搜档网
当前位置:搜档网 › 美国数学竞赛amc12

美国数学竞赛amc12

美国数学竞赛amc12
美国数学竞赛amc12

2002 AMC 12A Problems

Problem 1

Compute the sum of all the roots of

Problem 2

Cindy was asked by her teacher to subtract 3 from a certain number and then divide the result by 9. Instead, she subtracted 9 and then divided the result by 3, giving an answer of 43. What would her answer have been had she worked the problem correctly?

Problem 3

According to the standard convention for exponentiation,

If the order in which the exponentiations are performed is changed, how many other values are possible?

Problem 4

Find the degree measure of an angle whose complement is 25% of its supplement.

Problem 5

Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region.

Problem 6

For how many positive integers does there exist at least one positive integer n such

that ?

infinitely many

Problem 7

A arc of circle A is equal in length to a arc of circle B. What is the ratio of circle A's area and circle B's area?

Problem 8

Betsy designed a flag using blue triangles, small white squares, and a red center square, as shown.

Let be the total area of the blue triangles, the total area of the white squares,

and the area of the red square. Which of the following is correct?

Jamal wants to save 30 files onto disks, each with 1.44 MB space. 3 of the files take up 0.8 MB, 12 of the files take up 0.7 MB, and the rest take up 0.4 MB. It is not possible to split a file onto 2 different disks. What is the smallest number of disks needed to store all 30 files?

Problem 10

Sarah places four ounces of coffee into an eight-ounce cup and four ounces of cream into a second cup of the same size. She then pours half the coffee from the first cup to the second and, after stirring thoroughly, pours half the liquid in the second cup back to the first. What fraction of the liquid in the first cup is now cream?

Problem 11

Mr. Earl E. Bird gets up every day at 8:00 AM to go to work. If he drives at an average speed of 40 miles per hour, he will be late by 3 minutes. If he drives at an average speed of 60 miles per hour, he will be early by 3 minutes. How many miles per hour does Mr. Bird need to drive to get to work exactly on time?

Problem 12

Both roots of the quadratic equation are prime numbers. The number of

possible values of is

Problem 13

Two different positive numbers and each differ from their reciprocals by . What

is ?

For all positive integers , let .

Let . Which of the following relations is true?

Problem 15

The mean, median, unique mode, and range of a collection of eight integers are all equal to 8. The largest integer that can be an element of this collection is

Problem 16

Tina randomly selects two distinct numbers from the set {1, 2, 3, 4, 5}, and Sergio randomly selects a number from the set {1, 2, ..., 10}. What is the probability that Sergio's number is larger than the sum of the two numbers chosen by Tina?

Problem 17

Several sets of prime numbers, such as use each of the nine nonzero digits exactly once. What is the smallest possible sum such a set of primes could have?

Problem 18

Let and be circles defined

by and respectively. What is the length of

the shortest line segment that is tangent to at and to at ?

The graph of the function is shown below. How many solutions does the

equation have?

Problem 20

Suppose that and are digits, not both nine and not both zero, and the repeating

decimal is expressed as a fraction in lowest terms. How many different denominators are possible?

Problem 21

Consider the sequence of numbers: For , the -th term of the

sequence is the units digit of the sum of the two previous terms. Let denote the sum of the

first terms of this sequence. The smallest value of for which is:

Problem 22

Triangle is a right triangle with as its right

angle, , and . Let be randomly chosen inside ,

and extend to meet at . What is the probability that ?

Problem 23

In triangle , side and the perpendicular bisector of meet in point ,

and bisects . If and , what is the area of

triangle ?

Problem 1

In the year, the United States will host the International Mathematical Olympiad.

Let and be distinct positive integers such that the product .

What is the largest possible value of the sum ?

Problem 2

Problem 3

Each day, Jenny ate of the jellybeans that were in her jar at the beginning of that day.

At the end of the second day, remained. How many jellybeans were in the jar originally?

Problem 4

The Fibonacci sequence starts with two 1s, and each term afterwards is the sum of its two predecessors. Which one of the ten digits is the last to appear in the units position of a number in the Fibonacci sequence?

Problem 5

If where then

Problem 6

Two different prime numbers between and are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?

Problem 7

How many positive integers have the property that is a positive integer?

