搜档网
当前位置:搜档网 › 直升机操控原理

直升机操控原理

直升机原理图

1动压

科技名词定义 中文名称:动压 英文名称:dynamic pressure 其他名称:速压 定义:总压与静压之差,运动流体密度和速度平方积之半。 所属学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 物体在流体中运动时,在正对流动运动的方向的表面,流体完全受阻,此处的流体速度为0,其动能转变为压力能,压力增大,其压力称为全受阻压力(简称全压或总压,用P表示),它与未受扰动处的压力(即静压,用P静表示)之差,称为动压(用P动表示)。即: P动 = P - P静 = ρ*V*V*1/2 其中:ρ为密度,V为速度 推导: 先看看势能的推导 势能=F*S=m*g*h=ρ*Q*g*h=ρ*g*h*Q F为力大小,S为面积,m为质量,g为重力加速度,h为高度,Q为体积 即势能=压强*体积 动能=m*V*V*1/2=ρ*Q*V*V*1/2=ρ*V*V*Q*1/2=动压*体积 体积为Q,所以动压为1/2*ρ*V*V 即证。 飞机飞行的原理就是运用机翼上下气流速度是不一样而产生的压力差托起飞机的,注意机翼上下的空气速度是不一样的,它是由机翼的结构和飞机的迎角所决定的。 2 L=CρV^2/2,L是升力,C为升力系数,ρ是标准大气密度为一恒量,V是飞机的指示空速 3直升机是怎样改变方向的

陀螺效应这是一个很奇妙的物理现象,如下图,一个转动的物体,当在某一点施力,施力的效果会出现在沿转动方向90 度的地方出现,而且转动的物体会有保持原来状态,抗拒外来力量的倾向,也就是转动中物体的轴心会极力保持在原来所指的方向。像枪管中的膛线使子弹高速旋转以保持直进性就是运用陀螺效应,直升机高速旋转的主旋翼同样的也会有陀螺效应产生,控制方式也必须考虑这种力效应延后90 度出现的陀螺效应。 陀螺仪的功用 直升机飞行的基本原理是利用主旋翼可变角度产生反向推力而上升,但对机身会产生扭力作用,于是需要加设一个尾旋翼来抵消扭力,平衡机身,但怎样使尾旋翼利用合适的角度,来平衡机身呢?这就用到陀螺仪了,它可以根据机身的摆动多少,自动作出补偿讯号给伺服器,去改变尾旋翼角度,产生推力平衡机身。以前,模型直升机是没有陀螺仪的,油门、主旋翼角度和尾旋翼角度很难配合,起动后便尽快往上空飞(因为飞行时较易控制),如要悬停就要控制杆快速灵敏的动作,所以很容易撞毁,现在已有多中直升机模型使用的陀螺仪,分别有机械式、电子式、电子自动锁定式。 直升机的抬头现象 当直升机快速前进时,旋翼一偏离6 点和12 点钟方向时,两支旋翼对空气速度就会不一样,而在 3 点和9 点钟方向产生最大速度差,假设旋翼翼端转速300km/h,机体前进速度100km/h 时,以R/C 直升机顺时钟方向转动的旋翼来讲,3 点钟方向对空气速度200km/h ( 后退旋翼),9 点钟方向对空气速度400km/h(前进旋翼),产生 3 点和9 点钟方向的升力差,因陀螺效应的关系,力效应发生在 6 点和12 点钟方向产生抬头现象,此种抬头现象不论主旋翼是顺时针或逆时针转动皆会发生。 翼端速度与离心力 直升机靠著主旋翼高速回转时所产生的离心力来悬住机体。离心力是水平方向的力而机体重力是垂直方向的力,实№飞行时两者几乎呈90 度,所以直升机飞行时其主旋翼所产生的速度和离心力是非常大的。 在这里有一个公式可算出翼端速度和离心力: 翼端速度: V = 2 * 圆周率* R * 60 * RPM V = 旋翼翼端速度(公尺/小时) 圆周率= 3.14(大约值) R = 旋翼头中心到翼端距离(公尺) RPM = 旋翼每分钟转速 以30级来算 停悬1500 RPM 翼端速度= 2 * 3.14 * 0.625 * 60 * 1500 = 353km/h

