搜档网
当前位置:搜档网 › 关节臂式坐标测量机的运动学与工作空间分析

关节臂式坐标测量机的运动学与工作空间分析

关节臂式坐标测量机的运动学与工作空间分析
关节臂式坐标测量机的运动学与工作空间分析

关节臂测量机调研报告

关节臂测量机的定义:关节臂测量机是由几根固定长度的臂通过绕互相垂直轴线转动的关节(分别称为肩、肘和腕关节)互相连接,在最后的转轴上装有探测系统的坐标测量装置。很明显它不是一个直角坐标测量系统,每个臂的转动轴或者与臂轴线垂直,或者绕臂自身轴线转动(自转),一般用三个“-”隔开的数来表示肩、肘和腕的转动自由度,2-2-3 配置可以有a0-b0-d0-e0-f0 和a0-b0-c0-d0-e0-f0-g0 角度转动的关节臂测量机,为了适应当前情况,关节数一般小于7,目前一般为手动测量机。 工作原理:关节臂式测量机是一种新型的非正交式坐标测量机,它以角度基准取代长度基准,将若干杆件和一个测头通过旋转关节串联连接,一端固定,另一端(测头)在空间自由运动,构成一个球形测量空间。一般它由基座、6个关节、2个臂,以及测头等部分组成,该测量系统具有空间六自由度,可以方便地实现复杂工件的测量。关节臂式坐标测量机以各个关节的转角和作用臂作为测量基准,通过坐标系变换实现坐标测量。因此,数据采集系统中首要测量的参数为各个关节的转角,作用臂长通过机械结构的标定来确定。 特点:在检测空间一固定点时关节臂测量机与直角坐标系测量机完全不同,在测头确定情况下直角坐标测量机各轴的位置X,Y,Z 对固定空间点是唯一的、完全确定的;而关节臂

测量机各臂对测头测量一个固定空间点却有无穷的组合,即各臂在空间的角度和位置是无穷多、不是唯一的,因而各关节在不同角度位置的误差极大影响了对同一点的位置检测误差。由于关节臂测量机的各臂长度固定,引起误差的主要因素为各转角的误差,因此转角误差的测量和补偿对提高关节臂测量机的精度至关重要。 探测系统(测头)距各关节的距离不同,根据实验和理论推导,不同级的转角误差对测量结果的影响是不同的,越靠近基座处关节的转角误差对测量结果影响越大。 由于关节臂测量机是固定于基座上,基座的的固定方式及刚性对测量精度及重复性的影响亦不能忽略。 关节臂测量机可能有测量死角或精度特别差的区域,供应商应加以说明。 关节臂测量机是便携式的,工作环境条件变化很大,因此在验收方法中对环境条件作了特殊说明。 一般来说关节臂测量机的精度比传统的框架式三坐标测量机精度要低,精度一般为10 微米级以上,加上只能手动,所以选用时要注意应用场合。 应用领域: 汽车及其零部件制造商 汽车内饰 航空航天零部件制造商 重型设备及其零部件制造商 船舶和造船 机械制造 家具制造业 土木工程 新能源及其零部件制造商 轨道交通 适用于检测、逆向工程、快速成形、3D建模。此设备的特别功能是在扫描黑色和高反光材质时无需喷显影剂,提供了更好的表面扫描性能 坐标机精度评定标准:ISO 10360 1994年,ISO 10360 国际标准《坐标测量机的验收、检测和复检检测》开始实施。这个标准说明了坐标测量机性能检测的基本步骤。中国目前实行的测量机国家标准 GB/T16857.2-1997 《坐标计量学-第二部分:坐标测量机的性能测定》便等同于ISO相应标准。 ISO主要包含三个主要参数:长度测量最大允许示值误差(MPEE)、最大允许探测误差(MPEP);对于扫描测量,采用最大允许扫描探测误差(MPETHP)

基于A_算法的空间机械臂避障路径规划

机 械 工 程 学 报 JOURNAL OF MECHANICAL ENGINEERING 第46卷第13期 2010年7月 Vol.46 No.13 Jul. 2010 DOI :10.3901/JME.2010.13.109 基于A *算法的空间机械臂避障路径规划* 贾庆轩 陈 钢 孙汉旭 郑双奇 (北京邮电大学自动化学院 北京 100876) 摘要:针对空间机械臂在轨操作任务需求,提出一种基于A*算法的避障路径规划算法。根据机械臂和障碍物几何特征,对机械臂模型和障碍模型进行简化。通过研究机械臂本身所固有的几何特性,根据障碍物的位姿坐标,分析机械臂各杆件与障碍物发生碰撞的条件,进而求解空间机械臂的无碰撞自由工作空间。在此基础上,利用A*算法在空间机械臂的自由工作空间进行无碰撞路径搜索,实现了空间机械臂的避障路径规划。通过仿真试验验证了基于A*算法的空间机械臂避障路径规划算法的有效性与可行性。 关键词:空间机械臂 避障路径规划 A*算法 中图分类号:TP242 Path Planning for Space Manipulator to Avoid Obstacle Based on A * Algorithm JIA Qingxuan CHEN Gang SUN Hanxu ZHENG Shuangqi (Automation School , Beijing University of Posts and Telecommunications, Beijing 100876) Abstract :A novel path planning method to avoid obstacle based on A* algorithm is presented for space manipulator to accomplish the in-orbit mission. According to the geometric characteristics of manipulator and obstacle, the manipulator model and obstacle model are simplified. On the basis of the inherent geometric characteristic of manipulator, and according to the position and orientation coordinates of obstacle, the collision conditions of all links of manipulator are analyzed. And then, the collision-free workspace of space manipulator is obtained. On this basis, the collision-free path search in the free workspace of space manipulator is carried out by using A* algorithm, thereby, the obstacle avoidance path planning is achieved. The effectiveness and feasibility of the proposed path planning algorithm based on A* algorithm for space manipulator to avoid obstacle are verified by simulation and experiment. Key words :Space manipulator Obstacle avoidance path planning A* algorithm 0 前言 随着空间探索的不断深入,空间机械臂应用技 术已经成为空间技术的重要研究方向。空间机械臂代替宇航员完成空间作业任务,如组装与搭建空间站、释放与回收卫星、维护空间设备以及完成空间科学试验等,大大减小了宇航员舱外作业的风险,因此空间机械臂应用技术受到国内外专家的高度重视。在微重力环境下,空间机械臂系统处于自由漂 * 国家高技术研究发展计划资助项目(863计划,2009AA7041007)。 20100324收到初稿,20100504收到修改稿 浮状态,使得机械臂控制变量与非独立变量之间存在强烈的运动耦合,运动控制难度加大,从而空间机械臂的路径规划变得特别复杂[1]。此外,由于空间环境中的空间碎片,空间舱体外设试验装置等都有可能成为空间机械臂在轨操作过程中的障碍,因此为了顺利完成在轨操作任务,开展空间机械臂避障路径规划研究十分重要。 避障路径规划是指在给定的障碍条件以及起始和目标的位姿,选择一条从起始点到达目标点的路径,使运动物体能安全、无碰撞地通过所有的障碍[2]。目前,针对机械臂避障路径规划提出了许多方法,其中最为典型的包括基于自由空间法和人工