Problem 8

Figures, , , and consist of , , , and non-overlapping squares. If the

pattern continued, how many non-overlapping squares would there be in figure?

Problem 9

Mrs. Walter gave an exam in a mathematics class of five students. She entered the scores in random order into a spreadsheet, which recalculated the class average after each score was entered. Mrs. Walter noticed that after each score was entered, the average was always an integer. The scores (listed in ascending order) were 71,76,80,82, and 91. What was the last score Mrs. Walters entered?

Problem 10

The point is reflected in the -plane, then its image is rotated

by about the -axis to produce , and finally, is translated by 5 units in the

positive-direction to produce . What are the coordinates of ?

Problem 11

Two non-zero real numbers, and satisfy. Which of the following is a

possible value of?

Problem 12

Let A, M, and C be nonnegative integers such that . What is the maximum

value of + + + ?

Problem 13

One morning each member of Angela’s family drank an 8-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family?

Problem 14

When the mean,median, and modeof the list

are arranged in increasing order, they form a non-constant arithmetic progression. What is the sum of all possible real values of?

Problem 15

Let be a function for which . Find the sum of all values of for

which.

Problem 16

A checkerboard of rows and columns has a number written in each square, beginning in

the upper left corner, so that the first row is numbered , the second

row , and so on down the board. If the board is renumbered so that the left column,

top to bottom, is , the second column and so on across the board, some squares have the same numbers in both numbering systems. Find the sum of the numbers in these squares (under either system).

Problem 17

A centered at has radius and contains the point . The segment is tangent to

the circle at and . If point lies

on and bisects , then

Problem 18

In year , the day of the year is a Tuesday. In year , the day is

also a Tuesday. On what day of the week did th day of year occur?

Problem 19

triangle , , , . Let denote the midpoint

of and let denote the intersection of with the bisector of angle .

Which of the following is closest to the area of the triangle ?

Problem 20

If and are positive numbers satisfying

Then what is the value of latex ?

Problem 21

Through a point on the hypotenuse of right triangle, lines are drawn parallel to the legs of the triangle so that the triangle is divided into asquare and two smaller right triangles. The area of one of the two small right triangles times the area of the square. The ratio of the area of the other small right triangle to the area of the square is

Problem 22

The graph below shows a portion of the curve defined by the quartic

polynomial. Which of the following is the smallest?

Problem 23

Professor Gamble buys a lottery ticket, which requires that he pick six different integers

from through , inclusive. He chooses his numbers so that the sum of the base-ten logarithms of his six numbers is an integer. It so happens that the integers on the winning ticket have the same property— the sum of the base-ten logarithms is an integer. What is the probability that Professor Gamble holds the winning ticket?

Problem 24

If circular arcs and centers at and , respectively, then there exists a

circletangent to both and , and to . If the length of is , then the circumference of the circle is

Problem 25

Eight congruent Equilateral triangle each of a different color, are used to construct a regular octahedron. How many distinguishable ways are there to construct the octahedron? (Two colored octahedrons are distinguishable if neither can be rotated to look just like the other.)

历年全国高中数学联赛试题及答案

历年全国高中数学联赛试题及答案 1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题。 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效,考试时不 能使用计算器。 参考公式:二次函数图象的顶点坐标是。 温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”。 卷Ⅰ(选择题) 一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.2的相反数是(▲) A.-2 B.2 C.- D. 2.下列计算正确的是(▲)A.B.9 =3 C.3-1= -3 D.2 +3= 5 3.据交通运输部统计,2013年春运期间,全国道路、水路、民航、铁路运送旅客总量超过了3400000000人次,该数用科学记数法可表示为(▲) A.B.C. D. 4.如图是由个相同的正方体搭成的几何体,则其俯视图是(▲) 5.使分式无意义的的值是(▲) A. B. C. D. 6.如图,已知,若, ,则等于(▲) A.B.C.D. 7.市委、市政府打算在2015年底前,完成国家森林城市创建.这是小明随机抽取我市10个小区所得到的绿化率情况,结果如下表: 小区绿化率(%) 20 25 30 32 小区个数 2 4 3 1 则关于这10个小区的绿化率情况,下列说法错误的是(▲) A.中位数是25% B.众数是25% C.极差是13% D.平均数是26.2% 8.将一个半径为R,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r,则R与r的关系正确的是(▲) A.R=8r B.R=6r C.R=4r D.R=2r 9.甲、乙两车分别从相距的两地同时出发,它们离A地的路程随时间变化的图象如图所示,则下列结论不正确的是( ▲) A.甲车的平均速度为; B.乙车行驶小时到达地,稍作停留后返回地; C.经小时后,两车在途中相遇; D.乙车返回地的平均速度比去地的平均速度小。 10.如图,为等边三角形,点的坐标为,过点作直线交于点,交于,点在反比例函数<的图象上,若和(即图中两阴影部分)的面积相等,则值为(▲)A.B.C.D. 卷Ⅱ(非选择题) 二、填空题(本大题有6小题,每题4分,共24分) 11.分解因式:= ▲。 12.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个

