位准确无摆动。但是由于吊车的吊具与小车柔性连接的原因,会造成集装箱的摆动。为了避免碰撞和落点修正再作业,就要减小摆动,一般先得减慢吊车的运动速度或等待集装箱的摆动自然衰减完全结束后,才能是集装箱就位。这种消极的减小摆动的方法是以降低工作效率为代价的。 在冶金浇铸车间,将盛着金属溶液的吊车运抵浇铸口上方进行浇铸,这一过程要求吊车的动作快速准确。但是由于吊车行走时摆动原因,将会造成金属溶液过早冷却,降低产品质量和生产效率,或者导致金属溶液溅到浇铸口外,引发生产事故。 研究吊车、集装箱起重机等一类运用柔性绳索吊运重物时如何消除摆动的问题,将对提高货物调运效率,缩短工业产品的生产周期,提高质量具有深远的意义。本课题的立题就是以此为背景,研究吊车柔性绳索吊运的防摆控制技术。

模糊模式识别

第6讲模糊模式识别 (第三章模糊模式识别) 一、模式识别一般原理 1.模式识别的概念 模式识别是人工智能的一个重要方面,也是一门独立的学科。 模式:用数学描述的信息结构或观察信号。 模式识别就是把要辨别的对象,通过与已知模式进行比较,从而确定出它和哪一个模式相类同的过程。 2.模式识别系统 人们识别事物时,首先要对事物进行观察,抓住特点,分析比较,才能加以判断和辨别,而机器进行模式识别也同样要有这些过程。因此模式识别系统通常由以下四个部分构成: ①传感器部分:这是获取信息的过程。比如摄像头就象人的眼睛,把图像信息变为电信

号,麦克风象人的耳朵,获取声音信号,又如霍尔元件可以感受磁场,压电陶瓷可以把力转换为电信号等等。 ②预处理部分:这是对信息进行前端处理的过程。它把传感器送来的信号滤除杂波并作规范化、数字化。 ③特征提取部分:这是从信号中提取一些能够反映模式特征的数据的过程。 ④识别判断部分:这是根据提取的特征,按照某种归类原则,对输入的模式进行判断的过程。 二、模糊模式识别 模糊模式识别主要是指用模糊集合表示标准模式,进而进行识别的理论和方法。主要涉及到三个问题:(1)用模糊集合表示标准模式;(2)度量模糊集合之间的相似性;(3)模糊模式识别的原则。 例3.1 邮政编码识别问题 识别:0,1,2,……,9 关键:1)如何刻化,0,1,……,9(如何选取特征?)(区分)

2)如何度量特征之间的相似性? 1.模糊集合的贴近度 贴近度是度量两个模糊集合接近(相似) 程度的数量指标,公理化定义如下: 定义3.1 设,,()A B C F X ∈,若映射 []:()()0,1N F X F X ?→ 满足条件: ①(,)(,)N A B N B A =; ②(,)1,(,)0N A A N X φ==; ③若A B C ??,则 (,)(,)(,)N A C N A B N B C ≤∧。 则称(,)N A B 为模糊集合A 与B 的贴近度。 N 称为()F X 上的贴近度函数。 这个定义实际上是对贴近度提出了几个 准则,并没给出具体的贴近度。 2.常用的贴近度 ①海明贴近度 若{}12,,...,n X x x x =,则 111(,)1()()n i i i N A B A x B x n ==--∑ 若[,]X a b R =?,则