关于三坐标测量机的九个常见问题

关于三坐标测量机的九个常见问题 一、什么是三坐标测量机? 我们通常所说的三坐标测量机是指:通过探头系统与工件的相对移动,探测工件表面点三维坐标的测量系统。它的英文名称为 COORDINATE MEASURING MACHINE简称(CMM),又称三坐标测量仪或三次元。 二、环境温度对三坐标测量仪的测量结果影响大吗? 三坐标测量机是集光、机、电、计算机及控制技术于一身的复杂的测量系统,因此影响其测量结果不确定的因素较多,但对于中、小型坐标来说,环境温度偏离标准测量温度(20℃)是影响其测量结果不确定度的主要因素。为了使三坐标能够测出准确的结果,应将环境温度严格地控制在坐标机说明书要求的范围内。 二、三坐标测量仪需要进行哪些项目的校准?复校间隔多长? 目前三坐标的校准依据是JJF1064-2000《坐标测量机校准规范》,规范中规定校准项目是:长度测量示值误差和探测误差。建议复校间隔一年。 三、三坐标测量仪需要进行哪些项目的校准?复校间隔多长? 目前三坐标的校准依据是JJF1064-2000《坐标测量机校准规范》,规范中规定校准项目是:长度测量示值误差和探测误差。建议复校间隔一年。 四、三坐标测量仪何时需要校准21项误差? 21项误差是三坐标坐标机准确度的基础,其校准是比较复杂的。规范中虽未列入,但在以下情况,21项误差的校准是必要的:新机验收时;长度测量误差校准结果超差时;坐标机搬动后;坐标机修理后。 五、校准三坐标测量机需要哪些设备? 校准三坐标需要的标准器有:相应等级的尺寸至1000mm量块;激光干涉仪;电子水平仪;方角尺;标准球等

六、什么是5D激光干涉仪? 5D激光干涉仪是美国API公司专为数控机床和坐标机的检测而设计生产的激光干涉仪。与其它激光干涉仪相比,它突出的特点是:一次安装调整可同时测量定位误差、两个方向的直线度误差和两个方面和角度误差。通过转向棱镜,还可测量三个轴相互之间的垂直度。配上电子水平仪就可以测量滚摆。从而轻松完成21项误差的测量 七、什么是三坐标测量仪的21项误差? 三坐标有三个可运动的轴,每个轴都有1项定位误差、5项几何误差。几何误差包括:两个方向的直线度误差、两个方向的角度误差。三个轴共有18项,加上三个轴相互之间的垂直度,共有21项误差。这21项误差是坐标机测量结果不确定度的另一主要因素 八、三坐标测量机的探测系统对测量结果有影响吗? 我们知道,三坐标在测量时,是由探头接触被测工件后发出信号,再由控制系统和计算机把测头此时的坐标位置采集下来,而后进行必要的计算,得出我们所需要的测量结果。目前大部分坐标机的探头都是开关型的,其设计原理导致其在不同位置进行探测时开关接触点不同,由此带入了探测误差。这项误差对坐标机测量结果不确定度有直接影响。因此,希望这项误差越小越好。 九、有关三坐标的计量检定? 依据JJF1064-2000,建议客户进行长度测量示值误差、探测误差和工作台平面度的校准长度测量示值误差在沿X、Y、Z三个轴的方向上四个空间对角线方向上,共105点。客户也可选择用5D激光干涉仪进行单轴示值误差校准,用量块进行空间对角线示值误差校准。 用三坐标的探头对标准球进行不同方位的25点测量,记录25点的坐标。用全部25个测量值计算出最小二乘球的中心,25个测量点到球心坐标的距离差的最大值即为探测误差 用坐标机的平面测量程序测量坐标机自身工作台的平面度,测量点 25-49点。 当客户需要进行21项误差校准时,需事先声明,将在上述方案的基础上加测21项误差。 以上由三坐标测量机博客总结自互联网,更多三坐标故障分析资料点这里。

