搜档网
当前位置:搜档网 › 超级电容器在电动车上的应用

超级电容器在电动车上的应用

超级电容器在电动车上的应用
超级电容器在电动车上的应用

中心议题:

超级电容器基本原理

与传统电容器、电池的区别

解决方案:

超级电容器在刹车时再生能量回收

在启动和爬坡时快速提供大功率电流

现在,城市污染气体的排放中,汽车已占了70%以上,世界各国都在寻找汽车代用燃料。由于石油短缺日益严重人们都渐渐认识到开发新型汽车的重要性,即在使用石油和其它能源的同时尽量降低废气的排放。

超级电容器功率密度大,充放电时间短,大电流充放电特性好,寿命长,低温特性优于蓄电池,这些优异的性能使它在电动车上有很好的应用前景。

在城市市区运行的公交车,其运行线路在20公里以内,以超级电容为唯一能源的电动汽车,一次充电续驶里程可达20公里以上,在城市公交车将会有广阔的应用前景。

电动汽车属于新能源汽车,包括纯电动汽车,BEV)、混合动力电动汽车和燃料电池电动汽车(FuelCellElectricVehicle,FCEV)三种类型。它集光、机、电、化各学科领域中的最新技术于一体,是汽车、电力拖动、功率电子、智能控制、化学电源、计算机、新能源和新材料等工程技术中最新成果的集成产物。电动汽车与传统汽车在外形上没有什么区别,它们之间的主要区别在于动力驱动系统。

电动汽车采用蓄电池组作储能动力源,给电机驱动系统提供电能,驱动电动机,推动车轮前进。虽然电动汽车的爬坡度、时速不及传统汽车,但在行驶过程中不排放污染,热辐射低,噪音小,不消耗汽油,结构简单,使用维修方便,是一种新型交通工具,被誉为“明日之星”,受到世界各国的青睐。

超级电容器简介

超级电容器又称为电化学电容器,是20世纪年代末出现的一种新产品,电容量高达法拉级。以使用的电极材料来看,目前主要有3种类型:高比表面积碳材料超级电容器、金属氧化物超级电容器、导电聚合物超级电容器。

1基本原理

根据电化学电容器储存电能的机理的不同,可以将它分为双电层电容器,EDLC)和赝电容器(Pesudocapaeitor)。碳基材料超级电容器能量储存的机理主要是靠碳表面附近形成

的双电层,因此通常称为双电层电容;而金属氧化物和导电聚合物主要靠氧化还原反应产生的赝电容。

双电层电容器的基本原理是利用电极和电解质之间形成的界面双电层来存储能量的一种新型电子元件。当电极和电解液接触时,由于库仑力、分子间力或者原子间力的作用,使固液界面出现稳定的、符号相反的两层电荷,称为界面双电层。双电层电容的大小与电极电位和表面积的大小有关。双电层电容器电极通常由具有高比表面积的多孑L碳材料组成。碳材料具有优良的导热和导电性能,其密度低,抗化学腐蚀性能好,热膨胀系数小,可以通过不同方法制得粉末、颗粒、块状、纤维、布、毡等多种形态。

赝电容是在电极表面或者体相的二维或准二维空间上,电活性物资进行欠电位沉积,发生高度可逆的化学吸附/脱附或氧化/还原反应,产生与电极充电电位有关的电容。由于赝电容不仅发生在表面,而且可以深入内部,因而可获得比双电层电容更高的电容量和能量密度。相同电极面积下,赝电容可以是双电层电容量的10~100倍。目前赝电容电极材料主要为一些金属氧化物和导电聚合物。

2与传统电容器、电池的区别

电化学电容器和电池的运行机理从原理上就不同。对于双电层型超级电容器,电荷存储是非法拉第过程,即理想的没有发生通过电极界面的电子迁移,电荷和能量的存储是静电性的。而对电池而言,实质上发生了法拉第过程,即发生了穿过双层的电子迁移,结果是发生了氧化态的变化和电活性材料化学性质的变化。总的来说,电荷存储过程有如下重要的区别:

对于非法拉第过程,电荷的聚集靠静电方式完成,正电荷和负电荷居于两个分开的界面上。

中间为真空或分子绝缘体,如双层、电解电容中的云母膜、空气层或氧化物膜。

对于法拉第过程,电荷的存储靠电子迁移完成,电活性材料发生了化学变化或氧化态变化,这些变化遵守法拉第定律并与电极电势有关在某种情况下就能产生准电容。这种能量的存储是间接的。

在比能量和比功率两个性能参数上超级电容器位于电池和传统电容之间,循环寿命和充放电效率都远远高于电池。由于使用寿命长通常都超过了使用其设备的寿命,所以,超级电容器终身无需维护,加之使用完后,对环境要求宽松,无污染,因而又称其为绿色能源。;超级电容器车用贮电装置的优点超级电容器是绿色能源不污染环境化学电池对环境有2次污染。

循环使用寿命长(约l0万次);化学电池的循环使用寿命短(20o~1000次),易损坏。

充电速度快(0.3s~15min);化学电池的充电时间长,一般要3~l0h……‘充放电效率高(98%);化学电池的充放电效率低(70%)。

功率密度高(1OOO~IO000W/Kg);化学电池功率密度低(300W/Kg)。。

超级电容器彻底免维护,工作温度范围宽一40~+70~C),容量变化小;铅酸电池电动车在一℃时,续驶里程减少90%,而超级电容器只减少10%。

超级电容器电动大客车刹车再生能量回收效率高,常规制动时回收高达70%,化学电池能量回收效率仅为5%。

相对成本低。超级电容器的价格比铅酸电池高一倍,但由于超级电容器的寿命比化学电池高~100倍,所以超级电容器电动车的综合运营成本大大低于化学电池。

超级电容器在电动车上的应用

全球每年通过公交系统在固定线路上出动的运输车辆约是5000亿次,其中人们最普遍使用的运输工具仍是公交车辆。2000年的销售量为l8-3万辆,今后5年里,每年销售达到22。0万辆。美国达4.0万辆。估计到2010年公交车辆的拥有量将达65万辆。这么多车辆若不进行改造,仍然采用柴油或汽油,那需要的油料量将成为沉重的负担,造成的空气污染也很明显圈。

据估计燃料电池在最近十年内还不可能达到规模化生产嘲。撇开成本昂贵的燃料电池不说,我国已在使用或即将推广的车用乙醇汽油、天然气车的项目,也摆脱不了高成本的困扰:由于燃料乙醇的生产成本高于汽油,国家有关部门正在制定补贴方寨,以使车用乙醇汽油的价格与同号汽油持平;研究与探讨然气发动机的价格比同排量柴油机成倍增,在全国率先批量装备天然气发动机的北京市公交总公司有关人士承认,目前天然气车主要满足长安街一线的运营需要191。

而超级电容器正好解决了这一难题,超级电容器的容量有足够大,成本很低,对环境又无污染。

大功率的超级电容器对于电动汽车的启动、加速和上坡行驶具有极其重要的意义:在汽车启动和爬坡时快速提供大功率电流;在汽车正常行驶时由蓄电池快速充电;在汽车刹车时快速存储发电机产生的大电流,这些可以减少电动汽车对蓄电池大电流充电的限制,大大延长蓄电池的使用寿命,提高电动汽车的实用性。鉴于电化学超级电容器的重要性,各工业发达国家都给予了高度重视,并成为各国重点的战略研究和开发项目。

在纯电动车上的应用及发展

超级电容对整车动力性能的影响主要在于对续驶里程的影响。超级电容的容量、能量密度、放电深度、功率密度等性能参数都会影响车辆行驶的能量消耗和续驶里程川。

哈尔滨工业大学电磁与电子技术研究所研究出用超级电容器做储能器件的电动客车,这是一种只需充电I5分钟便能连续行驶25公里,而最高时速可达52公里的电动客车。据悉,由该所承担的省“十五”科技攻关重大项目——“以电容为能源的电动车”

等3个项目,已通过省科技厅鉴定。该项研究在以电容为能源的电动车续驶里程、最高

车速等方面达到了国际先进水平。这种超级电容电动客车的研制为国内首创,其性能指标达到了国际同类产品的先进水平。

该项目在整车控制技术、电驱动技术、电容管理均衡技术方面实现了突破和创新。据了解,目前在国际上,污染小、节省能源的电动汽车已引起相当高的重视。在电动车的部件中,超级电容器凭借使用寿命长、安全性强等特点,已成为电动汽车开发的重要方向之一。这种以电容为能源的电动客车无污染、零排放、低温特性好,适合于北方城市公交运行,具有良好的市场前景和社会效益I嘲。