航空发动机原理

航空发动机原理 航空发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,航空发动机已经形成了一个种类繁多,用途各不相同的大家族。 航空发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,航空发动机可分为两类 1、吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 2、火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为 1、直接反作用力发动机 直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 2、间接反作用力发动机两类。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。 附图: 活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。 为航空器提供飞行动力的往复式内燃机。发动机带动空气螺旋桨等推进器旋转产生推进力。 从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。40

飞机的起飞原理及操纵Microsoft-Word-文档

飞机的起飞原理及操纵 飞机开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。 飞机起飞的操纵原理 飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。可见飞机的起飞是一个速度不断增加的加速过程。;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。对有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。 (一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。 1.抬前轮或抬尾轮 * 前三点飞机为什么要抬前轮? 前三点飞机的停机角比较小,如果在整个起飞滑跑阶段都保持三点姿态滑跑,则迎角和升力系数较小,必然要将速度增大到很大才能产生足够的升力使飞机离地,这样,滑咆距离势必很长。因此,为了减小离地速度,缩短滑跑距离,当速度增大到一定程度时就需要抬起前轮作两点姿态滑跑,以增大迎角和升力系数。 * 抬前轮的时机和高度 抬前轮的时机不宜过早或过晚。抬前轮过早,速度还小,升力和阻

力都小,形成的上仰力矩也小。要拾起前轮,必须使水平尾翼产生较大的上仰力矩,但在小速度情况下,水平尾翼产生的附加空气动力也小,要产主足够的上仰力矩就需要多拉杆。结果,随着滑跑速度增大,上仰力矩又将迅速增大,飞行员要保持抬前伦的平衡状态,势必又要用较大的操纵量进行往复修正,给操纵带来困难。同时,抬前轮过旱,使飞机阻力增大而增长起飞距离。如果抬前轮过晚,不仅使滑跑距离增长,而且还由于拉杆抬前轮到离地的时间很短,飞行员不易修正前轮抬起的高度而保持适当的离地迎角。甚至容易使升力突增很多而造成飞机猛然离地。各型飞机抬前轮的速度均有其具体规定。前轮抬起高度应正好保持飞机离地所需的迎角,前轮抬起过低,势必使迎角和升力系数过小,离地速度增大,滑跑距离增长,前轮抬起过高,滑跑距离虽可缩短,但因飞机阻力大,起飞距离将增长,而且迎角和升力系数过大,又势必造成大迎角小速度离地,离地后,飞机的安定住差操纵性也不好。仰角过大,还可能造成机尾擦地。从既要保证安全又要缩短滑跑距离的要求出发,各型飞机前轮抬起高度都有其具体规定。飞行员可从飞机上的俯仰指示器或从机头与天地线的关系位置来判断前轮抬起的高度是否适当。 * 后三点飞机为什么要抬尾轮 后三点飞机与前三点飞机相比,停机角比较大,因此三点滑跑中迎角较大,接近其临界迎角,如果整个滑跑阶段都保持三点滑跑,升力系数比较大,飞机在较小的速度下即能产生足够的升力使飞机离地。此时滑跑距离虽然很短,但大迎角小速度离地后,飞机安定性操纵性都