关节臂三坐标测量机操作规程

关节臂三坐标测量机操作规程 (ISO9001-2015/IATF16949-2016) 1.0适用范围 关节臂依靠其便携,高精度等优势,广泛用于汽车,模具,检具,航天等相关行业。 2.0操作方法 2.1 机器安装 2.1.1 打开包装箱,双手提取测量臂FaroArm,注意不要让各关节受力。 2.1.2 机器安装之前磁力底座跟安装磁力底座的位置都要擦干净,磁力底座固定好后,设备跟磁力底座接口(安装在三角架上)要用专用工具拧紧,注意扭矩适中。利用绑带绑缚测量臂,防止其自由落下而损伤关节,注意每次测量完成都要将测量臂复位绑缚好。 2.1.3 安装探针时一只手握住FaroArm末端的按钮区域;顺时针旋转探针,将探针转入FaroArm,使用12mm扳手拧紧探针转矩扳手拧紧另一端,注意扭矩适中。 2.1.4 设备连接到计算机,通过数据线、电源线、将测量机跟电脑连接,将电池安装到测量臂主机上充电,注意检查是否连接正确,打开电源后电源指示灯亮,打开电脑及测量软件界面,插入加密狗,测量软件界面显示设备连接完好。 2.2 探针校准 2.2.1 打开测量软件,在设备选项上点硬件配置图标打开设备控制面板,选中探针管理。根据需要选择3mm球探针、6mm球探针。

2.2.2 选择“探针校准器”,将其固定。 2.2.3 在测量软件界面选择校准。 2.2.4 进行探针校准。 2.3 测量 2.3.1 除了常规测量之外,对超出测量臂范围的大型工件,可以用三个“蛙跳球”进行位置移动转换测量。 2.3.2 在测量过程中不允许用力压迫探针,测量力道要均匀,测面测点尽量垂直探针,测量圆探针保护在45度的角度,减少误差。 2.3.3 每次测完步骤后测量臂复位及绑缚带绑缚,起到保护关节作用。 3.0注意事项 3.1 要注意软件界面对测量臂FaroArm关节转动极限位置的报警提示,尽量减少测量臂在接近极限的状态下测量,延长设备使用寿命 3.2 定期探针校准,在温差变化过大的情况下必须对探针进行校准在进行测量。 3.3 使用配备电源,杜绝在工作状态下将设备断电。 3.4 测量工件必须与测量臂的相对位置保持不变。 3.5 测量过程中测量员不允许带手套工作。 3.6 保证测量结果的准确性。 3.7 及时保存测量结果输出数据。 3.8 按要求发送测量报告。 3.9 做好测量工作记录。 3.10 测量完成后必须先拆卸测量臂放置到运输包装箱。 3.11 电源线、数据线检查是否有损坏。

三坐标测量系统的校准与检定的区别

三坐标测量系统的校准与检定的区别 ISO10012—1《计量检测设备的质量保证要求》标准将“校准”定义为:“在规定条件下,为确定计量仪器或测量系统的示值或实物量具或标准物质所代表的值与相对应的被测量的已知值之间关系的一组操作。” 注: 1校准结果可用以评定计量仪器、测量系统或实物量具的示值误差,或给任何标尺上的标记赋值; 2校准也可用以确定其他计量特性; 3可将校准结果记录在有时称为校准证书或校准报告的文件上; 4有时校准结果表示为修正值、校准因子或校准曲线。 ISO/IEC指南25—1990《校准和检验试验室技术能力的通用要求》将“检定”定义为:“通过校验提供证据来确认符合规定的要求(ISO8402/DADI—3.37,根据本指南的目的增加了注解)。” 注:1为了与计量仪器的管理相衔接,检定的目的是校验计量仪器的示值与相对应的已知量值之间的偏差,使其始终小于有关计量仪器管理的标准、规程或规范中所规定的最大允许误差。 2根据检定的结果对计量仪器作出继续使用、进行调查、修理、降级使用或声明报废的决定。任何情况下,当检定完成时,应在计量仪器的专门记录上记载检定的情况。 国际计量组织对检定给出的定义是:“查明和确认计量器具是否符合法定要求的程序,它包括检查、加标记和(或)出具检定证书。” 根据以上定义,可以看出校准和检定有本质区别。两者不能混淆,更不能等同。 现就两者之间的主要区别做如下讨论。 一、目的不同 校准的目的是对照计量标准,评定测量装置的示值误差,确保量值准确,属于自下而上量值溯源的一组操作。这种示值误差的评定应根据组织的校准规程作出相应规定,按校准周期进行,并做好校准记录及校准标识。校准除评定测量装置的示值误差和确定有关计量特性外,校准结果也可以表示为修正值或校准因子,具体指导测量过程的操作。例如,某机械加工组织使用的卡尺,通过校准发现与计量标准相比较已大出0.2mm,可将此数据作为修正值,在校准标识和记录中标明巳校准的值与标准器相比较大出的0.2mm的数值。在使用这一计量器具(卡尺)进行实物测量过程中,减去大出0.2mm的修正值,则为实物测量的实测值。只要能达到量值溯源目的,明确了解计量器具的示值误差,即达到了校准的目的。 检定的目的则是对测量装置进行强制性全面评定。这种全面评定属于量值统一的范畴,是自上而下的量值传递过程。检定应评定计量器具是否符合规定要求。这种规定要求就是测量装置检定规程规定的误差范围。通过检定,评定测量装置的误差范围是否在规定的误差范围之内。 二、对象不同 校准的对象是属于强制性检定之外的测量装置。我国非强制性检定的测量装置,主要指在生产和服务提供过程中大量使用的计量器具,包括进货检验、过程检验和最终产品检验所使用的计量器具等。 检定的对象是我国计量法明确规定的强制检定的测量装置。《中华人民共和国计量法》第九条明确规定:“县级以上人民政府计量行政部门对社会公用计量标准器具,部门和企业、事