将超级电容器应用到电动公交车上已经是一个很热门的话题了。由于公交线路站点是固定不变的,超级电容器的充电时间很短,在一分钟之内即可完成,所以可以利用公交车进站的时间充电,这样既不影响乘客的乘车时间,又不会像现在的有轨电车那样车顶上必须有两个“辫子”,这样也省去了电车轨道设置的费用,看起来也更美观一些。

超级电容器有个缺点就是能量密度小,充电一次只能跑很短的路程,但它的充电速度快,充完就可以接着跑。跟铅酸电池比较这一点要好很多,铅酸电池充一次电得要5—8小时,所以只要在线路上合适的地方建立一个超级电容器电动大客车充电站就可以了,而投资建设一个这样的充电站的费用比建一个加油站小得多,也比建设一个同样规模的加气站或铅酸电池充电站省钱。

在混合动力车上的应用

纯电动汽车尽管具有上述优点,但由于电池容量的限制,致使车辆在续驶里程和爬坡、加速性能上不及通常的汽车。虽然人们在蓄电池的研究开发上做了多方努力,也难以达到通常轿车那样,加满油后可行驶4OO一500公里的里程[91。要充分满足用户的欲望,目前仅靠现有蓄电装置的性能是难以实现的,于是就有了混合电动车的出现。I“混合动力车是专门为城市公共交通设计开发的,既可用电又可用油,是短期内电动汽车最现实的产业化产品。

这种车与同类型的传统汽车相比尾气排放可减少50%70%,降低燃油消耗30%以上,能够满足日益严格的环保要求,既有电动车的节能和低排放的特点,又具有燃油汽车的方便性能Il21。混合动力源电动车按照能量合成的形式主要分为串联式(SeriesHybridElectricVehicle,SHEV)和并联式,PHEV)两种。在串联式混合动力系统中,由发动机驱动发电机,利用发出的电能由电动机驱动车轮。即发动机所发出的动能全部要先转换成电能,利用这一电能使车辆行驶。并联式混合动力系统采用的是发动机与电动机驱动车轮,根据情况来运用这两个动力源,由于动力源是并行的,故称为并联式混合动力系统。此外,还存在混联式,也称串并联式,它可以最大限度地发挥串联式与并联式的各自优点。

就目前所制造的混合电动车来看,它的动力系统是以燃油发动机作为主要动力,其电力能量贮藏系统通常是二次电源,而目前所应用的二次电源存在很多的缺点有待大幅度改进,而这些问题都可以用超级电容器代替解决,在内燃机车的电起动系统中采用超大容量电容器辅助起动装置,显示了较突出的优势,其表现在:

1.由于起动功率的增加,缩短了柴油一发电机组的起动时间。柴油机旋转加速度增加,提高了燃油点燃质量。

2.降低了起动时蓄电池组的最大电流负荷,有助于延长蓄电池的使用寿命。

3.确保了起动的可靠性,特别是在低温以及蓄电池组亏电或参数变坏时尤为明显。

4.在现有蓄电池技术状况下,可以有效减小蓄电池容量。

但超级电容器并不能完全取代电池,因为它的能量密度比较低。超级电容器单体的工作电压较低,因此要通过多个电容器单体的串联才能得到较高的工作电压,而多个单体串联对单体的统一性要求比较高,且串联起来后体系的容量又会成倍减少。现在这方面的很多工艺都还在研发当中。

超级电容的特性正好满足混合动力电动汽车的特殊要求。利用超级电容瞬时高功率特性,避免了要求发动机频繁起动和蓄电池提供瞬间大功率的特殊要求,同时还可以对制动能量进行回收利用,从而可以节约能源、减少排放污染,尤其适合经常在城市行驶的混合动力电动汽车。在回收制动能量方面,汽车在行驶过程中至少有30%的能量因热量散发和制动而消耗掉,特别是在城市行驶,经常遇到红灯,这样不仅造成能源浪费,而且增加环境污染。