AMC/AIME美国数学竞赛 试题真题

AMC/AIME美国数学竞赛试题真题 考试信息 AMC最新考试时间: ●2010年第26届AMC8于 11月16日,星期二 ●2011第12届AMC10A,第62届AMC12A 于2月8日,星期二 ●2011第12届AMC10B,第62届AMC12B 于2月23日,星期三 ●2011第29届AIME-1于3月17日,星期四 2011第29届AIME-2于3月30日,星期三 ●2009年AMC8考试情况

●2008年考试情况 AMC/AIME中国历程: 1983第1届AIME上海有76名同学获得参赛资格 1984年第2届AIME有110人获得参赛资格 1985年第3届AIME北京有118名同学获得参赛资格 1986年第4届AIME上海有154名同学获得参赛资格,我国首次参加IMO的上海向明中学吴思皓就是在第四届AIME中获得满分 1992年第10届AIME上海有一千多名同学获得参赛资格,其中格致中学潘毅明,交大附中张觉,上海中学葛建庆均获满分1993年第11届AIME上海有一千多名同学获得参赛资格,其中华东师大二附中高一王海栋,格致中学高二(女)黄静,市西中学高二张

亮,复旦附中高三韩志刚四人获得满分,前三名总分排名复旦附中41分,华东师大二附中41分,上海中学40分。 北京地区参加2006年AMC的共有7所市重点学校的842名学生,有515名学生获得参加AIME资格,其中,清华附中有61名学生参加AMC,45名学生获得AIME资格,20名学生获得荣誉奖章 据悉中国大陆以下地区可以报名参加考试: 北京地区:中国数学会奥林匹克委员会负责组织实施 长春地区、哈尔滨地区也有参加考试 在华举办的美国人子弟学校也有参加考试广州地区:《数学奥林匹克报》负责组织实施。 在中国大陆报名者就在中国大陆考试。考题采用英文版。 2009年AMC中国地区参赛学校一览表

AMC10美国数学竞赛A卷附中文翻译和答案之欧阳学创编

2011AMC10美国数学竞赛A卷时间:2021.03.03 创作:欧阳学 1. A cell phone plan costs $20 each month, plus 5¢per text message sent, plus 10¢ for each minute used over 30 hours. In January Michelle sent 100 text messages and talked for 30.5 hours. How much did she have to pay? (A) $24.00(B) $24.50(C) $25.50(D) $28.00(E) $30.00 2. A small bottle of shampoo can hold 35 milliliters of shampoo, Whereas a large bottle can hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy? (A) 11(B) 12(C) 13(D) 14(E) 15 3. Suppose [a b] denotes the average of a and b, and {a b c} denotes the average of a, b, and c. What is {{1 1 0} [0 1] 0}? (A)(B)(C)(D)(E) 4. Let X and Y be the following sums of arithmetic sequences: X= 10 + 12 + 14 + …+ 100. Y= 12 + 14 + 16 + …+ 102. What is the value of ?

历年全国初中数学竞赛试题及参考答案

2006年全国初中数学竞赛试题及参考答案 一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且仅有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分) 1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪. 刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( ) (A)36(B)37(C)55 (D)90 2.已知,,且,则a的值等于( ) (A)-5(B)5(C)-9(D)9 3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴. 若斜边上的高为h,则( ) (A)h<1 (B)h=1 (C)1<h<2 (D)h>2 4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形,则至少要剪的刀数是( ) (A)2004 (B)2005 (C)2006 (D)2007 5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q,若QP=QO,则 的值为( ) (A)(B) (C)(D) 二、填空题(共5小题,每小题6分,满分30分) 6.已知a,b,c为整数,且a+b=2006,c-a=2005. 若a<b,则a+b+c的最大值为___________. 7.如图,面积为的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c是整数,且b不能被任何质数的平方整除,则的值等于________.

