搜档网
当前位置:搜档网 › 幂法计算特征值--亮

幂法计算特征值--亮

幂法计算特征值--亮
幂法计算特征值--亮

clear all

clc

format long

a=[3 -4 3;-4 6 3;3 3 1]; v0=[1;1;1];

i=1;

while i<100

vi=a*v0;

t=max(abs(vi));

u=vi/t;

v0=u;

i=i+1;

end

disp(u)

disp(t)

计算结果:

U=

-0.604362874184780

1.000000000000000

0.150816554524373

t=

8.869901160312239

幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量

数值计算解矩阵的按模最大最小特征值及对应的特征向量 —一 .幂法 1. 幕法简介: 当矩阵A 满足一定条件时,在工程中可用幕法计算其主特征值 (按模最大) 及其特征向量。矩阵A 需要满足的条件为: ⑴I 1 I I 2|n |- 0, i 为A 的特征值 (2)存在n 个线性无关的特征向量,设为 X i ,X 2,…,X n 1.1计算过程: n 对任意向量x (0),有x (0)八:-M —不全为0,则有 i 4 X (k 岀)=Ax (k)= = A k 岀乂。) n n A k 1 aq a 扌1 5 i =1 i =1 ■k 1 2 可见,当 1 — 1 越小时,收敛越快;且当k 充分大时,有 ? "1 2算法实现 ⑶.计算x Ay,… max(x); ⑷若| ?一十:;,输出-,y,否则,转(5) (5)若N ,置k 「k 1^ -,转3,否则输出失败信息,停机. 3 matlab 程序代码 (冲1 %叫 x (k 1) [x (k) k 二 u x (k) > (k+1) 1,对应的特征向量即是 x (1).输入矩阵A ,初始向量X ,误差限 最大迭代次数N (k) 0; y (k) max(abs(x (k ))

k=1; z=0; y=x0./max(abs(x0)); x=A*y; % z相当于■ %规范化初始向量%迭代格式 b=max(x); % b相当于: if abs(z-b)eps && k> y]=lpower (A, xO, eps, X)

高中化学计算题的常用解题技巧(3)------极限法

高中化学计算题的常用解题技巧(3)------极限法 极限法:极限法与平均值法刚好相反,这种方法也适合定性或定量地求解混合物的组成.根据混合物中各个物理量(例如密度,体积,摩尔质量,物质的量浓度,质量分数等)的定义式或结合题目所给条件,将混合物看作是只含其中一种组分A,即其质量分数或气体体积分数为100%(极大)时,另一组分B对应的质量分数或气体体积分数就为0%(极小),可以求出此组分A的某个物理量的值N1,用相同的方法可求出混合物只含B 不含A时的同一物理量的值N2,而混合物的这个物理量N平是平均值,必须介于组成混合物的各成分A,B的同一物理量数值之间,即N1 [例5]4个同学同时分析一个由KCl和KBr组成的混合物,他们各取2.00克样品配成水溶液,加入足够HNO3后再加入适量AgNO3溶液,待沉淀完全后过滤得到干燥的卤化银沉淀的质量如下列四个选项所示,其中数据合理的是 A.3.06g B.3.36g C.3.66g D.3.96 本题如按通常解法,混合物中含KCl和KBr,可以有无限多种组成方式,则求出的数据也有多种可能性,要验证数据是否合理,必须将四个选项代入,看是否有解,也就相当于要做四题的计算题,所花时间非常多.使用极限法,设2.00克全部为KCl,根据KCl-AgCl,每74.5克KCl可生成143.5克AgCl,则可得沉淀为(2.00/74.5)*143.5=3.852克,为最大值,同样可求得当混合物全部为KBr时,每119克的KBr可得沉淀188克,