如能把制动所消耗的能量回收起来用于汽车起动、加速,可谓一举两得。由于蓄电池充电是通过化学反应来完成的,所需时间较长,但制动时间较短,因而回收能量效果不佳。现正处于研究中的飞轮电池,由于精度要求高、制作难度大,短时间还难以进入实用阶段。超级电容独有的特性非常适合用于制动过程中能量回收,而且成本较低,应用前景广阔。

在为发动机冷起动时提供瞬时大功率方面,发动机的冷起动对蓄电池提出了特殊的要求,蓄电池必须提供瞬间大功率,发动机才可能起动。然而,一般蓄电池不具备这种特性,除非用起动点火型电池,但是起动点火型电池并不适合长时期小电流工作环境,而且在低温下经常失效,因此也不适合。

研究发现,如果把超级电容和蓄电池联合用在发动机起动系统,发挥超级电容的独有特性,构成新型的起动系统,这个问题就可迎刃而解了。

超级电容器作为一种新型储能元件,其出现填补了传统静电电容器和化学电源之间的空白,凭借着低成本高性能的优势,加上对环境的无污染使得人们对它越来越重视。随之对电动汽车研究的深入,超级电容器在这方面应用的优势也越来越明显。超级电容器的高性能决定了其市场前景非常广阔,而低成本又决定了其显著的经济效益。虽然超级电容器存在着比容量偏低的缺陷,但相信通过改进,一定会推动汽车行业发生质的飞跃。

超级电容

超级电容器从储能机理上面分的话,超级电容器分为双电层电容器和赝电容器。是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。超级电容器用途广泛。 超级电容器(supercapacitor,ultracapacitor), 原理 又叫双电层电容器(Electrical Double-Layer Capacitor)、电化学电容器(Electrochemcial Capacitor, EC), 黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。 超级电容器是建立在德国物理学家亥姆霍兹提出的界面双电层理论基础上的一种全新的电容器。众所周知,插入电解质溶液中的金属电极表面与液面两侧会出现符号相反的过剩电荷,从而使相间产生电位差。那么,如果在电解液中同时插入两个电极,并在其间施加一个小于电解质溶液分解电压的电压,这时电解液中的正、负离子在电场的作用下会迅速向两极运动,并分别在两上电极的表面形成紧密的电荷层,即双电层。 它所形成的双电层和传统电容器中的电介质在电场作用下产生的极化电荷相似,从而产生电容效应,紧密的双电层近似于平板电容器,但是,由于紧密的电荷层间距比普通电容器电荷层间的距离要小得多,因而具有比普通电容器更大的容量。 双电层电容器与铝电解电容器相比内阻较大,因此,可在无负载电阻情况下直接充电,如果出现过电压充电的情况,双电层电容器将会开路而不致损坏器件,这一特点与铝电解电容器的过电压击穿不同。同时,双电层电容器与可充电电池相比,可进行不限流充电,且充电次数可达10^6次以上,因此双电层电容不但具有电容的特性,同时也具有电池特性,是一种介于电池和电容之间的新型特殊元器件。

超级电容器在电动车上的应用

中心议题: 超级电容器基本原理 与传统电容器、电池的区别 解决方案: 超级电容器在刹车时再生能量回收 在启动和爬坡时快速提供大功率电流 现在,城市污染气体的排放中,汽车已占了70%以上,世界各国都在寻找汽车代用燃料。由于石油短缺日益严重人们都渐渐认识到开发新型汽车的重要性,即在使用石油和其它能源的同时尽量降低废气的排放。 超级电容器功率密度大,充放电时间短,大电流充放电特性好,寿命长,低温特性优于蓄电池,这些优异的性能使它在电动车上有很好的应用前景。 在城市市区运行的公交车,其运行线路在20公里以内,以超级电容为唯一能源的电动汽车,一次充电续驶里程可达20公里以上,在城市公交车将会有广阔的应用前景。 电动汽车属于新能源汽车,包括纯电动汽车,BEV)、混合动力电动汽车和燃料电池电动汽车(FuelCellElectricVehicle,FCEV)三种类型。它集光、机、电、化各学科领域中的最新技术于一体,是汽车、电力拖动、功率电子、智能控制、化学电源、计算机、新能源和新材料等工程技术中最新成果的集成产物。电动汽车与传统汽车在外形上没有什么区别,它们之间的主要区别在于动力驱动系统。 电动汽车采用蓄电池组作储能动力源,给电机驱动系统提供电能,驱动电动机,推动车轮前进。虽然电动汽车的爬坡度、时速不及传统汽车,但在行驶过程中不排放污染,热辐射低,噪音小,不消耗汽油,结构简单,使用维修方便,是一种新型交通工具,被誉为“明日之星”,受到世界各国的青睐。 超级电容器简介 超级电容器又称为电化学电容器,是20世纪年代末出现的一种新产品,电容量高达法拉级。以使用的电极材料来看,目前主要有3种类型:高比表面积碳材料超级电容器、金属氧化物超级电容器、导电聚合物超级电容器。 1基本原理 根据电化学电容器储存电能的机理的不同,可以将它分为双电层电容器,EDLC)和赝电容器(Pesudocapaeitor)。碳基材料超级电容器能量储存的机理主要是靠碳表面附近形成