关节臂测量设备测头校准方法

关节臂测量设备测头精度校准 关节臂测量设备测头校准分为:单点校准法、平面校准法和标准球校准法,标准球校准法和平面校准法最为常用。 单点校准测头方法 双击“CimCore Arm Utilities ”图标进入Arm Utilities软件,点击“Init”按键,机器连接后单击“Probe Calib”快捷键进入测头校准程序内。 1、在“Method”选择框内选“Single Point”; 2、在“Measure Against Nominal Data”选择框内选“No”; 3、安装待校准的测头; 4、点击“OK”进入下一界面; 5、点击“Next”下一步; 点击“Resume Measure”进行测头校准,此校准过程分前后左右四个方向,每个方向5个点,每组内每个点与点之间的夹角为20度。请见下图

测完20个点后按住中间测量键,2~5秒退出测量程序 点击“Next”按键进入下一界面 Max Error 值小于0.15点击“Yes”保存。点击“Finish”退出测头校准程序(注:Max数值越小代表测头精度越好) 平面校准测头方法 双击“CimCore Arm Utilities ”图标进入Arm Utilities软件,点击“Init”按键,机器

连接后单击“Probe Calib”快捷键进入测头校准程序内。 1、在“Method”选择框内选“Plane”; 2、在“Measure Against Nominal Data”选择框内选“Yes”; 3、安装15MM钢测头; 4、点击“OK”进入下一界面; 5、点击“Next”下一步; 点击“Next”进入下一步 点击“Start Measurements”进入测量程序(注:平面校准法是通过对比的方法来校准测头,

关节臂式坐标测量机校准装置校准方法

关节臂式坐标测量机校准装置校准方法 1.范围 本方法适用于关节臂式坐标测量机的校准。 2.引用文献 本方法引用下列文献: JJF1071--2010《国家计量校准规范编写规则》 ASME B89.4.22 关节臂式坐标测量机性能评估方法 注:使用本校准方法时,应注意使用上述引用文献的现行有效版本。 3.校准条件 3.1温度条件应根据受检测量臂的测量不确定度或用户约定要求确定,温度变化不应超过1.0℃/h 。 3.2各活动部分的作用应平稳可靠,无松动和卡住现象,测量轮与被测件之间无滑动。 4.校准项目及校准方法 4.1用目视和手动检查外观及各部分相互作用 4.2此处用标准球法测量 在每一次位置处,测量标准球至少5个点(4个点分布在赤道上,1个点位于球的一级)测量时,在每一位置处,将测量臂从左方摆动到右方约180°,同时旋转腕关节约90°,拟合求球心坐标。重复测量至少6次,得到6个球心坐标,单轴坐标的最大值和最小值之差的二分之一为x δ ,y δ ,z δ ,取x δ ,y δ ,z δ的最大值为测量结果。 ()()max min 2 i i x x x δ-= (1) ()()max min 2 i i y y y δ-= (2) ()()max min 2i i z z z δ-= (3)

4.3空间长度示值误差 选用两个标准球杆,短球杆长度()50%~70%i L R = ,长球杆长度 ()2=120%~150%L R R , 为测量臂测量半径。 测量臂的球形工作范围分为4个相等的象限,球半径等于测量臂测量半径,球心为肩关节的角度编码器的中心,仪器的安装平面为赤道平面。 标准球杆的摆放姿态为水平、垂直及50°倾斜;摆放位置以赤道平面为界分高位和低位;摆放距离是指从标准球杆中心到仪器中心的距离,以50%R 为界分远近。摆放方向是指球杆或延长线与球的关系,当球杆或延长线不通过球心时表示为切向,通过球心为径向。 10个摆放位置见下两图。每次长度测量时,采集每球至少5个点(4个点分布在赤道上,1个点位于球的一级),计算球杆中心长度。

三坐标测量机操作规范标准[详]

三坐标测量仪操作规 1 围 本操作规规定了三坐标测量的准备、测量机的操作步骤、注意事项及维护保养的要求。 本操作规适用于公司三坐标测量机的操作。 2 规性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改)适用于本文件。 GB/T 16857.1:2002 产品几何量技术规(GPS) 词汇 3 术语和定义 3.1 三坐标测量机 通过运转探测系统测量工件表面空间坐标的测量系统。 (源自GB/T 16857.1:2002,2.1) 3.2 EHS EHS是环境 Environment、健康Health、安全Safety的缩写。 4 职责 4.1 三坐标技术员 负责测量程序的编辑,操作员的测量培训, 仪器的使用与维护保养,备品备件的申请、选型。 4.2 操作员 负责测量程序的编辑,仪器的使用与维护保养,备品备件工装的申请、选型。 4.3 计量员 负责仪器的周期校准工作。 5 过程描述 5.1 测量前准备 5.1.1 开机前应用蘸有无水乙醇的无尘布擦拭机器导轨,导轨擦拭禁用任何性质的油脂。 本标准文件为上海万泽精密铸造有限公司所有,内部使用,拥有著作权及法律规定的任何权益。未经授权,任何个人或组织均不得以任何方式发行、披露或使用,否则其行为将受到法律许可范围内的起诉。 1 / 1