包含度及其应用【文献综述】

文献综述 数学与应用数学 包含度及其应用 在计算机与网络信息技术飞速发展的今天, 各个领域的信息与数据急剧增加(信息爆炸),并且由于人的参与使数据与信息中的不确定性更加显著, 信息与数据中的关系更加复杂(复杂系统). 如何从大量的、杂乱无章的、强干扰的数据(海量数据)挖掘潜在、新颖的、正确的、有利用价值的知识(有用知识), 这给智能信息处理提出了严峻的挑战. 粗糙集理论与方法对于处理复杂系统不失为一个有效的方法. 粗糙集作为处理不精确、不确定与不完全数据的理 1,2于1982年提出的, 该理论是经典集合论的又一推广形式. 从论是由波兰数学家Pawlak[] 20世纪90年代起, 粗糙集理论逐渐成为信息科学的一大研究热点, 受到越来越多国内外学者的关注. 1992年, 第一届关于粗糙集理论国际学术会议在波兰召开. 1995年, ACM Communication将其列为新浮现的计算机科学的研究课题. 1998年, 国际信息科学杂志(Information Sciences)还为粗糙集理论的研究作出了专辑. 20多年来, 粗糙集理论的研究越来越深入, 并且已经成功的应用到机器学习与知识发现、数据挖掘、决策支持与分析等领域. 我国关于粗糙集的研究起步较晚, 但是目前受到越来越多的国内科研人员的关注, 先后出版了一系列的有关粗糙集的专注. 在一个复杂系统中, 有许多不确定的来源. 首先, 人们提出的问题常常是不精确的, 不精确的问题导致不精确的结果; 第二, 获取的信息不完全, 知识获取的过程也是不精确的; 第三, 推理的过程也是不确定的, 不确定性的推理过程导致不确定性的结论. 随着人们研究范围的扩大, 研究的系统越来越复杂, 系统的复杂性与经典数学的精确描述越来越不协调. Zadeh[]3引入的模糊集合, 将经典集合模糊化, 使具有分明边界的集合变为具有不分明边界的模糊集合. 模糊集合理论[]4在复杂系统中得到了成功的应用, 特别是在模糊控制中,取得了显著成果. 包含度是将“包含关系”度量化, 从而包容了“关系”的不确定性. 不确定性推理是人工智能中最为活跃的研究领域, 也是计算机智能化的重要内容, 它包含有定量方法、定性方法, 以及定性与定量相结合的方法. 不确定性推理的定量方法、定量推理方法是通过给出命题的数值计算得出因果关系的数

传感器技术文献综述

传感器技术文献综述 摘要:传感器技术是综合多种学科的复合型技术,是一门正在蓬勃发展的现代化传感器技术。本文通过将所看的传感器相关文献总分为传感器、智能传感器以及无线传感器网络三个类别,对每一类别进行综述,分析每类别传感器研究中所存在的不足,探讨了相应的解决方案。 关键词:传感器 1.引言 传感器技术是一门正在蓬勃发展的现代化传感器技术,是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术,而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。在伴随着“信息时代”的到来,作为获取信息的重要手段——传感器技术得到飞速发展,其应用领域越来越广,人们对其要求越要越高,需求也越来越迫切。但传感器技术的广泛应用以及飞速发展并不代表着该技术已经成熟,相反在很多方面它还只是一项新兴的技术,依然存在很多的问题等待我们去解决。如何能够让我们的传感器装置很快的适应周围的环境,迅速准确的处理传输客户所需求的信号,并可以根据客户的要求作出相应的反应以及如何可以尽量的延长传感器装置的生存时间等等。这些问题都是我们在研究传感器技术的过程中所应该解决的问题。 2.传感器 传感器是一种物理装置,能够探测、感受外界的信号、物理条件(如光、热、温度、湿度等)或化学组成,并将探知到的信息传递给其他装置。该装置相当我们的人类的眼睛、鼻子、舌头、耳朵以及皮肤等一些感知器官。这样,精确快速地感受外界的信号就是迅速正确作出反应实施行动的前提条件。现在的物理传感器、生物传感器都是力图解决感知、精确以及快速这三个难题。例如文献[1]中的气体流量监测就有很多种的感知方法,但每种方法都存在着精确以及反应速率方面的问题,所以还需要不断的改进。然而,有很多的问题大自然已经很好的为我们解决了,我们应该取其精华。因此,我认为仿生传感器一定会解决很多传感器方面的问题。文献[2]就模仿沙漠蚂蚁利用太阳偏振光在沙漠中很好的辨别方向机理设计了偏振测角传感器。在我们的生活中,大自然还有很多聪明的发明,这些都可以应用到我们现在所讨论的传感器技术中。比如鲸鱼、鸽子能够探测到地球微弱的磁场并根据其来确定旅行路线;双髻鲨能都根据探测到微弱的生物电来捕食,在它的双髻上分布着许多微小的孔,传感器也可以设计成与此相同的结构来探测微弱的电磁波,并可以将此项技术应用到医学中来检测人体的健康;苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到,仿生学家根据苍蝇嗅觉器官的结构和功能,利用活的苍蝇,把非常纤细的微电极插到苍蝇的嗅觉神经上仿制成一种十分奇特的小型气体分析仪,用来检测舱内气体的成分。此外,还有很多的动物都具有特异功能,可以利用这些大量的自然资源来实现我们对自然界一些信息的需求,可以直接利用动物,降低成本,可以根据研究其特异功能的机制,改进现在的传感器。 目前的传感器往往仅能感知一种或几种物理量。因此,要尽量集成传感器的功能。在实际中,需要检测的物理量往往不是唯一的,这样就需要多种传感器