所以应得沉淀为(2.00/119)*188=3.160克,为最小值,则介于两者之间的数值就符合要求,故只能选B和C。等量物质燃烧时乙醛耗氧最多。

实验6反幂法求矩阵按模最小特征值

西华数学与计算机学院上机实践报告 课程名称:计算方法A 年级:2010级 上机实践成绩: 指导教师:严常龙 姓名:李国强 上机实践名称:反幂法求矩阵按模最小特征值 学号:362011********* 上机实践日期:2013.12.18 上机实践编号:6 上机实践时间:14:00 一、目的 1.通过本实验加深对反幂法的构造过程的理解; 2.能对反幂法提出正确的算法描述编程实现,得到计算结果。 二、内容与设计思想 自选方阵,用反幂法求解其按模最小特征值。 可使用实例: ????? ??---=90688465441356133A 三、使用环境 操作系统:Win 8 软件平台:Visual C++ 6.0 四、核心代码及调试过程 #include #include #define MAX_N 20 //矩阵最大维数 #define MAXREPT 100 #define epsilon 0.00001 //求解精度 int main() { int n; int i,j,k; double xmax,oxmax; static double a[MAX_N][MAX_N]; static double l[MAX_N][MAX_N],u[MAX_N][MAX_N]; static double x[MAX_N],nx[MAX_N]; printf("\n 请输入矩阵阶数n:"); //输入矩阵维数 scanf("%d",&n); if(n>MAX_N)

{ printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } //输入A矩阵 printf("请输入矩阵的值a[i][j] i,j=0...%d;\n",n-1); for(i=0;ixmax) xmax=fabs(nx[j]); for(j=0;j

(完整)初中化学计算极值法

初中化学计算极值法 基本原理:极值法== 极端假设+ 平均思想 常见题型 1、确定物质的成分 例1 某气体是由SO2、N2和CO2中的一种或几种组成,现测得该气体中氧元素的质量分数为50%,则该气体的组成情况有①;②;③。 练习1、由Na、Mg、Al三种金属中的两种组成的混合物共10g,与足量的盐酸反应产生 0.5g氢气,则此混合物必定含有() A Al B Mg C Na D 都有可能 练习2、两种金属的混合物共12g,加到足量的稀硫酸中可产生1g氢气,该金属混合物可能是() A Al和Fe B Zn和Fe C Mg和Zn D Mg和Fe 2 确定杂质的成分 例2 某含有杂质的Fe2O3粉末,测知其中氧元素的质量分数为32.5%,则这种杂质可能是() A SiO2 B Cu C NaCl D CaO 练习1、将13.2g可能混有下列物质的(NH4)2SO4样品,在加热的条件下,与过量的NaOH 反应,可收集到气体4.3L(密度为17g/22.4L),则样品中不可能含有的物质是() A NH4HCO3、NH4NO3 B (NH4)2CO3 、NH4NO3 C NH4HCO3、NH4Cl D NH4Cl、(NH4)2CO3 2、不纯的CuCl2样品13.5g与足量的AgNO3溶液充分反应后得到沉淀29g,则样品中不可能含有的杂质是() A AlCl3 B NaCl C ZnCl2 D CaCl2 练习3、某K2CO3样品中含有Na2CO3、KNO3、Ba(NO3) 2三种杂质中的一种或两种,现将6.9g样品溶于足量水中,得到澄清溶液。若再加入过量的CaCl2溶液,得到4.5g沉淀,对样品所含杂质的判断正确的是() A 肯定有KNO3和Na2CO3,肯定没有Ba(NO3)2 B 肯定有KNO3,没有Ba(NO3)2,还可能有Na2CO3 C 肯定没有Na2CO3和Ba(NO3) 2,可能有KNO3 D 无法判断 练习4、有一种不纯的K2CO3固体,可能含有Na2CO3、MgCO3、NaCl中的一种或两种。到该样品13.8g加入50g稀盐酸,恰好完全反应,得到无色溶液,同时产生气体4.4g。下列判断正确的是()A样品中一定含有NaCl B 样品中一定含有MgCO3 C 样品中一定含有Na2CO3 D 所加的稀盐酸中溶质的质量分数为7.3% 练习5 一包混有杂质的Na2CO3,其杂质可能是Ba(NO3) 2、KCl、NaHCO3的一种或几种。取10.6g样品,溶于水得澄清溶液;另取10.6g样品,加入足量的盐酸,收集到4gCO2,则下列判断正确的是()A.样品中只混有KCl B.样品中有NaHCO3,也有Ba(NO3) 2 C.样品中一定混有KCl,可能有NaHCO3 D.样品中一定混有NaHCO3,可能有KCl