5.1.2 开机前检查是否有阻碍机器运行的障碍物。 5.1.3 零件检测时应满足下列环境要求: 1) 室温度:20℃±2℃; 2) 相对湿度:35﹪~75﹪; 3) 气压要求:大于0.45Mpa,小于0.75Mpa。 5.1.4 检查空压气管是否接好,气管是否漏气。气压低于规定值时,不准操作,否则会严重损坏机器。 5.1.5 被测零件在检测之前,应先清洗去毛刺,防止在加工完成后零件表面残留的冷却液及加工残留物影响测量机的测量精度及测头的使用寿命。被测零件在测量之前应在室恒温,如果温度相差过大就会影响测量精度。根据零件的大小、材料、结构及精度等特点,适当选择恒温时间,以适应测量仪室温度,减少冷热对零件尺寸的影响。 5.1.6 设备确认性能完好方可作业。 5.2 三坐标测量仪的操作 5.2.1 开机操作: A. 接通系统总电源; B. 接通控制系统电源; C. 首先将空压气管开关打开; D. 待气压正常后,先打开控制柜然后打开计算机电源开关; E. 启动PC-DMIS软件,打开操作盒上的急停按钮; F. 按软件提示进行”回零”。 5.2.2 测量: A. 进入测量系统,依操作顺序及相关测量方法进行测量; B. 选择合适的测量探头,测量标准球直径; C. 建立新的测量项目,放置测量工件; D. 进行工件尺寸测量,记录测量数值; E. 保存测量报告,完成测量工作并确认; F. 退出测量系统; G. 取走工件。 5.2.3 关机步骤: A. 将测头座A角转到90度,B角转到180度; B. 将Z轴运行至安全位置(不易被触碰的位置); C. 按下操作盒上的急停按钮,关断电源; D. 退出测试软件的操作界面; E. 关闭计算机; F. 关闭电源。 5.3 注意事项 5.3.1 请勿在计算机安装其他应用软件,以免三坐标操作软件不能正常运行。 5.3.2 在开机前必须检查计算机与主机的连接线、电源插头插座是否正确,有无松动,确认正确后,方可开机。 5.3.3 防止计算机被病毒感染。 5.3.4 严禁用脱脂棉清洗导轨,以防止棉绒进入气浮块中。 5.3.5 保养过程中不能给任何导轨加任何性质的油脂。 5.3.6 禁止在工作台导轨面上放置任何物品,不要用手直接接触导轨工作面。

空间机械臂技术发展综述

空间机械臂技术发展综述 刘一宏?蒋再男?刘业超 (哈尔滨工业大学机器人技术与系统国家重点实验室?哈尔滨150080) 摘要:介绍了国外载人航天中的航天飞机二国际空间站上的典型空间机械臂系统?概述了用于 我国空间站建造和维护任务的空间站机械臂系统?详述了其中核心舱机械臂和实验舱机械臂的任务要求和基本方案?重点阐述了实验舱机械臂的关节二末端作用器二控制器以及遥操作子系统的方案二组成和主要功能?并对我国未来空间机械臂技术的发展提出了建议?关键词:空间机械臂?在轨建造?在轨维护 中图分类号:TP242 3一文献标识码:A一文章编号:1674 ̄5825(2015)05 ̄0435 ̄09 ReviewofSpaceManipulatorTechnology LIUHong?JIANGZainan?LIUYechao (StateKeyLaboratoryofRoboticsandSystem?HarbinInstituteofTechnology?Harbin150080?China) Abstract:ThetypicalspacemanipulatorsforthespaceshuttleandtheInternationalSpaceStationweresummarizedinthispaper.TheChinesespacestationremotemanipulatorsystemfortheon-or ̄bitconstructionandmaintenancemissionwasintroduced.Themissionrequirementsandbasicsolu ̄tionforthecoremodulemanipulatorandexperimentalmodulemanipulatorwereintroducedindetail.Thetechnicalproposal?compositionandmainfeaturesofthejoint?theendeffector?thecontrollerandtheteleoperationforexperimentalmodulemanipulatorwereelaborated.Thedevelopmentpro ̄posalforourspacemanipulatorwasalsomadeinthispaper. Keywords:spacemanipulator?on ̄orbitconstruction?on ̄orbitmaintenance 收稿日期:2015 ̄03 ̄10?修回日期:2015 ̄09 ̄01 基金项目:国家自然科学基金资助项目(51905097)?国家基础研究发展规划资助项目(973 ̄2013CB733103) 作者简介:刘一宏(1966-)?男?博士?教授?博士生导师?教育部长江学者特聘教授?研究方向为空间机器人技术?E ̄mail:dlrhitlab@aliyun.com 1一引言 空间机械臂具有一体化的空间感知二机动和操作能力?通过在轨操作二地面遥操作或自主操作方式完成航天器的在轨装配二污染清理二观测与检查二故障模块更换二在轨加注二消耗载荷更换和补充二轨道清理二轨道转移等工作[1]?是航天器在轨组装与维护的核心装备? 国际空间站的搭建和维护经验告诉我们?利用空间机械臂辅助航天员完成空间搭建和载荷维护等任务?大大减轻了航天员出舱风险?减轻了航天员的工作压力?提高了空间探索活动的效率[2 ̄5]? 加拿大二日本二欧洲二美国等较早开展了空间机械臂的研究工作?并基于航天飞机二国际空间站等平台开展了大量的在轨试验和工程应用?积累了丰富的技术能力和应用经验?我国目前已完成了针对合作目标的空间机械臂在轨演示验证?正开展针对我国空间站的机械臂研制? 本文对载人航天中有人参与的空间机械臂进行了综述?分别介绍了国际空间站ISS(Inter ̄ nationalSpaceStation)的加拿大移动服务系统MSS(MobileServingSystem)二日本实验舱远程机械臂JEMRMS(JapaneseExperimentModuleRe ̄moteManipulatorSystem)二欧空局机械臂ERA(EuropeanRoboticArm)以及美国的机器人宇航第21卷一第5期2015年一9月一一一一一一一一一载一人一航一天MannedSpaceflight一一一一一一一一一 Vol.21一No.5 Sep.2015