直升飞机飞行原理

直升飞机飞行原理 直升机的机翼与固定翼飞机一样,当气流从机翼前缘流向机翼后缘,从上翼面流过的气流比下翼面走过的路程长,为避免出现真空,上翼面的气流流速比下翼面的大。根据伯努利方程,相同条件下,气流的静压与动压的和恒定,因为上翼面的气流的流速大,导致动压大,所以其静压就小,机翼收到来自上翼面的压力小于来自下翼面的压力,大气对机翼的总压力向上,这个压力就是升力,有了升力直升机就能飞起来,但机翼旋转会对机身产生扭矩,为了不使机身旋转,通过加尾浆的方式平衡掉这个扭矩,所以直升机都是有尾浆的。直升机的机翼旋转面和轴的夹角可以通过杠杆机构来调整,通过调整这个夹角使升力与直升机的重力同轴或不同轴,同轴时,直升机悬停,不同轴时,直升机前飞 直升机升空的原理和竹蜻蜓是一样的,主桨桨叶上产生升力。至于你说的玩具有两个桨,而真机只有一个,应该是上下两层吧,总共四片桨叶,而真机只有一层。都知道,主桨高速转动,会给机身一个反方向的扭矩,如果不加以平衡,机身就会沿着和主桨转动方向相反的方向高速自旋,这样的直升机能飞么?玩具的两层桨叶就是平衡这个扭矩的,你仔细观察下,上下桨的转动方向一定是相反的,也就是靠两对桨叶给机身的扭矩来平衡机身,它们给机身的扭矩方向是相反的,如果大小也相同,那么机身就能保持稳定。但是真机,或者真正的航模直升机,都是单层桨叶的,因为它们都带尾桨,靠尾桨产生的推力来稳住机身。主桨产生的扭矩如果会使机尾顺时针旋转,那么就让尾桨产生逆时针的推力,平衡这个顺时针的扭矩。

一、直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。二、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。(2)直升飞机的横向稳定。因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。三、能量方式分析。根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析 能量也是守衡的

航空发动机原理试题

《气体动力学基础》试卷 一、 填空(30分,每空1分) 1. 气体密度是指_单位容积内气体的质量_。从微观上讲,密度的大小代表了_气体分子的疏密程度_。气体流过航空发动机的喷管时,其密度的变化规律是__减小__。 2.从微观上讲,气体压力是_大量气体分子无规则运动碰撞器壁的总效应_。在比容一定的情况下,气体温度升高,引起气体压力的变化规律是_增大 。 3.定压比热是指_在压力一定的条件下,1kg 气体温度升高或降低1℃,所需吸收或放出的热量_;定压比热与定容比热的关系式可以写成 R c c v p +=。 4.绝热过程是指 气体在和外界没有任何热交换的前提下,所进行的热力过程 ;在该过程中压力和比容的关系式可以写成k v v p p )(2 112=;该过程的外(容积)功的计算式可以写成)(1 11122v p v p k l --=。 5.“一维定常流”中“一维”是指_气流参数是一维坐标的函数_。 6.可压流的连续性方程可以写成 常数=V A ρ ,它说明_在一维定常流的条件下,流过各截面的气体流量相等_。 7. 一维定常流能量(焓)方程的一般形式是 1221222 i i V V l q -+-=±±外 。气体流过发动机的涡轮时,能量方程可以改写成 l V V i i +-=-2 212221 ,此方程表示的能量转换关系是 气体焓的下降,用来对外作功和增加气体的动能 ;气体流过发动机进气道时,能量方程可以改写成常数=+2 2 V i ,此方程表示的能量转换关系是_焓和动能之和保持不变 。 8.滞止压力(总压)是指_理想绝能条件下,将气流滞止到速度为零时的压力_。气体流过发动机的进气道时,在不考虑流动损失的情况下,总压的变化规律是 不变_的。

飞机的飞行操作原理

飞行原理简介 飞行原理简介(一) 要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。 一、飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1.机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2.机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3.尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是*空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

《飞机构造基础》课程教学大纲

《飞机构造基础》课程教学大纲 课程名称:飞机构造基础计划学时:48 计划学分:2.5 先修课程:工程力学、飞行技术基础课程性质:专业课 课程类型:必修课适用专业:飞机机电维修专业 编制单位:广州民航职业技术学院机务工程系编制时间:2001年11月 一、课程的性质和任务 本课程是飞机机电专业的一门重要专业课,其主要任务是使学生初步了解飞机的结构及飞机各系统的基本知识,为进行实际维护工作及故障诊断打下基础。本课程也是后续课程《飞机系统与附件》的基础课程 二、课程特色 本课程突出技能和能力培养,配合双证书制,使学生在校期间即可获得岗位资格证书。 本课程可利用现有737飞机附件,飞行操纵摸拟器及飞机电源系统示教板,采用现场教学方法使学生加深对飞机各系统的理解. 三、知识能力培养目标 (一)基本知识 飞机结构、载重与平衡、飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、防冰排雨系统、飞机燃油系统、飞机防火系统、飞机电子系统等。 (二)应用能力 通过本课程的学习,使学生了解飞机组成、结构形式及受力特点,飞机载重与平衡的基本知识,掌握飞机飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、飞机燃油系统的基本组成及工作原理;了解防冰排雨系统、飞机防火系统、飞机电子系统的基本知识。 (三)自学能力 培养学生具有对飞机构造及各系统的总的认识,为以后的飞机维护和排故工作打下基础。 四、课程内容和要求 见附表 五、考核方法和成绩评定 (一)考核方法 本课程的考核以平时作业、平时测验和期末笔试为主,平时占总成绩的40%,期34