2018年美国“数学大联盟杯赛”(中国赛区)初赛三年级试卷及答案

2017-2018年度美国“数学大联盟杯赛”(中国赛区)初赛 (三年级) (初赛时间:2017年11月26日,考试时间90分钟,总分200分) 学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论, 我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。 请在装订线内签名表示你同意遵守以上规定。 考前注意事项: 1. 本试卷是三年级试卷,请确保和你的参赛年级一致; 2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全; 3. 请确保你已经拿到以下材料: 本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、草稿纸。考试完毕,请务必将英文词汇手册带回家,上面有如何查询初赛成绩、及如何参加复赛的说明。其他材料均不能带走,请留在原地。 选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。 1. 5 + 6 + 7 + 1825 + 175 = A) 2015 B) 2016 C) 2017 D) 2018 2.The sum of 2018 and ? is an even number. A) 222 B) 223 C) 225 D) 227 3.John and Jill have $92 in total. John has three times as much money as Jill. How much money does John have? A) $60 B) $63 C) $66 D) $69 4.Tom is a basketball lover! On his book, he wrote the phrase “ILOVENBA” 100 times. What is the 500th letter he wrote? A) L B) B C) V D) N 5.An 8 by 25 rectangle has the same area as a rectangle with dimensions A) 4 by 50 B) 6 by 25 C) 10 by 22 D) 12 by 15 6.What is the positive difference between the sum of the first 100 positive integers and the sum of the next 50 positive integers? A) 1000 B) 1225 C) 2025 D) 5050 7.You have a ten-foot pole that needs to be cut into ten equal pieces. If it takes ten seconds to make each cut, how many seconds will the job take? A) 110 B) 100 C) 95 D) 90 8.Amy rounded 2018 to the nearest tens. Ben rounded 2018 to the nearest hundreds. The sum of their two numbers is A) 4000 B) 4016 C) 4020 D) 4040 9.Which of the following pairs of numbers has the greatest least common multiple? A) 5,6 B) 6,8 C) 8,12 D) 10,20 10.For every 2 pencils Dan bought, he also bought 5 pens. If he bought 10 pencils, how many pens did he buy? A) 25 B) 50 C) 10 D) 13 11.Twenty days after Thursday is A) Monday B) Tuesday C) Wednesday D) Thursday 12.Of the following, ? angle has the least degree-measure. A) an obtuse B) an acute C) a right D) a straight 13.Every student in my class shouted out a whole number in turn. The number the first student shouted out was 1. Then each student after the first shouted out a number that is 3 more than the number the previous student did. Which number below is a possible number shouted out by one of the students? A) 101 B) 102 C) 103 D) 104 14.A boy bought a baseball and a bat, paying $1.25 for both items. If the ball cost 25 cents more than the bat, how much did the ball cost? A) $1.00 B) $0.75 C) $0.55 D) $0.50 15.2 hours + ? minutes + 40 seconds = 7600 seconds A) 5 B) 6 C) 10 D) 30 16.In the figure on the right, please put digits 1-7 in the seven circles so that the three digits in every straight line add up to 12. What is the digit in the middle circle? A) 3 B) 4 C) 5 D) 6 17.If 5 adults ate 20 apples each and 3 children ate 12 apples in total, what is the average number of apples that each person ate? A) 12 B) 14 C) 15 D) 16 18.What is the perimeter of the figure on the right? Note: All interior angles in the figure are right angles or 270°. A) 100 B) 110 C) 120 D) 160 19.Thirty people are waiting in line to buy pizza. There are 10 people in front of Andy. Susan is the last person in the line. How many people are between Andy and Susan? A) 18 B) 19 C) 20 D) 21

希望杯数学竞赛小学三年级精彩试题

小学三年级数学竞赛训练题(二) 1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数. 8.(1)如果“访故”变成“放诂”,那么“1234”就变成. (2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.

10.图9、图10分别是由汉字组成的算式,不同的汉字代表不 同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使 算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大 值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了, 大家都盼着晴天,再过36小时会出太阳吗? 14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是 星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少?