坐标测量机验收标准

Easson 質量方針:品質第一,創新技術,一流人才完善服務 三坐标测量机验收标准 依据中华人民共和国国家计量技术规范(JJF1064-2000三坐标测量机校准规范) 一、校准条件 1 长度测量标准器:“经校准的量块” 2环境条件 (1).设备应安装于避光、避潮、避震及无尘恒温室内; (2).不受腐蚀性气体、可燃气体、油雾和微粒侵袭。 (3).外接电源220 V,50Hz,可靠接地,接地电阻小于4欧姆,并标配500W UPS 稳压电源。 (4).温度要求:温度(20±2)℃,温度梯度1℃/m ,温度变化 1℃/h (5).湿度要求:湿度30%-65% , (6). 供气压力: MPa - Mpa (7).供气流量:100 L/min – 120 L/min 3 环境条件的测量 实验室环境温度应有记录。校准时需检查至当日的一周温度记录。 测量过程中应测量和记录三坐标测量机的温度变化和温度梯度的情况。测量点应不少于4点,分布在不同方向和不同高度。 二、计量性能要求 1. 长度测量最大允许示值误差(MPEE=±(3+L/300): 即MPEE = ± (A+L/K) 式中:A——常数项,m,由坐标测量机制造商提供或由用户根据需要确定; L——被测长度,mm;

K——无量纲常数,由坐标测量机制造商提供或由用户根据需要确定; B——MPEE 的最大值,m,由坐标测量机制造商提供或由用户根据需要确定。 三、长度测量重复精度 依据中华人民共和国国家计量技术规范长度测量的重复度必须尊循:人、机、料、法、环;(即同一工件、同点、同位、同方法及同力度)否则影像测量精度; Easson 質量方針:品質第一,創新技術,一流人才完善服務 轴方向 项目次数实际(mm)测量(mm)误差(m)公差= ±(3+L/300) m 1400±2400±3400±重复度(m)≤ 1250±2250±3250±重复度(m)≤

空间机械臂动力学奇异点与回避

本文于1996年7月8日收到 3国家自然科学基金重点项目及河北省博士科研基金项目 空间机械臂动力学奇点与回避3 顾晓勤 (河北师范大学机械系?石家庄?050031) 刘延柱 (上海交通大学工程力学系?上海?200030) 摘 要 本文导出空间机械臂非完整约束方程,讨论自由漂浮系统动力学奇点问题,对冗余和非冗余系统分别提出避免奇点的方法,对平面运动情形得到减少奇点出现的工程方法。文中附有算例。 主题词 空间机械臂 动力学 多体动力学 AVO I D ING DY NAM I C SINGULAR IT IES OF SPACE M AN IPULAT OR Gu X iaoqin (H eber N o r m al U niversity ?Sh ijiazhuang ?050031) L iu Yanzhu (Shanghai J iao tong U niversity ?Shanghai ?200030) Abstract T he nonho lonom ic constrains of space m ani pulato r are derived in th is paper .D y 2nam ic sigularities of free 2floating system is discussed ,and reducing area of singularity fo r in 2p lane moving system are p ropo sed .T he num erical si m ulati on examp le is given . Key words Space m ani pulato r D ynam ics M ultibody dynam ics 1 引 言 空间机械臂可用于卫星释放、回收及空间站的在轨建造维修等。为节省能源机械臂在执行任务时载体姿控系统常暂时关闭。给定负载始末位姿或在惯性空间给出设计轨迹求转铰运动规律时,当广义Jacob i 矩阵奇异则系统出现奇点,无法得到逆问题解。由于漂浮系统奇点与系统动力学特性有关故称动力学奇点。非完整约束使奇点的位置不仅与机械臂转角当前值有关,还由转角的时间历程决定,故动力学奇点是空间机械臂控制中的难点和关 第19卷 第4期1998年10月 宇 航 学 报JOURNAL OF ASTR ONAUT I CS Vol .19No .4Oct .1998

计量技术规范

国家计量技术规范目录JJF (截止2014年05月) JJF 1001-2011 通用计量术语及定义 JJF 1002-2010 国家计量检定规程编定规则 JJF 1004-2004 流量计量名词术语及定义 JJF 1005-2005 标准物质常用术语和定义 JJF 1006-1994 一级标准物质技术规范 JJF 1007-2007 温度计量名词术语及定义 JJF 1008-2008 压力计量名词术语及定义 JJF 1009-2006 容量计量术语及定义 JJF 1010-1987 长度计量名词术语及定义 JJF 1011-2006 力值与硬度计量术语及定义 JJF 1012-2007 湿度与水分计量名词术语及定义 JJF 1013-1989 磁学计量常用名词术语及定义(试行) JJF 1014-1989 罐内液体石油产品计量技术规范 JJF 1015-2002 计量器具型式评价和型式批准通用规范 JJF 1016-2009 计量器具型式评价大纲编写导则 JJF 1017-1990 使用硫酸铈-亚铈剂量计测量γ射线水吸收剂量标准方法 JJF 1018-1990 使用重铬酸钾(银)剂量计测量γ射线水吸收剂量标准方法 JJF 1019-1990 60Co远距离治疗束吸收剂量的邮寄监测方法 JJF 1020-1990 r射线辐射加工剂量保证监测方法 JJF 1021-1990 产品质量检验机构计量认证技术考核规范 JJF 1022-1991 计量标准命名规范 JJF 1023-1991 常用电学计量名词术语(试行) JJF 1024-2006 测量仪器可靠性分析 JJF 1025-1991 机械秤改装规范 JJF 1026-1991 光子和高能电子束吸收剂量测定方法 JJF 1028-1991 使用重铬酸钾银剂量计测量γ射线水吸收剂量标准方法JJF 1029-1991 电子探针定量分析用标准物质研制规范 JJF 1030-1998 恒温槽技术性能测试规范