末占总成绩的60%。 (二)成绩评定 1.基本知识,应知考核(书面、闭卷)成绩 2.上课的出勤率,学习态度 3.平时实践操作情况 六、教学参考书 ⑥《飞机构造基础》宋静波·王洪涛主编,广州民航职业技术学院出版 ⑥《航空电气》盛乐山主编 ⑥《民用航空器维修人员指南》(机体部分) 七、说明与建议 1.本大纲的总学时为48学时,学习本门课,应具有《飞行技术基础》、《工程力学》的基本知识。 2.本大纲由机务工程系宋静波老师编写。 附表: 35

2013级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) A.85-90% B.10-15% C.25% D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形10.气流流过亚音速进气道时,( D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由( C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的( C )。 A相对速度增加, 压力下降B绝对速度增加, 压力下降

飞机操纵原理

一、飞行原理 飞机在空气中运动时,是靠机翼产生升力使飞机离陆升空的。机翼升力是怎样产生的呢?这首先得从气流的基本原理谈起。在日常生活中,有风的时候,我们会感到有空气流过身体,特别凉爽;无风的时候,骑在自行车上也会有同样的体会,这就是相对气流的作用结果。滔滔江水,流经河道窄的地方时,水流速度就快;经过河道宽的地方时,水流变缓,流速较慢。空气也是一样,当它流过一根粗细不等的管子时,由于空气在管子里是连续不断地稳定流动,在空气密度不变的情况下,单位时间内从管道粗的一端流进多少,从细的一端就要流出多少。因此空气通过管道细的地方时,必须加速流动,才能保证流量相同。由此我们得出了流动空气的特性:流管细流速快;流管粗流速慢。这就是气流连续性原理。 实践证明,空气流动的速度变化后,还会引起压力变化。当流体稳定流过一个管道时,流速快的地方压力小。流速慢的地方压力大。 飞机在向前运动时,空气流到机翼前缘,分为上下两股,流过机翼上表现的流线,受到凸起的影响,使流线收敛变密,流管(把两条临近的流线看成管子的管壁)变细;而流过下表面的流线也受凸起的影响,但下表面的凸起程度明显小于上表面,所以,相对于上表面来说流线较疏松,流管较粗。由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。这样在机翼上、下表面出现了压力差。这个作用在机翼各切面上的压力差的总和便是机翼的升力(见图)。其方向与相对气流方向垂直;其大小主要受飞行速度、迎角(翼弦与相对气流方向之间的夹角)、空气密度、机翼切面形状和机翼面积等因素的影响。当然,飞机的机身、水平尾翼等部位也能产生部分升力,但机翼升力是飞机升空的主要升力源。飞机之所以能起飞落地,主要是通过改变其升力的大小而实现的。这就是飞机能离陆升空并在空中飞行的奥