2011AMC10美国数学竞赛A卷附中文翻译和答案

2011AMC10美国数学竞赛A卷 1. A cell phone plan costs $20 each month, plus 5¢ per text message sent, plus 10¢ for each minute used over 30 hours. In January Michelle sent 100 text messages and talked for 30.5 hours. How much did she have to pay? (A) $24.00 (B) $24.50 (C) $25.50 (D) $28.00 (E) $30.00 2. A small bottle of shampoo can hold 35 milliliters of shampoo, Whereas a large bottle can hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy? (A) 11 (B) 12 (C) 13 (D) 14 (E) 15 3. Suppose [a b] denotes the average of a and b, and {a b c} denotes the average of a, b, and c. What is {{1 1 0} [0 1] 0}? (A) 2 9(B)5 18 (C)1 3 (D) 7 18 (E) 2 3 4. Let X and Y be the following sums of arithmetic sequences: X= 10 + 12 + 14 + …+ 100. Y= 12 + 14 + 16 + …+ 102. What is the value of Y X ?

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题 第一试 一、选择题 本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是 两两不同的实数,则2 22 23y xy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )3 5 . 答( ) 2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) 3. 方程012=--x x 的解是 (A ) 251±; (B )25 1±-; (C ) 251±或251±-; (D )2 5 1±-±. 答( ) 4. 已知:)19911991(2 11 1 n n x --=(n 是自然数).那么n x x )1(2+-,的值是 (A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5. 若M n 1210099321=?????Λ,其中M为自然数,n 为使得等式成立的最大的自然数,则M (A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.

答( ) 6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S , 32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3. 答( ) 8. 在锐角ΔABC 中, 1= AC ,c AB =,ο60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤2 1 ; 答( ) (C )c > 2; (D )c = 2. 答( ) 二、填空题 1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a c b 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,q p n m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( . 4.四边形ABCD 中,∠ ABC ο135=,∠BCD ο120=,AB 6=,BC 35-=, CD = 6,则AD = . 第二试 1 1=S 3S =1 32=S

美国小学数学教育研究报告

更多免费资料请访问:豆丁教育百科 美国小学数学教育研究报告 深圳市罗湖区翠北小学高红妹 摘要:在近百年来世界课程改革的各次浪潮中,美国从来没有做观潮派,而是积极的参与者甚至是主宰者。出现了不少颇有世界影响的课程改革家和课程学论著,值得我们去研究、借鉴。本研究报告介绍了笔者对美国小学数学教育研究的情况。主要包括:研究背景、研究意义、研究方法、研究结果、研究启示、研究反思。 关键词:美国小学数学教育研究 前言 我有幸参加深圳市组织的第三期海外培训,到美国学习、参观和考察。期间我们参观了大学和中小学,听了不同年级的课,参加了各种各样的活动,感受到了极具特色的美国文化风情。 一、研究背景 人们普遍的看法是:中国的基础教育是打基础的教育,“学多悟少”;而美国的教育是培养创造力的教育,“学少悟多”。中美两国的教育有着极为不同的传统。中国的教育注重对知识的积累和灌输;注重培养学生对知识和权威的尊重;注重对知识的掌握和继承,以及知识体系的构建。相比较,美国则更注重培养学生运用知识的实际能力;注重培养学生对知识和权威的质疑;注重对知识的拓展和创造。这两种教育表达了对待知识的不同态度,中国教育的表达是对知识的静态接受,美国教育则表达的是对知识的动态改变,反映了两国教育不同的知识观。 以数学为例,我国教育界历来认为,基本概念和基本运算是数学的基础。尽管教材有计算器的介绍,但老师们总担心学生会依赖计算器,因为考试时学生是不允许带计算器的。然而在美国,基本运算不受重视,计算器在中小学使用很普遍。美国人认为,计算器既然算得又快又准,我们又何必劳神费力地用脑算呢?人脑完全可以省下来去做机器做不了的事。这点我深有体会,记得有一次我们坐公交车时,几个人合起来投币,但司机要我们一个一个投币,我们都觉得奇怪,经过了解,原来他们无法算出几个人一共要付的钱,在我国就决不会出现此等情况。我们教育的“基础”侧重,让学生大脑在独立于计算机的前提下,尽可能多地储

美国AMC8数学竞赛试题(含答案)