幂法求矩阵主特征值

!程序说明:幂法求矩阵主特征值 !日期:2010年11月30日 PROGRAM Matrix_EigenValue PARAMETER(N=3) REAL ARR(N,N) CALL INPUT(ARR,N) CALL MATEV(ARR,N) END PROGRAM SUBROUTINE INPUT(ARR,N) REAL ARR(N,N) OPEN(1,FILE='MAT.TXT') READ(1,*)((ARR(I,J),J=1,N),I=1,N) END SUBROUTINE SUBROUTINE MATEV(ARR,N) PARAMETER(EPS=1E-7) REAL :: ARR(N,N),X(N),X1(N),MAX=0 INTEGER :: K=0,P=0 X=RESHAPE((/1,1,1/),(/3/)) WRITE(1,*) ' 迭代次数 U(规范化向量) & & MAX(V)(主特征值)' DO WHILE(P/=N) WRITE(1,'(I6,A,F12.6,A,F12.6)') K,' (',X,' )',MAX P=0 MAX=0 DO I=1,N X1(I)=0 DO J=1,N X1(I)=X1(I)+ARR(I,J)*X(J) !迭代过程 ENDDO ENDDO DO I=1,N IF(ABS(X1(I))>ABS(MAX)) MAX=X1(I) !选取主特征值 ENDDO DO I=1,N IF(ABS(X(I)-X1(I)/MAX)

ENDDO K=K+1 ENDDO END SUBROUTINE 输出结果: 1 1 0.5 1 1 0.25 0.5 0.25 2 迭代次数 U(规范化向量) MAX(V)(主特征值) 0 ( 1.000000 1.000000 1.000000 ) 0.000000 1 ( 0.909091 0.81818 2 1.000000 ) 2.750000 2 ( 0.837607 0.743590 1.000000 ) 2.659091 3 ( 0.799016 0.703035 1.000000 ) 2.604701 4 ( 0.77741 5 0.680338 1.000000 ) 2.575267 5 ( 0.765108 0.66740 6 1.000000 ) 2.558792 6 ( 0.758025 0.659963 1.000000 ) 2.549406 7 ( 0.753925 0.655655 1.000000 ) 2.544003 8 ( 0.751544 0.653153 1.000000 ) 2.540876 9 ( 0.750158 0.651697 1.000000 ) 2.539060 10 ( 0.749351 0.650848 1.000000 ) 2.538003 11 ( 0.748880 0.650354 1.000000 ) 2.537387 12 ( 0.748606 0.650065 1.000000 ) 2.537028 13 ( 0.748445 0.649897 1.000000 ) 2.536819 14 ( 0.748352 0.649799 1.000000 ) 2.536697 15 ( 0.748298 0.649741 1.000000 ) 2.536626 16 ( 0.748266 0.649708 1.000000 ) 2.536584 17 ( 0.748247 0.649688 1.000000 ) 2.536560 18 ( 0.748236 0.649677 1.000000 ) 2.536546 19 ( 0.748230 0.649670 1.000000 ) 2.536537 20 ( 0.748226 0.649667 1.000000 ) 2.536533 21 ( 0.748224 0.649664 1.000000 ) 2.536530 22 ( 0.748223 0.649663 1.000000 ) 2.536528 23 ( 0.748222 0.649662 1.000000 ) 2.536527 24 ( 0.748222 0.649662 1.000000 ) 2.536527 25 ( 0.748222 0.649662 1.000000 ) 2.536526 26 ( 0.748221 0.649661 1.000000 ) 2.536526