水位控制的研究【文献综述】

文献综述 电气工程及自动化 水位控制的研究 摘要:随着城市高层建筑供水问题的日益突出,保持供水的自动控制、提高供水质量是相当重要的,本文主要是对水位的控制方式如电极式,浮球式,单片机式,PID控制式作了一个简单的比较说明。关键词:液位;自动控制;PID控制;单片机控制 一、前言 在工农业生产以及日常生活应用中,常常会需要对容器中的液位(水位)进行自动控制。比如自动控制水箱、水池、水槽、锅炉等容器中的蓄水量,生活中抽水马桶的自动补水控制、自动电热水器、电开水机的自动进水控制等。虽然各种水位控制的技术要求不同,精度不同,但基本的控制原理都可以归纳为一般的反馈控制方式,它们的主要区别在于检测液位的方式、反馈形式,以及控制器上的区别。下面就生活给水系统的水位控制进行分析与探讨。 二、液位控制的方式 对于液位进行控制的方式有很多,而应用较多的主要有2种,一种是简单的机械式控制装置控制,一种是复杂的控制器控制方式[1]。 1.简单的机械式控制方式 其常用形式有浮标式、电极式等,这种控制形式的优点是结构简单,成本低廉。存在问题是精度不高,不能进行数值显示,另外很容易引起误动作,且只能单独控制,与计算机进行通信较难实现。1.1 浮球自动控制水位 当清水被消耗后,蓄水池内水位下降,浮球下降,杠杆A端下降,以O点为中心轴的另一端B开始上升,带动截止阀手柄(截止阀手柄内部改制后将螺丝旋转升降变为直杆直线升降),闸阀逐渐打开,清 水开始进入蓄水池;水位上升,托起浮球,杠杆A端开始上升,以O点为中心轴的另一端开始下降,牵动 截止阀手柄下降。当水位上升到一定高度时,截止阀手柄将水关闭,清水不再流入池内[2]。通过浮球控制闸阀手柄升降进行自动水位调节,可以保证水不外流,轧机用多少水,闸阀就会自动供应多少。该装置优点是结构简单,成本低廉,存在的问题是精度不高。 1.2 电极式液位计 需要4个电极。这些电极皆接直流电源的负极,长度分别等于各控制点的深度。如果池体不导电,还需要一个公用正极。电极棒可呈圆周分布,中间为公用正极棒,一周均布若干个负极棒,结构紧凑,视具体情况电极棒也可呈直线分布,结构简乳制造容易,特别适用子不需要公用电极的场合。它有4

现代控制理论 综述论文 2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。

三角形类型的模糊模式识别

三角形类型的模糊模式识别 摘要:三角形类型的模糊模式识别问题,在生物细胞染色体形状的识别、癌细 胞以及白血球分类等问题中有很大意义。发现传统方法和参考论文所提出的新方法在某些三角形判断中的不足,故提出基于给定阈值5.0=λ的最大隶属度原则,提出关于三角形角度的指数型隶属度函数,并与其它两种方法进行对比,结果表明指数函数性质使所求得的隶属度差距较大、区别明显,便于识别,并且更贴近于人们的直观理解,能更好的实现三角形的分类。 关键词:三角形;最大隶属度原则;阀值原则;指数型隶属度函数 1、基本概念 a) 最大隶属度原则:当模式是模糊的,被识别对象时明确的,问题可以描述成:设~ ~ 2~ 1,...,,n A A A 是论域U 中的n 个模糊模式。0U 是U 中一个元素。若 有},...,2,1{n i ∈,使:()()}{max 010~ ~ u u j i A n j A μμ≤≤= 则认为0U 相对隶属于模式~ i A ,并称这种识别方法为最大隶属度原则。 b) 阀值原则:设~ ~ 2~ 1,...,,n A A A 是论域U 中的n 个模糊模式,规定一个阀值 ](1,0∈λ,U u ∈为一个待识别对象。若()()()λ<},...,,max{~ ~ 2~ 1u A u A u A n ,则 作为“拒绝识别”的判断;若()()()λ≥},...,,max{~ ~ 2~ 1u A u A u A n ,并且有k 个模 式()()()u A u A u A ik i i ~ ~ 2~ 1,...,,大于或等于λ,则认为识别可行。 2、指数型隶属度函数的建立 设三角形的三个内角分别为C B A ,,,并且约定0>≥≥C B A 。取特征因子集 ()}0,180,,{>≥≥=++=C B A C B A C B A U ο。 根据三角形的特征,在U 中规定5个具体的三角形:等腰三角形~ I ;直角三 角形~ R ;等边三角形~ E ;等腰直角三角形~ IR ;非典型三角形~ O 。各隶属度函数 定义如下: a) 等腰三角形~ I :因为等腰三角形满足B A =或C B =,故:

智能灌溉文献综述

智能灌溉文献综述 一、国内外发展现状 由于我国自动化技术起步较晚,目前在各行各业的应用正处于研究推广阶段,自动化技术在农业上的应用程度更低,所以,目前自动灌溉控制系统还处于研制、试用阶段。中国农业机械化研究院联合多家单位研制了温室自动灌溉施肥系统,该系统可在手动控制、程序控制和自动控制等多种灌溉系统模式之间进行切换,能满足温室作物的大部分需求,但是成本较高(赵玮娜2009)。中国灌排技术开发公司(2006)以单片机为控制核心开发了微灌自动监控系统,该系统能实现灌溉系统检测、控制,同时还能进行事故处理(沈绪榜2001)。北京农业工程大学利用8031 单片机研制了一套灌溉控制系统(毛慎建1995),该系统是一个多输入、多输出系统,可采集多路土壤水分信号,并对单独回路进行控制,使用方便。但上述系统功能单一,扩展性差,在控制对象复杂情况下难以正常运行。利用现代计算机技术和通信技术,福建省水利建设技术中心(陈文清2004)开发了一套节水灌溉自动化控制系统,能根据需要实现定时灌溉、恒湿灌溉和人工选择三种工作方式。WT-02 型微喷灌定时自动控制器是由北京奥特思达科技有限公司研制的一种电子灌溉自动化控制系统(贺良才2010),该系统使用对象广泛,能在多种工作模式下工作。上述两种系统在一定程度上能进行自动化灌溉控制,但仅限于定时操作或人工操作,还不能实现根据作物需要进行适时、适量的灌溉。廖功磊等(2006)应用可编程序控制器(PLC)、工控机和工业遥控器构成核心控制部件,采用组态软件(MCGS)及WPL 编程软件设计了全自动智能控制系统。崔天时等(2010)针对温室灌溉受多因素影响难以建立精确控制模型的特点,开发了基于LabVIEW 平台的温室节水灌溉模糊控制系统。该系统能够根据土壤水分适时、适量的灌溉,对节水灌溉技术的发展起到了一定的作用。国内还有直接以PC 机进行控制的自动灌溉控制器,不仅使成本增加,而且不易在田间较恶劣的环境下使用,所以实用化程度很低。总之,在我国,虽然有多种灌溉控制器,但多数规模较小,局限于实验和理论的探讨,而且开发出来的产品价格昂贵,农民尽管知道能节能、节水、增产,但由于一次性投资太大,多数农民承受不起,所以根本无法普及应用。 自动化技术在国外普及较早,在农业上的应用目前已经很成熟,带有智能控制的节水灌溉系统的应用面积和产业化程度很高。统计数据表明,美国、前苏联的喷灌面积己占其总灌溉面积40%以上,英国、德国、奥地利、丹麦、瑞典、日本等国的旱地灌溉面积中90%以上采用喷灌。这些系统中,广泛使用灌溉控制技术。控制模式也由早期的当地控制发展到可以实现遥测、遥控的集中控制模式(史爱克2001;陈莉2002;王长德2002;唐黎标2002;马学良1999)。法国和日本等国家开发并使用多功能压力流量控制设备,该设备能实现给水、压力控制、流量显示、水量控制等功能;日本在大多数旱地灌溉系统中使用恒压喷灌技术,取得良好的效果。世界著名的耐特费姆(Netfim) 灌溉设备和滴灌系统公司生产的微灌系统基本由计算机自动控制运行,可根据作物的生长及水、肥状况进行灌水和施肥,节约大量人力,且管理及时,使作物产量和品质都有较大幅度的提高。 在发达国家,先进的灌溉系统已经得到广泛使用。这些国家大都采用先进的节水灌溉系统,这些系统能对灌区用水进行监测预报,实行动态管理,采用遥感技术,监测土壤墒情和作物生长,开发和制造了一系列用途广泛,功能强大的数字式灌溉控制器,并得到了广泛的应用。特别是以色列这个干旱国家,目前全国农业土地基本上实现了灌溉管理自动化,并且普遍推行自动控制系统,按时、按量将水、肥直接送入作物根部,水资源利用率和单方水的粮食产量都相当高。另外,北美、澳大利亚、韩国等国家和地区都己有发展成熟并形成系列的灌溉控制器产品,微灌方式普遍采用计算机控制,埋在地下的湿度传感器可以传回有关