计量校准规范

2009版 计量校准规范 JJF 1001-1998通用计量术语及定义 JJF 1002-1998国家计量检定规程编定规则 JJF 1004-2004流量计量名词术语及定义 JJF 1005-2005标准物质常用术语和定义 JJF 1006-1994一级标准物质技术规范 JJF 1007-1987温度计量名词术语(试行) JJF 1007-2007温度计量名词术语(试行) JJF 1008-1987压力计量名词术语及定义 JJF 1008-2008压力计量名词术语及定义 JJF 1009-2006容量计量术语及定义 JJF 1010-1987长度计量名词术语及定义 JJF 1011-2006力值与硬度计量术语及定义 JJF 1012-2007常用湿度计量名词术语(试行) JJF 1013-1989磁学计量常用名词术语及定义(试行) JJF 1014-1989罐内液体石油产品计量技术规范 JJF 1015-2002计量器具型式评价和型式批准通用规范 JJF 1016-2002计量器具型式评价大纲编写导则 JJF 1017-1990使用硫酸铈-亚铈剂量计测量γ射线水吸收剂量标准方法JJF 1018-1990使用重铬酸钾(银)剂量计测量γ射线水吸收剂量标准方法JJF 1019-199060Co远距离治疗束吸收剂量的邮寄监测方法 JJF 1020-1990r射线辐射加工剂量保证监测方法 JJF 1021-1990产品质量检验机构计量认证技术考核规范 JJF 1022-1991计量标准命名规范 JJF 1023-1991常用电学计量名词术语(试行) JJF 1023-2008常用电学计量名词术语(试行) JJF 1024-2006计量器具的可靠性分析 JJF 1024-2008计量器具的可靠性分析 JJF 1025-1991机械秤改装规范 JJF 1025-2008机械秤改装规范

ECHO.6A 3.2关节臂三坐标测量机操作规程

ECHO.6A 3.2关节臂三坐标测量机操作规程 1 适用范围 关节臂依靠其便携,高精度等优势,广泛用于汽车,模具,检具,航天等相关行业。 2 操作方法 2.1 机器安装 2.1.1 打开包装箱,双手提取测量臂FaroArm,注意不要让各关节受力。 2.1.2 机器安装之前磁力底座跟安装磁力底座的位置都要擦干净,磁力底座固定好后,设备跟磁力底座接口(安装在三角架上)要用专用工具拧紧,注意扭矩适中。利用绑带绑缚测量臂,防止其自由落下而损伤关节,注意每次测量完成都要将测量臂复位绑缚好。 2.1.3 安装探针时一只手握住FaroArm末端的按钮区域;顺时针旋转探针,将探针转入FaroArm,使用12mm扳手拧紧探针转矩扳手拧紧另一端,注意扭矩适中。 2.1.4 设备连接到计算机,通过数据线、电源线、将测量机跟电脑连接,将电池安装到测量臂主机上充电,注意检查是否连接正确,打开电源后电源指示灯亮,打开电脑及测量软件界面,插入加密狗,测量软件界面显示设备连接完好。 2.2 探针校准 2.2.1 打开测量软件,在设备选项上点硬件配置图标打开设备控制面板,选中探针管理。根据需要选择3mm球探针、6mm球探针。 2.2.2 选择“探针校准器”,将其固定。 2.2.3 在测量软件界面选择校准。 2.2.4 进行探针校准。 2.3 测量 2.3.1 除了常规测量之外,对超出测量臂范围的大型工件,可以用三个“蛙跳球”进行位置移动转换测量。 2.3.2 在测量过程中不允许用力压迫探针,测量力道要均匀,测面测点尽量垂直探针,测量圆探针保护在45度的角度,减少误差。 2.3.3 每次测完步骤后测量臂复位及绑缚带绑缚,起到保护关节作用。 3 注意事项 3.1 要注意软件界面对测量臂FaroArm关节转动极限位置的报警提示,尽量减少测量臂在接近极限的状态下测量,延长设备使用寿命

三坐标测量机验收标准

質量方針:品質第一,創新技術,一流人才完善服務 三坐标测量机验收标准 依据中华人民共和国国家计量技术规范(JJF1064-2000三坐标测量机校准规范) 一、校准条件 1 长度测量标准器:“经校准的量块” 2环境条件 (1).设备应安装于避光、避潮、避震及无尘恒温室内; (2).不受腐蚀性气体、可燃气体、油雾和微粒侵袭。 (3).外接电源220 V,50Hz,可靠接地,接地电阻小于4欧姆,并标配500W UPS 稳压电源。 (4).温度要求:温度(20±2)℃,温度梯度1℃/m ,温度变化 1℃/h (5).湿度要求:湿度30%-65% , (6). 供气压力:0.4 MPa - 0.5 Mpa (7).供气流量:100 L/min – 120 L/min 3 环境条件的测量 实验室环境温度应有记录。校准时需检查至当日的一周温度记录。 测量过程中应测量和记录三坐标测量机的温度变化和温度梯度的情况。测量点应不少于4点,分布在不同方向和不同高度。 二、计量性能要求 1. 长度测量最大允许示值误差(MPEE=±(3+L/300): 即MPEE = ±(A+L/K) 式中:A——常数项,μm,由坐标测量机制造商提供或由用户根据需要确定; L——被测长度,mm; K——无量纲常数,由坐标测量机制造商提供或由用户根据需要确定; B——MPEE 的最大值,μm,由坐标测量机制造商提供或由用户根据需要确定。 三、长度测量重复精度 依据中华人民共和国国家计量技术规范长度测量的重复度必须尊循:人、机、料、法、环;(即同一工件、同点、同位、同方法及同力度)否则影像测量精度;