高考化学解题方法极限法

化学解题技巧 ------------------------极限法 极限判断是指从事物的极端上来考虑问题的一种思维方法。该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围。 例1 :在120℃时分别进行如下四个反应: A.2H2S+O2=2H2O+2S B.2H2S+3O2=2H2O+2SO2 C.C2H4+3O2=2H2O+2CO2D.C4H8+6O2=4H2O+4CO2 (l)若反应在容积固定的容器内进行,反应前后气体密度(d)和气体总压强(P)分别符合关系式d前=d后和P前>P后的是;符合关系式d前=d后和P前=P后的是(请填写反应的代号)。 (2)若反应在压强恒定容积可变的容器内进行,反应前后气体密度(d)和气体体积(V)分别符合关系式d前>d后和V前d后和V前>V后的是(请填写反应的代号)。 方法:从反应物全部变成生成物来作极限判断。 解析:(1)在容积固定的容器内,四个反应的反应物和生成物中除硫单质外均为气体, 总结:解本题还应用了物理学中气态方程和化学中的阿伏加德罗定律。这是一道物理和化学学科间综合试题,体现了当今的命题方向。 例2 :把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应,生成氯化银沉淀300mg,则该氯化镁中的杂质可能是( ) A.氯化钠 B.氯化铝 C.氯化钾 D.氯化钙 方法:采用极值法或平均分子量法。 解析:[解法一]:(极值法)

假设95mg全为MgCl2,无杂质,则有:MgCl2 ~ 2AgCl 95mg 2×143.5mg 生成沉淀为287mg,所以假设95mg全部为杂质时,产生的AgCl沉淀应大于300mg。 总结:极值法和平均分子量法本质上是相同的,目的都是求出杂质相对分子量的区间值,或者杂质中金属元素的原子量的区间值,再逐一与选项比较,筛选出符合题意的选项。 例3 :在一个容积固定的反应器中,有一可左右滑动的密封隔板,两侧分别进行如图所示 的可逆反应.各物质的起始加入量如下:A、B和C均为4.0mol、D为6.5 mol、F为2.0 mol,设E为x mol.当x在一定范围内变化时,均可以通过调节反应器的温度,使两侧反应都达到平衡,并且隔板恰好处于反应器的正中位置.请填写以下空白: (1)若x=4.5,则右侧反应在起始时向(填“正反应”或“逆反应”)方向进行.欲使起始反应维持向该方向进行,则x的最大取值应小于. (2)若x分别为4.5和5.0,则在这两种情况下,当反应达平衡时,A的物质的量是否相等? (填“相等”、“不相等”或“不能确定”).其理由是:。 方法:解答该题时,首先要考虑两侧都达到平衡时物质的量必须相等,然后要从完全反应

幂法求矩阵A按模最大的特征值及其特征向量

数值分析 幂法求矩阵A按模最大的特征值及其 特征向量

幂法的主要思想 设 n n ij R a A ?∈=)( ,其特征值为i λ ,对应特征向量为),,,1(n i x i =即 i i i x Ax λ= ),,1(n i =,且 x 1,······,x n 线性无关。求矩阵A 的主特征值及对应的特征向量。 幂法的基本思想: 任取一个非零初始向量 v 0 ∈R n 且v 0≠0, 由矩阵A 的乘幂构造一向量序列: 称{ v k }为迭代向量, A 特征值中 λ1为强占优,即▕ λ1▕>▏λ2 ▏>······>▏λn ▏, {x 1,x 2,······,x n }线性无关,即{x 1,x 2,······,x n }为R n 中的一 个基,于是对任意的初始向量v 0 ∈R n 且 v 0≠0有展开式。 (v 0 用{x i } 的线性组合表示) (且设01≠α) 则 当k =2,3,… 时,v k = A v k-1 = A k v ? ?? 1Av v =0 212v A Av v ==01 1 v A Av v k k k ++==) ,,1,0(n k =∑==n i i i x v 1 α)(221101n n x x x A v A v ααα+++==n n x A x A x A ααα+++=2211n n n x x x λαλαλα+++=222111) (111 +≡x k αλk ε