直升机旋翼头工作原理

解读直升机旋翼头的奥秘 遥控直升机可说是所有遥控模型里头最为复杂的一个项目,各细节的关连性更是环环相扣,其中最复杂的结构莫过於旋翼头的设计,旋翼头也是性能的主要取决性,本章针对於主旋翼结构对性能的影响作深入的分析,直升机迷们不可错过! 决定性能的旋翼头 决定遥控直升机机体特性的几个要素里项,旋翼头所占的比例相当高。要如何分辨机体特性呢?遥控直升机不像飞机一样,可以从外形上直接分辨出特级机、练习机、象真机,直升机可就不一样了,同样的旋翼头,经过不同的设定与调整,可以让性能有截然不同的表现,就算是相同的直升机,也可以安稳的适合初学者,也可以灵活的对应3D飞行,旋翼头的变化可说是相当大的。相信有许多直升机模友们从直升机的种类,即使不曾亲身试飞过,就可以大约知道飞行的特征,对直升机性能的推断依据多半也是来自于旋翼头的造型设计,但是相信也有更多的朋友们对旋翼头的性能会有著『为什么不一样』的想法?但是想要深入研究,却又被复杂的结构打败。这一次我们就来说明一下关於旋翼头的性能取决做一个研究。 决定性能的四大要素 1、三角补偿角 2、贝尔希拉比率 3、修正率 4、避震橡胶 这四个要素的搭配,可决定大多数直升机的性格。实际上有人测试过,将J牌的旋翼头装在H牌的直升机上面,整体飞行起来的感觉就会比较接近於J牌的感觉。 一、三角补正角 一般玩家可以比较简单变更的一项。请参考图一,以目前市面上多数韵.型态多半是主旋翼夹片球头臂在主旋翼後方(三角补正角为正角度),接著要注意的是夹片球头的部分(图二) ,当夹片球头臂太短的时候,三角补偿角便会增加,当主旋翼高转速运转时执行动作,整体旋翼面的倾斜会使的旋翼夹片会受到三角补偿角的影响增大螺距角度,使的直升机的反应迅速加快执行动作,虽然这样可以增加机体的灵活度,但是你也会同时发现直升机变的更加难以操纵,因为既使是简单的停悬动作,只要风轻轻的吹向旋翼面,直升机主旋翼会做出些微的摆荡运动,但是很容易因为三角补偿角的关系而自行产生螺距角度的变化,造成直升机会出现类似打舵的现象,因此会变的难以控制。 以主旋翼相同的旋转方向来说(顺时针) ,三角补正角的正数值(+)越大,机体越灵敏,但也越不安定。三角补正角负数值(-)越大则越安定,但反应也越迟钝。然而要获得一个折衷的办法,就是让三角补正角度为0度,三角补正角为0度的直升机最好掌握而且不失灵活度。而调整三角补正角的方式也很简单,只需要加长旋翼夹片上的球头长度就可以了,但是要注意旋翼夹片的强度喔!如果是塑胶品的话,建议用新品来改装,免得发生断裂的危险。 每一家厂牌的直升机旋翼头的支点不太一样,以遥控直升机为例,大约有五种型式的旋翼头,所以先确定好支点旋翼头的种类的位置,再来做相关的测量。这样才能够有效的发挥三角补正角的效果。

直升机的飞行原理

直升机的飞行原理 延直升机旋翼叶片的切向做剖面,可得到一个形状,我们称之为桨型。该形状与机翼翼型(定义与桨型定义类似)相似,均具有较好的气动力特征,即在与空气的相对运动中,能够产生向上的气动升力。与固定翼飞机不同的是,固定翼飞机是通过机翼与气流的直线(这说法不确切,但宏观上说,问题不大,可以这么理解)运动产生上述气动升力。而直升机是通过使旋翼做圆周运动,产生上述气动升力。该气动升力通过旋翼的传载将直升机拉起(飞起来)。 上面已经提到,直升机飞起来需要旋翼的旋转。我们知道,当旋翼旋转的时候,同时将对机身产生一个反方向旋转的反扭矩。为平衡该反扭矩,故设置一个尾梁和一个尾桨,产生一个扭矩去平衡旋翼的反扭矩。 最后,直升机的旋翼,剖面应该是一个桨型(即翼型),通常是上凸下平(或凹)。这个有现成的桨型手册或桨型数据库的。而平面形状来说,是一个长宽比很大的矩形,在桨尖处,为避免激波的产生,有后掠角或弯曲。 旋翼的空气动力特点 (1)产生向上的升力用来克服直升机的重力。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓直升机下降趋势。 (2)产生向前的水平分力克服空气阻力使直升机前进,类似于飞机上推进器的作用(例如螺旋桨或喷气发动机)。 (3)产生其他分力及力矩对直升机;进行控制或机动飞行,类似于飞机上各操纵面的作用。旋翼由数片桨叶及一个桨毂组成。工作时,桨叶与空气作相对运动,产生空气动力;桨毂则是用来连接桨叶和旋翼轴,以转动旋翼。桨叶一般通过铰接方式与桨毂连接。 旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。 先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω绕轴旋转,并以速度 Vo沿旋转轴作直线运动。如果在想象中用一中心轴线与旋翼轴重合,而半径为 r的圆柱面把桨叶裁开(参阅图 2,1—3),并将这圆柱面展开成平面,就得到桨叶剖面。既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度 (等于Ωr)和垂直于旋转平面的速度(等于 Vo),而合速度是两者的矢量和。显然可以看出(如图2.1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的:大小不同,方向也不相同。如果再考虑到由于桨叶运动所激起的附加气流速度(诱导