2001 年 美国AMC8 (2001年 月 日 时间40分钟) 1. 卡西的商店正在制作一个高尔夫球奖品。他必须给一颗高尔夫球面上的300个小凹洞着色, 如果他每着色一个小凹洞需要2秒钟,试问共需多 分钟才能完成他的工作。 (A) 4 (B) 6 (C) 8 (D) 10 (E) 12 。 2. 我正在思考两个正整数,它们的乘积是24且它们的和是11,试问这两个数中较大的数是什 么 。 (A) 3 (B) 4 (C) 6 (D) 8 (E) 12 。 3. 史密斯有63元,艾伯特比安加多2元,而安加所有的钱是史密斯的三分之一,试问艾伯特 有 元。 (A) 17 (B) 18 (C) 19 (D) 21 (E) 23 。 4. 在每个数字只能使用一次的情形下,将1,2,3,4及9作成最小的五位数,且此五位数为 偶数,则其十位数字为 。 (A) 1 (B) 2 (C) 3 (D) 4 (E) 9 。 5. 在一个暴风雨的黑夜里,史努比突然看见一道闪光。10秒钟后,他听到打雷声音。声音的速 率是每秒1088呎,但1哩是5280呎。若以哩为单位的条件下,估计史努比离闪电处的距离 最接近下列何者 。 (A) 1 (B) 121 (C) 2 (D) 22 1 (E) 3 。 6. 在一笔直道路的一旁有等间隔的6棵树。第1棵树与第4棵树之间的距离是60呎。试问第1 棵树到最后一棵树之间的距离是 呎。 (A) 90 (B) 100 (C) 105 (D) 120 (E) 140 。 问题7、8、9请参考下列叙述: 主题:竞赛场所上的风筝展览 7. 葛妮芙为提升她的学校年度风筝奥林匹亚竞赛的质量,制作了一个小风筝 与一个大风筝,并陈列在公告栏展览,这两个风筝都如同图中的形状, 葛妮芙将小风筝张贴在单位长为一吋(即每两点距离一吋)的格子板上,并将 大风筝张贴在单位长三吋(即每两点距离三吋)的格子板上。试问小风筝的面 积是 平方吋。 (A) 21 (B) 22 (C) 23 (D) 24 (E) 25 。 8. 葛妮芙在大风筝内装设一个连接对角顶点之十字交叉型的支撑架子,她必须使用 吋的 架子材料。 (A) 30 (B) 32 (C) 35 (D) 38 (E) 39 。 9. 大风筝要用金箔覆盖。金箔是从一张刚好覆盖整个格子板的矩形金箔裁剪下来的。试问从四 个角隅所裁剪下来废弃不用的金箔是 平方吋。 (A) 63 (B) 72 (C) 180 (D) 189 (E) 264 。 10. 某一收藏家愿按二角五分(即41元)银币面值2000%的比率收购银币。在该比率下,卜莱登现 有四个二角五分的银币,则他可得到 元。 (A) 20 (B) 50 (C) 200 (D) 500 (E) 2000 。 11. 设四个点A ,B ,C ,D 的坐标依次为A (3,2),B (3,-2),C (-3,-2),D (-3,0)。则四边形 ABCD 的面积是 。 (A) 12 (B) 15 (C) 18 (D) 21 (E) 24 。 12. 若定义a ?b =b a b a -+,则(6?4)?3= 。 (A) 4 (B) 13 (C) 15 (D) 30 (E) 72 。 13. 在黎琪儿班级36位学生中,有12位学生喜爱巧克力派,有8位学生喜爱苹果派,且有6 位学生喜爱蓝莓派。其余的学生中有一半喜爱樱桃派,另一半喜爱柠檬派。黎琪儿想用圆形 图显示此项数据。试问:她应该用 度的扇形表示喜欢樱桃派的学生。 (A) 10 (B) 20 (C) 30 (D) 50 (E) 72 。 14. 泰勒在自助餐店排队,准备挑选一种肉类,二种不同蔬菜,以及一种点心。若不计较食物 的挑选次序,则他可以有多少不同选择方法?