其中 由假设▕ λ1▕>▏λ2 ▏>······>▏λn ▏,得 ,从而 即,0lim =∞→k k ε且收敛速度由比值||12λλ=r 确定。 所以有 说明,当k 充分大时,有1 11 x v k k αλ≈,或 k k v 1λ 越来越接近特征 向量 规范化幂法的算法 ①输入矩阵 A 、初始向量v (0),误差 eps ,实用中一般取 v (0)=(1,1,···,1)T ; ②k ←1; ③计算 v (k) ←Au (k-1); ④m k ←max{ v (k) },m k-1 ←{ v (k-1) }; ⑤u (k) ←v (k)/ m k ; ⑥如果▕ m k - m k-1▕<eps ,则显示特征值λ1←和对应的特征 向量x (1),终止; ⑦k=k+1,转③。 n k n n k k x x )()(1 2122λλαλλαε++=),,2(1||1 n i i =<λλ ),,,2(0)(lim 1n i k i k ==∞→λλ111 lim x v k k k αλ=∞ →。 11x α

matlab求矩阵特征值特征向量 乘幂法

摘 要 根据现代控制理论课程的特点, 提出并利用MATLAB 设计了现代控制理论课程的实验, 给出了设计的每个实验的主要内容及使用到的MATLAB 函数, 并对其中的一个实验作了详细说明。通过这些实验, 将有助于学生理解理论知识, 学习利用MATLAB 解决现代控制理论问题。 关键词:现代控制理论、MATLAB 、仿真。 1设计目的、内容及要求 1.1设计目的 本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,求连续系统对应的离散化的系统,并用计算系数阵按模最大的特征根法判别离散系统的稳定性,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统设计与分析的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的实现和分析系统的稳定性的设计的工具。 1.2设计内容及要求 1 在理论上对连续系统离散化推导出算法和计算公式 2 画出计算机实现算法的框图 3 编写程序并调试和运行 4 以下面的系统为例,进行计算 ??????????----=041020122A ,?? ?? ? ?????=100B ,[]111-=c 5 分析运算结果

6 幂法迭代精度为ep=0.001,离散系统展开项数为20 7 程序应具有一定的通用性,对不同参数能有兼容性。 2算法选择及推导 2.1连续系统离散化算法 书P67离散化意义 已知被控对象的状态方程为: ()()()()()()t t u t y t t u t =+=+ x Ax B Cx D 对方程求解,得: 0()()0()()()o t t t t t t e t e u d τττ --=+?A A x x B 设0t kT =,(1)t k T =+,代入上式,得: H 公式 若省略T 则为{ ? +-++Φ=+T k kT d kT Bu T k kt x T T k x )1()(])1[()()(])1([(τ τφ不改变与离散后时刻,即得连续离散化方程则:相当于)+=(上限相当于下限设令D C kT Du kT Cx kT y kT t kT u T H kT x T G T k x Bdt t Bdt e T H t T k T t kT d dt T k t Bd e T H e T T G T T AT T k kT T k A AT )()()()()()()(])1([(: )()(0 ,1,,)1()()()(0 )1(])1[(+==+=+Φ=====-=-+=?==Φ=???+-+τττττ τ