模糊控制文献报告

模糊控制文献阅读报告 1、前言 模糊控制(fuzzy control)是以模糊集合理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法[1],从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法。模糊控制以现代控制理论为基础,同时与自适应控制技术、人工智能技术、神经网络技术的相结合,在控制领域得到了空前的应用,如模糊控制在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣。模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控制理论的发展,介绍了模糊控制理论的原理以及其分类,分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容。 2、模糊控制概述[2] 模糊控制实质上是一种非线性控制,从属于智能控制的范畴,模糊控制方法是当今世界最先进的控制方法之一。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 2.1、国内外概况 1965 年,美国加利福尼亚大学L .A .Zadeh 教授在他的《fuzzyset》中首先提出了模糊数学的概念,随后于1972提出“A rationale for Fuzzy Control”即模

文献综述--智能控制算法在温度控制中的应用研究

辽宁工业大学 文献综述 题目智能能控制算法在温度控制中的应用研究 电气工程学院(系)自动化专业093 班 学生姓名王松 学号090302075 指导教师于洋

智能控制算法在温度控制中的应用研究 —文献综述 1前言 智能控制是当今多学科交叉的前沿领域之一。以1987年召开的第一界智能控制国际会议为标志,智能控制已经开始成为一门新的学科。 纵观智能控制产生、发展的历史背景与现状,其研究中心始终是解决传统控制理论、方法(包括古典控制、现代控制、自适应控制、鲁棒控制、大系统方法等)所难以解决的不确定性问题.控制学科所面临的控制对象的复杂性、环境的复杂性、控制目标的复杂性愈益突出,智能控制的研究正提供了解决这类问题的有效手段,集中表现在控制工程中运用智能方法解决复杂系统的控制已取得了相当多的成功;另一方面,智能控制的研究虽然取得了一些成果,但实质性进展甚微,理论方面尤为突出,应用则主要是解决技术问题,对象具体而单一。1992年美国国家科学基金会发出发展智能控制研究建议指出:智能控制研究工作的中心应放在系统问题描述和智能控制器设计等方面的新方法的研究上,而不是在下级拼凑诸如PID控制器之类的传统控制技术方法与监控级基于规则的控制器相连结所构成的松耦合系统。应当着重于基础控制工程方法的开发而不是技术演示。智能控制作为多学科交叉的产物,其研究现状与存在的问题固然与交叉学科的发展密切相关,但传统的方法论也在一定程度上束缚了它的发展.事实上,在人们久已习惯的还原论思想及传统控制思路的引导下,智能控制面临的一些关键问题均难以突破,宏观上需要寻求新的思路。 2智能控制算法在温度控制中的发展历史和应用现状 温度控制技术发展经历了三个阶段:l、定值开关控制;2、PID控制; 3、智能控制。定值开关控制方法的原理是若所测温度比设定温度低,则开

传感器技术文献综述

传感器技术文献综述 学校邕江大学专业09信息学号40号姓名赵丽霞 一、摘要 传感器技术是综合多种学科的复合型技术,是一门正在蓬勃发展的现代化传感器技术。本文通过将所看的传感器相关文献总分为传感器、智能传感器以及无线传感器网络三个类别,对每一类别进行综述,分析每类别传感器研究中所存在的不足,探讨了相应的解决方案。 二、关键词:传感器 三、引言 传感器技术是一门正在蓬勃发展的现代化传感器技术,是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术,而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。在伴随着“信息时代”的到来,作为获取信息的重要手段——传感器技术得到飞速发展,其应用领域越来越广,人们对其要求越要越高,需求也越来越迫切。但传感器技术的广泛应用以及飞速发展并不代表着该技术已经成熟,相反在很多方面它还只是一项新兴的技术,依然存在很多的问题等待我们去解决。如何能够让我们的传感器装置很快的适应周围的环境,迅速准确的处理传输客户所需求的信号,并可以根据客户的要求作出相应的反应以及如何可以尽量的延长传感器装置的生存时间等等。这些问题都是我们在研究传感器技术的过程中所应该解决的问题。 四、传感器 传感器是一种物理装置,能够探测、感受外界的信号、物理条件(如光、热、温度、湿度等)或化学组成,并将探知到的信息传递给其他装置。该装置相当我们的人类的眼睛、鼻子、舌头、耳朵以及皮肤等一些感知器官。这样,精确快速地感受外界的信号就是迅速正确作出反应实施行动的前提条件。现在的物理传感器、生物传感器都是力图解决感知、精确以及快速这三个难题。例如气体流量监测就有很多种的感知方法,但每种方法都存在着精确以及反应速率方面的问题,所以还需要不断的改进。然而,有很多的问题大自然已经很好的为我们解决了,我们应该取其精华。因此,我认为仿生传感器一定会解决很多传感器方面的问题。

相关主题