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

飞机副翼操纵系统原理

张家界航空工业职业技术学院 毕业设计 题目:飞机副翼操纵系统分析 系别:数控工程系 专业:航空机电设备维修 姓名: 学号: 指导老师:

摘要 本论文主要阐述了关于飞机副翼的组成,个组成部件的工作原理,调整及日常维护方法。飞机的操纵性又可以称为飞机的操纵品质,是指飞机对操纵的反应特性。操纵则是飞行员通过驾驶机构改变飞机的飞行状态。改变飞机纵向运动(如俯仰)的操纵称为纵向操纵,主要通过推、拉驾驶杆,使飞机的升降舵或全动平尾向下或向上偏转,产生俯仰力矩,使飞机作俯仰运动。使飞机绕机体纵轴旋转的操纵称为横向操纵,主要由偏转飞机的副翼来实现。 关键词:驾驶杆传动杆传动机构载荷感觉器

Abstract The main thesis expounded aileron plane about the composition of component parts of the working principle, adjustment and routine maintenance methods. Manipulate the plane of the plane can be referred to as the quality of the manipulation means to manipulate the plane's response characteristics. Manipulation is to change the pilot institutions have passed the driving plane flight status. Vertical plane to change the sport (such as pitch) of manipulation known as vertical manipulation, mainly through the push, pull stick, so that the elevator or the whole plane Hirao moving downward or upward deflection, resulting in pitching moment, so that plane for pitch sports. Plane around the longitudinal axis so that rotation of the body known as the lateral manipulation manipulation, mainly by the plane's aileron deflection to achieve. Key word:Stick load transmission rod drive mechanism sensilla