利用“极限思维法”巧解化学计算题

利用“极限思维法”巧解化学计算题 (湖北松滋湖北省松滋市实验中学) 极限思维法简称极值法,就是把研究的对象或变化过程假设成某种理想的极限状态进行分析、推理、判断的一种思维方法;是将题设构造为问题的两个极端,然后依据有关化学知识确定所需反应物或生成物的量值进行判断分析求得结果。极值法的特点是“抓两端,定中间”。极值法的优点是将某些复杂的、难于分析清楚的化学问题(如某些混合物的计算、平行反应计算和讨论型计算等)变得单一化、极端化和简单化,使解题过程简洁,解题思路清晰,把问题化繁为简,化难为易,从而提高了解题效率。下面就结合部分试题具体谈谈极值法在化学解题中应用的方法与技巧。 一.用极值法确定判断物质的组成 例1:某K2CO3样品中含有Na2CO3、KNO3和Ba(NO3)2三种杂质中的一种或两种,现将6.9g 样品溶于足量水中,得到澄清溶液。若再加入过量的CaCl2溶液,得到4.5g沉淀,对样品所含杂质的判断正确的是() A、肯定有KNO3和Na2CO3,没有Ba(NO3)2 B、肯定有KNO3,没有Ba(NO3)2,还可能有Na2CO3 C、肯定没有Na2CO3和Ba(NO3)2,可能有KNO3 D、无法判断 解析:样品溶于水后得到澄清溶液,因此一定没有Ba(NO3)2。对量的关系用“极值法”可快速解答。设样品全为K2CO3,则加入过量的CaCl2溶液可得到沉淀质量为5g,;若6.9g全为Na2CO3则可得到沉淀质量为6.5g。显然,如果只含有碳酸钠一种杂质,产生沉淀的质量将大于5g;如果只含有KNO3,由于KNO3与CaCl2不反应,沉淀的质量将小于5g,可能等于4.5g。综合分析,样品中肯定有KNO3,肯定没有Ba(NO3)2,可能有Na2CO3。故本题选B。 【点评】用极值法确定杂质的成分:在确定混合物的杂质成分时,可以将主要成分和杂质极值化考虑(假设物质完是杂质或主要成分),然后与实际比较,即可迅速判断出杂质的成分。二.用极值法确定可逆反应中反应物、生成物的取值范围 例2:一定条件下向2L密闭容器中充入3molX气体和1molY气体发生下列反应:2X(g) + Y(g) 3Z(g) +2W(g),在某一时刻达到化学平衡时,测出下列各生成物浓度的数据肯定错误的是() A、c(Z)=0.75mol?L-1 B、c(Z)=1.20mol?L-1 C、c(W)=0.80 mol?L-1 D、c(W)=1.00 mol?L-1 解析:用极限思维假设此反应中3molX和1molY能完全反应,求出最大值。1molY完全反应生成3molZ和2molW。所以,0<c(Z) <1.5 mol?L-1;0<c(W) <1 mol?L-1 故答案为D。 【点评】由于可逆反应总是不能完全进行到底,故在可逆反应中分析反应物、生成物的量时利用极值法把可逆反应看成向左或向右进行完全的反应,这样可以准确、迅速得出答案。三.利用极值法确定多个平行反应中生成物浓度的范围 例3:在标准状况下,将NO2、NO、O2的混合气体充满容器后倒置于水中,气体完全溶解,溶液充满容器。若产物不扩散到容器外,则所得溶液的物质的量浓度为() A、1/22.4 mol?L-1 B、1/28 mol?L-1 C、1/32 mol?L-1 D、1/40 mol?L-1

数学建模 用幂法 和法 根法求特征值特征向量

数学建模作业 计算机学院信计1102班姜圣涛 (1)幂法求矩阵最大特征值及特征向量: 程序为: #include #include using namespace std; #define n 3 //三阶矩阵 #define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){ cout<<"**********幂法求矩阵最大特征值及特征向量***********"<>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i>X[i]; //输入初始向量 k=1; u=0;

while(1){ max=X[0]; for(i=0;i

幂法反幂法求解矩阵大小特征值及其对应的特征向量

幂法反幂法求解矩阵大小特征值及其对应的特征向量

————————————————————————————————作者:————————————————————————————————日期:

数值计算解矩阵的按模最大最小特征值及对应的特征向量 一.幂法 1. 幂法简介: 当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21 ≥≥≥> (2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程: i n i i i u x x αα,1 ) 0()0(∑==,有对任意向量不全为0,则有 1 11111221 12111 1 1 11 1 011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k n i i k i i n i i i k )(k (k))(k αλλλλλα++++=+=+++≈? ? ????+++======∑∑ 可见,当||1 2 λλ越小时,收敛越快;且当k 充分大时,有1)11 11)11111λαλαλ=??????==+++(k )(k k (k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。 2 算法实现 . ,, 3,,1 , ).5() 5(,,,,||).4();max(,).3() (max(;0,1).2(,).1()() () (停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←= ←←k k N k y x Ay x x abs x y k N x A k k k 3 matlab 程序代码

极限法在化学计算中的应用

极限法在化学计算中的应用 极限判断是指从事物的极端上来考虑问题的一种思维方法。该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围,以此来做计算或确定混合物的组成。 1.把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应,生成氯化银沉淀300mg,则 该氯化镁中的杂质可能是() A.氯化钠B.氯化铝C.氯化钾D.氯化钙 2.取 3.5 g某二价金属的单质投入50g溶质质量分数为18.25%的稀盐酸中,反应结束后,金属仍有剩余;若2.5g 该金属投入与上述相同质量、相同质量分数的稀盐酸中,等反应结束后,加入该金属还可以反应。该金属的相对原子质量为( ) A.24 B.40 C.56 D.65 3.在一定条件下,气体A可发生如下反应:2 A(g) B(g)+3 C(g)。若已知所得混合气体对H2的相对密 度为4.25。则A的式量可能是() A.8.5 B.16 C.17 D.34 4.取 5.4 g由碱金属(R)及其氧化物(R2O)组成的混合物,使之与足量水反应,蒸发反应后的溶液,得到8 g无水晶体。通过计算判断此金属为哪一种碱金属。 5.某混合物含有KCl、NaCl、Na2CO3,经分析知含Na 31.5%,含氯为27.08%(质量百分含量)。则该混合物 中含Na2CO3为( ) A.25% B.50% C.80% D.无法确定 6.0.03mol铜完全溶于硝酸,产生氮的氧化物(NO、NO2、N2O4)混合气体共0.05mol。求该混合气体的平均 相对分子质量的取值范围。 7.常温下A和B两种气体组成的混合气体(A的分子量大于B的分子量),经分析混合气中只含有氮和氢两种元素,而且,不论A和B以何种比例混合,氮和氢的质量比总大于14/3。由此可确认A为①____,B为②____,其理由是③____。若上述混合气体中氮和氢的质量比为7:1,则在混合气中A和B的物质的量之比为④____;A在混合气中的体积分数为⑤____。 8.等物质的量的NaHCO3和KHCO3的混合物9.20g与100mL盐酸反应。 (1)试分析,欲求标准状况下生成的CO2的体积时,还需什么数据(用a、b等表示,要注明单位)。 (2)利用所确定的数据,求标准状况下生成的CO2的体积: 所需数据的取值范围生成CO2的体积(标准状况) 盐酸不足时 盐酸过量时 (3)若NaHCO3和KHCO3不是等物质的量混合,则9.2g固体与盐酸完全反应时,在标准状况下生成CO2气体的体积大于L,小于L 。