超级电容在电动汽车中的应用

龙源期刊网 https://www.sodocs.net/doc/2f14866617.html, 超级电容在电动汽车中的应用 作者:单硕尚鑫波 来源:《山东工业技术》2018年第02期 摘要:新能源汽车的发展成为世界性研究课题,发展更优的储能系统成为研究的重点之一。本文用Matlab对蓄电池与超级电容混合电源混合电源储能系统进行仿真分析,并对其控制策略优化,从而得到更高的能量利用率并更高效的回馈能量。关键词:蓄电池;超级电容;混合电源;新能源汽车 DOI:10.16640/https://www.sodocs.net/doc/2f14866617.html,ki.37-1222/t.2018.02.033 0引言 目前,蓄电池是电动汽车最常用的能量存储装置。在纯电动汽车上,铅酸电池其比能量、深放电循环寿命、快速充电等方面均比镍氢电池、锂离子电池差。镍氢电池均匀性较差,自放电率较高。锂离子蓄电池正极材料LiCoO2价格高,且必须有特殊的保护电路。单一类型的储能方式,很难同时满足所有工作特性。混合电源则可以发挥不同储能装置的优势,是新能源汽车研究的方向之一。 本文用超级电容作为能量缓冲单元,与蓄电池直接并联构成混合能源,不但可以降低瞬时大功率需求时对蓄电池的冲击,同时可以利用超级电容可以大电流充电的特性回馈能量。 1电动汽车常规储能系统 电动汽车的常规储能系统的两种典型工作模式,如图1、图2所示: 电动汽车常规动力装置由蓄电池提供系统所需的全部能量,并且在制动时可以回馈能量。这种常规的储能系统存在以下弊端: (1)当汽车处于加速或者需要瞬时大功率需求时,蓄电池需要提供较大的供电电压,会对供电系统造成损害。 (2)当处于制动工况时,功率变换器存在一定的变压比,大大降低了能量的回收效率。 2超级电容混合储能系统 蓄电池与超级电容所组成的混合电源,如图3所示,由蓄电池与超级电容器组直接并联构成。由超级电容作为能量缓冲单元,因其具有大电流充、放电特性,所以可在瞬时大功率需求时提供大部分能量。而且在制动工况时,可以将能量首选回馈到超级电容,以获得更高的回馈效率。复合电源并联放电时,其电流输出如图4所示:

超级电容器前景及应用

超级电容器发展现状及发展前景分析 超级电容器研究国世界分布图 超级电容器在新能源领域并不是一个陌生的名词。实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。因此,尽管研发过程困难重重,但攻克它的意义却很重大。 超级电容器的尴尬现状 超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

超级电容器“全家福” 使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显 著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国 为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。 然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获 得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金 支持,技术的进步和发展也就受到很大程度地制约。另外,超级电容器成本高、能量密度 低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。 先驱EEStor公司勇于挑战却惨遭败北 尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。一部分厂商面对超 级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个 涉足此领域并获得成功的例子。另外一部分厂商则坚信,只要超级电容器的生产成本实现 大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。美国超级电容器生产商EEStor就属于后者。 上世纪90年代,美国超级电容器生产商EEStor为改变超级电容器的市场现状,曾用 好几年的时间将大量财力物力投向如何提高超级电容能量密度的研发上,期望能通过自身