飞机原理与构造简答题答案

1、以双梁式直机翼为例,说明气动载荷是如何传递的。(18分) (1)蒙皮把气动载荷分别传给长桁和翼肋:蒙皮受气动吸力时,桁条和翼肋通过铆钉受拉对蒙皮提供支反力;蒙皮受气动压力时,蒙皮直接压在桁条和翼肋上,根据作用力与反作用力的原理,蒙皮把外载传递给了翼肋和长桁。 (2)长桁把自身承受的初始气动载荷传给翼肋 桁条与翼肋直接用角片(或间接通过蒙皮)相连,此时载荷方向垂直于长桁轴线,翼肋向长桁提供支持。此时,桁条可以看成支持在翼肋上的多点连续梁,长桁把气动载荷传递给了翼肋。至此,作用在蒙皮上的气动载荷直接或由长桁间接地全部传给了翼肋。 (3)翼肋把气动载荷转换成了垂直载荷和力矩,并相应的传到了梁腹板和组成封闭翼盒的各元件上 (4)翼梁将剪流往根部传递 由于梁腹板的抗弯能力比梁的缘条小的多,可略去其承弯能力,因而腹板以平板受剪的形式平衡,并将剪流往根部传递。最后在根部有机翼—机身对接接头提供垂直方向的支反力来平衡。 (5)蒙皮、腹板承受扭矩。机翼的第三个总体内力扭矩以蒙皮和腹板受剪的形式,向根部传递,总扭矩到机翼根部应通过加强肋将一圈剪流转换成适合于机翼—机身对接接头承受的一对集中力,再通过接头传给机身。 2、说明双梁式直机翼的普通翼肋的作用。(10分) (1)用以承受蒙皮传来的局部气动载荷 (2)把局部气动载荷转换成适合于主受力盒段各组成元件受力特性的载荷形式 (3)然后把它们传到这些主要元件上,向机翼根部传递,并进而通过对接接头传给机身 3、比较分析机翼各典型受力型式的结构受力特点。(20分) (1)梁式机翼:翼梁是主要受力构件,梁式机翼便于开口而不致破坏原来的主要传力路线;机翼、机身通过几个集中接头连接,所以连接简单、方便;主要依靠翼梁承受弯矩(2)单块式机翼:上、下壁板为主要受力构件。这种机翼比梁式机翼的刚度特性好。同时,由于结构分散受力,能更好的利用剖面高度,在某些情况下材料利用率较高,重量可能较轻,缺点是不便于大开口。 (3)多腹板式机翼:主要由上、下蒙皮承受弯矩,与梁式、单块式机翼相比,材料分散性更大。一般来说,多腹板式机翼的刚度大,材料利用率也更好些,然而也存在类似单块式机翼的缺点 4、以桁条式机身后段上的一个垂直集中力Pz为例,分析说明载荷是如何传给机身结构,又是如何在机身结构中传递的?(10分) 桁条式机身的一个加强隔框和水平尾翼的接头相连接,该加强隔框受到由接头传来的P z力,该框受到P z力后,要有向上移动的趋势,对此桁条起不了直接的限制作用,而由蒙皮通过沿框缘的连接铆钉给隔框以支反剪流q。q的分布与机身的受力型式,更明确地说,是和该框平面处机身壳体上受正应力面积的分布有关。对桁条式机身,假设只有桁条承受正应力,而蒙皮只受剪切时,剪流沿周缘按阶梯形分布。若蒙皮也受正应力,则在两桁条间的剪流值将不是等值,而成曲线分布。又因为蒙皮与桁条连接,蒙皮因剪流q受剪时将由桁条提供轴向支反剪流平衡,也即蒙皮上的剪流q将在桁条上产生拉、压的轴向力。 作用在框平面内的集中力:(1)由加强框承受该集中载荷(2)加强框将集中力扩散,以剪流的形式传给蒙皮。(3)剪流在蒙皮中向机身中段传递时,其剪切内力通过蒙皮连续向前传递;而弯曲内力则通过桁条的轴向拉、压力向前传递。 5、阐述飞机起落架减震机构中油气式减震器工作原理。(12分)

图解直升机原理

图解直升机原理之一---涡轮轴发动机工作 原理 航空涡轮轴发动机 航空涡轮轴发动机,或简称为涡铀发动机,是一种输出轴功率的涡轮喷气发动机。法国是最先研制涡轴发动机的国家。50年代初,透博梅卡公司研制成一种只有一级离心式叶轮压气机、两级涡轮的单转于、输出轴功率的直升机用发动机,功率达到了206kW(280hp),成为世界上第一台直升机用航空涡轮轴发动机,定名为“阿都斯特—l”(Artouste—1)。首先装用这种发动机的直升机是美国贝尔直升机公司生产的Bell 47(编号为X H—13F),于1954年进行了首飞。 涡轴发动机的主要机件 与一般航空喷气发动机一样,涡轴发动机也有进气装置、压气机、燃烧室、涡轮及排气装置等五大机件,涡轴发动机典型结构如下图所示。

进气装置 由于直升机飞行速度不大,一般最大平飞速度在3 50km/h以下,故进气装置的内流进气道采用收敛形,以便气流在收敛形进气道内作加速流动,以改善气流流场的不均匀性。进气装置进口唇边呈圆滑流线,适合亚音速流线要求,以避免气流在进口处突然方向折转,引起气流分离,为压气机稳定工作创造一个好的进气环境。有的涡轴发动机将粒子分离器与进气道设计成一体,构成“多功能进气道”,以防止砂粒进入发动机内部磨损机件或者影响发动机稳定工作,这种多功能进气道利用惯性力场,使含有砂粒的空气沿着一定几何形状的