北航数值分析1-Jacobi法计算矩阵特征值

准备工作 ?算法设计 矩阵特征值的求法有幂法、Jacobi法、QR法等,其中幂法可求得矩阵按模最大的特征值(反幂法可求得按模最小特征值),Jacobi法则可以求得对称阵的所有特征值。 分析一:由题目中所给条件λ1≤λ2≤…≤λn,可得出λ1、λn按模并不一定严格小于或大于其他特征值,且即使按模严格小于或大于其他特征值,也极有可能出现|λs|<λ1|<|λn |或|λs|<λn|<|λ1 |的情况,导致按幂法和反幂法无法求解λ1或λn二者中的一者; 分析二:题目要求求解与数μk =λ1+k(λn-λ1)/40最接近的特征值λik(k=1,2,3…39),这个问题其实可以转换为求A-μk 按模最小的特征值的问题,但因为在第一个问题中无法确定能肯定的求得λ1和λn,所以第二个问题暂先搁浅; 分析三:cond(A) 2 = ||A|| * ||A-1|| =|λ|max * |λ|min,这可以用幂法和反幂法求得,det(A) =λ1 *λ2 * … *λn,这需要求得矩阵A的所有特征值。 由以上分析可知,用幂法和反幂法无法完成所有问题的求解,而用Jacobi法求得矩阵所有特征值后可以求解题目中所给的各个问题。所以该题可以用Jacobi法求解。 ?模块设计 由 ?数据结构设计 由于矩阵是对称阵,上下带宽均为2,所以可以考虑用二维数组压缩存储矩阵上半带或下半带。但由于Jacobi法在迭代过程中会破坏矩阵的形态,所以原来为零的元素可能会变为非零,这就导致原来的二维数组无法存储迭代后的矩阵。基于此的考虑,决定采用一维数组存储整个下三角阵,以此保证迭代的正确进行。 完整代码如下(编译环境windows10 + visual studio2010):

幂法和反幂法的matlab实现

幂法和反幂法的matlab实现

幂法求矩阵主特征值及对应特征向量 摘要 矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。称模最大的特征根为主特征值。 幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。

关键字:主特征值;特征向量;线性方程组;幂法函数块 POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THE MATRIX ABSTRACT Numerical algorithm for the eigenvalue of matrix, in science and engineering technology, a

lot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum. Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow. Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part is

带原点平移的反幂法解特征值

书P65 5、已知矩阵???? ??????----=43033101 3A 的一个特征值为5≈λ,试用反幂法求λ和相应的特征向量,要求.104 11 11-----≤-k k k βββ 解:根据原点平移的反幂法,先分解矩阵: LU I A =???? ? ??-----=-1303810185 L = 1.0000 0 0 -0.1250 1.0000 0 0 0.3810 1.0000 U = -8.0000 1.0000 0 0 -7.8750 -3.0000 0 0 0.1429 (1)取初始向量T u )0,0,1(0= 解方程组001)5(u y u I A ==- 解得=1u (-0.1111 0.1111 -0.3333)T

T u u y) 9045 .0 , 3015 .0 , 3015 .0 ( 2 1 1 1 - - = = (2)再解方程组 1 2 ) 5 (y u I A= - 解得= 2 u(0.3685 2.6465 -7.0350)T T u u y) 93484 .0 , 35168 .0 , 04896 .0( 2 2 2 2 - = = (3)再解方程组 2 3 ) 5 (y u I A= - 解得= 3 u(0.3452 2.8110 -7.4980)T T u u y) 93549 .0 , 35072 .0 , 04307 .0( 2 3 3 3 - = = (4)再解方程组 3 4 ) 5 (y u I A= - 解得= 4 u(0.3460 2.8112 -7.4980)T T u u y) 93548 .0 , 3507 .0 , 04317 .0( 2 4 4 4 - = = 所以 015150 .8 ) 4980 .7 , 8112 .2, 3460 .0( ) 93549 .0 , 35072 .0, 04307 .0( 4 3 4 = - ? - = = T T u y β 特征值12476 .5 5 1 4 = + ≈-β λ 特征向量 T u u y x) 93549 .0 , 35072 .0 , 04307 .0( 2 3 3 3 - = = ≈

爆炸极限的计算方法

爆炸极限的计算方法 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中 0.55——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定 c0=20.9/(0.209+n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4+2O2→CO2+2H2O 此时n0=2 则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 2.1 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 2.2 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。 Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算: c×Q=k

幂法求矩阵最大特征值

幂法求矩阵最大特征值 摘要 在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。 幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。对于稀疏矩阵较合适,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。 关键词:幂法;矩阵最大特征值;j ava;迭代

POWER METHOD TO CALCULATE THE MAXIMUM EIGENV ALUE MATRIX ABSTRACT In physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem. Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed. Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results. Key words: Power method; Matrix eigenvalue; Java; The iteration

相关主题