2018年美国数学竞赛 AMC 试题

2018 AIME I Problems Problem 1 Let be the number of ordered pairs of integers with and such that the polynomial can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when is divided by . Problem 2 The number can be written in base as , can be written in base as , and can be written in base as , where . Find the base- representation of . Problem 3 Kathy has red cards and green cards. She shuffles the cards and lays out of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders RRGGG, GGGGR, or RRRRR will make Kathy happy, but RRRGR will not. The probability that Kathy will be happy is , where and are relatively prime positive integers. Find . Problem 4 In and . Point lies strictly between and on and point lies strictly between and on so that . Then can be expressed in the form , where and are relatively prime positive integers. Find . Problem 5 For each ordered pair of real numbers satisfying there is a real number such that

历年初中数学竞赛试题精选(含解答)

初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是() A. m(1+a%)(1-b%)元 B. m?a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 解:选C。设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。 解:出发1小时后,①、②、③号艇与④号艇的距离分别为 各艇追上④号艇的时间为 对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。 解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则 由①②得,代入③得: ∴,故n的最小整数值为23。 答:要在2小时内抽干满池水,至少需要水泵23台 解:设第一层有客房间,则第二层有间,由题可得 由①得:,即 由②得:,即 ∴原不等式组的解集为 ∴整数的值为。

答:一层有客房10间。 解:设劳动竞赛前每人一天做个零件 由题意 解得 ∵是整数∴=16 (16+37)÷16≈3.3 故改进技术后的生产效率是劳动竞赛前的3.3倍。 初中数学竞赛专项训练(2) (方程应用) 一、选择题: 答:D。 解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程: ,化简得,解得不合题意舍去)。应选D。 答:C。 解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为 所以,生产第9档次产品获利润最大,每天获利864元。 答:C。 解:若这商品原来进价为每件a元,提价后的利润率为, 则解这个方程组,得,即提价后的利润率为16%。 答:B。

(完整word版)希望杯数学竞赛小学三年级试题

希望杯数学竞赛(小学三年级)赛前训练题1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数.

8.(1)如果“访故”变成“放诂”,那么“1234”就变成.(2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是. 10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?

14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少? 22.有一数列3,9,15,…,153,159.请问: (1)这组数列共有多少项?(2)第15项是多少?(3)111是第几项的数? 23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.

2019AMC 8(美国数学竞赛)题目

2019 AMC 8 Problems Problem 1 Ike and Mike go into a sandwich shop with a total of to spend. Sandwiches cost each and soft drinks cost each. Ike and Mike plan to buy as many sandwiches as they can and use the remaining money to buy soft drinks. Counting both soft drinks and sandwiches, how many items will they buy? Problem 2 Three identical rectangles are put together to form rectangle , as shown in the figure below. Given that the length of the shorter side of each of the smaller rectangles is feet, what is the area in square feet of rectangle ?

Problem 3 Which of the following is the correct order of the fractions , , and , from least to greatest? Problem 4 Quadrilateral is a rhombus with perimeter meters. The length of diagonal is meters. What is the area in square meters of rhombus ? Problem 5 A tortoise challenges a hare to a race. The hare eagerly agrees and quickly runs ahead, leaving the slow-moving tortoise behind. Confident that he will win, the hare stops to take a nap. Meanwhile, the tortoise walks at a slow steady pace for the entire race. The hare awakes and runs to the finish line, only to find the tortoise already there. Which of the following graphs matches the description of the race, showing the distance traveled by the two animals over time from start to finish?

历年全国高中数学联赛试题及答案

1988年全国高中数学联赛试题 第一试(10月16日上午8∶00——9∶30) 一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分): 1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象及第二个函数的图象关于x +y=0对称,那么,第三个函数是( ) A .y=-φ(x ) B .y=-φ(-x ) C .y=-φ-1(x ) D .y=-φ- 1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1π 3 ; 命题乙:a 、b 、c 相交于一点. 则 A .甲是乙的充分条件但不必要 B .甲是乙的必要条件但不充分 C .甲是乙的充分必要条件 D .A 、B 、C 都不对 5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠?. ⑶ M ≠?. ⑷ P ≠?中,正确的表达式的个数是 A .1 B .2 C .3 D .4 二.填空题(本大题共4小题,每小题10分): 1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3 a 2-a 1= . 2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 . 3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DE BC = . 4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再及负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 . 三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积. 四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置. 五.(15分)已知a 、b 为正实数,且1a +1 b =1,试证:对每一个n ∈N *, (a +b )n -a n -b n ≥22n -2n +1.

相关主题