通道流动。由于砂粒质量较空气大,在弯道处使砂粒获得较大的惯性力,砂粒便聚集在一起并与空气分离,排出机外(见下图)。 压气机 压气机的主要作用是将从进气道进入发动机的空 气加以压缩,提高气流的压强,为燃烧创造有利条件。根据压气机内气体流动的特点,可以分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轴发动机的压气机,其结构形式几经演变,从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。当前,直升机的

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

直升机操纵原理与固定翼飞机的对比,让你分分钟明白

直升机操纵原理与固定翼飞机的对比,让你分分钟明白 直升机的操纵原理,与固定翼飞机完全不同。先做个对比,以单旋翼带尾桨直升机为例。固定翼飞机升力以及操纵力矩来源:前飞动力:由发动机直接喷气或螺旋桨产生拉力。升力:由机翼产生。俯仰力矩:由水平尾翼活动舵面产生。滚转力矩:由副翼产生。偏转力矩:由垂直尾翼的活动舵面产生直升机各种力和力矩的来源:前飞动力:由旋翼桨盘前倾产生。升力:由旋翼产生。俯仰力矩:由旋翼桨盘前后倾斜产生。滚转力矩:由旋翼桨盘左右倾斜产生。偏转力矩:由尾桨拉力大小变化产生。结论:两者的动力和操纵力矩产生方式完全不同。固定翼飞机操纵力矩来自于各个可动舵面。直升机除了偏转力矩之外,其余动力和操纵力矩全部来自旋翼。这就自然导致操纵原理与操纵方式的大相径庭。再对比一下飞行员直接面对的操纵设备:固定翼飞机:右手:驾驶杆。(大型机的驾驶盘先忽略吧)左手:油门杆。双脚:脚蹬。直升机:右手:驾驶杆(真名:周期变距杆)左手:总距油门杆。双脚:脚蹬。驾驶杆VS 周期变距杆他们长得样子都是一样的,产生的操纵效果也是一样的,都是用来控制航空器的倾斜和俯仰状态。向前推杆是低头,向后拉杆是抬头,向左压杆是左滚转,向右压杆是右滚转。效果一样的,可是原理不一样。固定翼飞机:驾驶杆的左右运动,带动的是机翼外侧的副翼,前后运动,带动的

是尾部的水平尾翼。直升机:驾驶杆的运动,通过液压动作筒,带动自动倾斜器的不动环向驾驶杆运动的方向倾斜。自动倾斜器上方的动环在跟随旋翼旋转的同时,跟随不动环倾斜,带动变距拉杆运动,使所有桨叶的迎角周期性改变,产生强制挥舞,整个桨盘向驾驶杆运动的方向倾斜,产生操纵力矩。没有接触过直升机原理的话可能不太好理解,只要记住驾驶杆向哪里运动,上面的大桨盘就朝哪里倾斜就好了。油门杆VS总距油门杆固定翼飞机:油门,就是单纯的油门,直接控制发动机的功率,决定动力的大小。直升机:油门实际上有两个,一个显形的,一个隐形的。显形的那个,就是和固定翼飞机一样的油门杆,一般是在驾驶室顶棚的上方,只是起动的时候用,操纵的时候就不用了。隐形的那个,就是总距油门杆了。它的操纵方式是上提和下放。上提总距杆时,通过液压动作筒,带动自动倾斜器的不动环整体上升,动环跟随上升,带动变距拉杆运动,使所有桨叶的迎角同时增大,每片桨叶的升力都增加,导致整个旋翼的拉力增加。上提总距杆的同时,还有一根钢索,连接到燃油调节器,增大活门开度,提升发动机功率,用来在总桨距提升导致旋翼旋转阻力增大的同时,增加动力维持恒定的旋翼转速。下放总距杆的动作与前面相反。因为它带动的是所有桨叶的桨距,所以叫做总桨距,简称总距。有一个概念需要明确一下,直升机旋翼的旋转速度在正常工作状态下是相对恒定的,增减功率靠

相关主题