質量方針:品質第一,創新技術,一流人才完善服務 2.Y轴方向

三维空间机械臂的动力学建模与仿真分析

机械工程师 MECHANICAL ENGINEER 三维空间机械臂的动力学建模与仿真分析 吴良凯,王涛,王春丽,王洲,夏国辉(山东科技大学机械电子工程学院,山东青岛266590) 摘要:为了提高三维空间助力机械臂的设计效率,运用拉格朗曰方法建立机械臂的动力学模型,利用Sold /V o k 建立三 维空间助力机械臂的构件模型,将装配后三维实体模型导入ADAMS 中进行动力学仿真分析,得到相关性能曲线图,为空间 助力机械臂的结构设计和最优控制提供依据。 关键词:机械臂;动力学;ADAM S 拉格朗日法中图分类号:"P 241N /441 文献标志码:A 文章编号:1〇〇2-2333(2〇17)〇1-〇〇15-〇3 Dynamics Modeling and Simulation Analysis of Three-dimensional Space Manipulator WU Liangkai , WANG Tao , WANG Chunli , WANG Zhou , XIAGuohui (College of Mechanical and Electronic Engineering , Shandong University of Science and Technology , Qingdao 266590, China ) Abstract : In order to improve the design efficiency of three-dimensional space manipulator, the dynamic modeling of the manipulator is established by using Lagrange method, the three-dimensional solid component model of space manipulator is built by Solidworks, the three -dimensional solid model after assembled is imported into ADAMS to carry out the dynamic simulation analysis. Related performance curve is obtained to provide reference for the mechanical structure design and the optimal control of the space manipulator. Key words : manipulators; dynamics; ADAMS; Lagrange 0 引言 三维空间助力机械臂是一个复杂的动力学系统,它 由多个关节和多个运动构件组成,各关节与运动构件之 间存在复杂的耦合关系?。为了机械臂的结构设计以及控 制系统的开发与优化,对机械臂进行动力学分析与研究常取极大值[15。然而,发电机实际工作中,除少数情况外, 支架大部分区域的实际受力要低于峰值。故对比二者的 数据,大部分试验值小于仿真值,以负偏差居多。 3)试验所得的最大测点峰值为309 MPa ,比材料的许 用应力小。 综上所述,该发电机转子支架的强度特性比较好,符 合安全使用标准。3 结论 本文对某具体的发电机转子支架设计案例,分别在 额定工况和飞逸工况两种条件下,进行了强度性能数值 计算,并进行了应力试验,获得了强度性能较好的转子支 架。同时,也应该看到,仿真的工况点不多,故存在数据不 完善之处,下一步的工作,拟对更多工况点展开分析,以 更加精确地验证转子支架的强度性能。 [参考文献] [1] 衣然,兰波.大型水力发电机转子支架应力分析[C ]//第十九次 中国水电设备学术讨论会论文集,2013[2] 哈尔滨大电机研究所.水轮机设计手册[M ].北京:机械工业出 版社,1981. [3] 张慧珍.1.5MW 水平轴风力机叶片结构性能分析[D ].成都:西华 大学能源与环境学院,2011. [4] 陈荣盛.风力机结构动力学特性研究[D ].成都:西华大学能源与 是非常重要的。越来越多设计人员将虚拟样机仿真作为 机械系统研发的重要依据,相比传统机械设计而言,节省 了物理样机的实验时间以及材料,缩短了设计周期,提高 了机械臂工作性能[34]。 目前动力学分析领域中的方法主要包括拉格朗曰 环境学院,2009. [5] 王旭,李萍,陈荣盛,等.水轮机尾水管设计的CFD 分析与模型试 验研究[J ].水电能源科学,2015,33(9):163-165. [6] 秦艳,苟向辉.发电机转子支架应力试验分析[J ].工程与试验, 2015,55(2):52-54. [7] 王旭,胡洪,王莉君,等.基于有限元法的2MW 水平轴风力发电机 叶片模态分析[】].机械制造,2015,53(1):9-11. [8] 李发海,王岩.电机与拖动基础[M ].北京:清华大学出版社,2005.[9] 闻邦椿.机械设计手册[M ].北京:机械工业出版社,2010.[10] 温洁明,陈家权,沈炜良.水轮发电机转子支架有限元分析及应 力试验[J ].机械工程师,2007(3)61-63. [11 ]薛勇,程文兵,张明.糯扎渡水电站水轮机蜗壳水压试验情况及 分析[J ].人民长江,2012,43 (4):67-69. [12] 章宝华,良贵.材料力学[M ].北京:北京大学出版社,2011.[13] 冼进.现代机电驱动控制技术[M ].北京:中国水利水电出版 社,2009. [14] 王旭,李萍,陈荣盛,等.水轮机椭圆蜗壳设计的CFD 计算及试 验分析[J ]■人民黄河,2016,38(1):109-111.[15] 胡金秀,胡祥甫.85MW 高转速水轮发电机转子设计[J ].山东 工业技术,2014(7) :8-9. (编辑昊天) 作者简介:张彦南(1984—),男,博士,工程师,主要从事水利水电工 程方面的研究。 收稿日期:2016-07-07 网址 https://www.sodocs.net/doc/2c6278029.html, 电邮:hrbengineer@https://www.sodocs.net/doc/2c6278029.html, 2017 年第 1 期 | 15

相关主题