中国电动汽车用超级电容器行业研究报告

2011-2015年中国电动汽车用超级电容器行业投资发展研究报告 【目录】 0前言5 0.1研究目的5 0.2数据来源5 0.3读者对象6 1中国电动汽车用超级电容器产业发展概述7 1.1全球电动汽车用超级电容器产业发展概述7 1.1.1全球电动汽车用超级电容器的研究与发展7 1.1.2全球电动汽车用超级电容器市场发展现状9 1.2中国电动汽车用超级电容器产业发展概述10 1.2.1我国电动汽车用超级电容器发展历史10 1.2.2我国电动汽车用超级电容器发展现状分析11 1.3超级电容器在电动汽车上应用特点分析11

1.3.1超级电容器作为电动汽车的唯一动力12 1.3.2超级电容作为电动汽车的辅助动力13 1.3.3超级电容器作为电动汽车零部件的能源16 1.3.4超级电容器在电动汽车上的实际应用情况分析17 2中国电动汽车用超级电容器主要生产企业分析20 2.1麦克斯威(Maxwell)20 2.2贵弥功(Nippon Chemi-Con)22 2.3哈尔滨巨容24 2.4上海奥威25 2.5北京集星26 2.6北京合众汇能27 2.7凯迈嘉华28 2.8锦州凯美29 2.9其它电动汽车用超级电容器生产企业分析30 3中国电动汽车用超级电容器配套应用分析32 3.1中国电动汽车用超级电容器配套情况分析32 3.1.1中国电动汽车用超级电容器配套关系分析32 3.1.2中国电动汽车用超级电容器市场特点分析33 3.2中国电动汽车用超级电容器供应商市场份额分析34 3.2.1我国超级电容车市场销量分析34

3.2.2我国电动汽车用超级电容器生产企业产量分析35 3.3中国电动汽车用超级电容器产品价格情况分析36 4中国电动汽车用超级电容器主要原材料供给分析38 4.1电极材料38 4.2电解液39 4.3隔膜41 4.4主要原材料供应商分析41 4.4.1辽宁朝阳森塬活性炭有限公司42 4.4.2河南滑县大潮林物产有限责任公司43 4.4.3可乐丽国际贸易(上海)有限公司43 4.4.4深圳新宙邦电子材料科技有限公司44 4.4.5日本高度纸工业株式会社(NKK)46 4.4.6苏州贝格新材料科技有限公司48 5中国电动汽车用超级电容器产业发展趋势分析49 5.1我国电动汽车用超级电容器产业未来市场需求分析49 5.1.1我国超级电容商用车用超级电容器未来市场需求分析49 5.1.2我国超级电容乘用车用超级电容器未来市场需求分析51 5.2我国电动汽车用超级电容器产业未来技术发展趋势分析

薄膜电容器在新能源汽车上的运用

薄膜电容器在新能源汽车上的运用厦门法拉电子股份有限公司赖五福 薄膜电容器是一种应用于直流滤波场合的电容器。由于它跟传统电容相比有寿命长、温度稳定性好等优点,更适用于新能源汽车中的逆变器直流滤波。【摘要】本文主要介绍薄膜电容器优点、采用的先进技术、相关的选型标准及应用分析。 能源,薄膜电容器,电解电容器,逆变器,新能源汽车【关键词】 1.引言容理论上不会产生短路击穿的现象,这大 大提高了这类电容的安全性,典型的失效随着工业的迅速发展、人口的增长和人 民生活水平的提高,能源短缺已成为世界性模式是开路。在特定应用中电容的抗峰值问题,能源安全受到越来越多国家的重视。电压能力也是考察电容的重要指标。实际随着“汽车社会”的逐渐形成,汽车保有量上,对电解电容而言,允许承受的最大浪在不断地呈现上升趋势,全球汽车行业的发涌电压是1.2倍,这种情况迫使使用者不得 展面临着能源和环保的双重压力,各个国家不考虑峰值电压而非标称电压。为了将来在世界汽车业中占得一席之地,纷 b.良好的温度特性,产品温度使用范图1 电机控制器主回路示意图围广,可以从-40?-105? 纷推出了各自的的新能源汽车的规划蓝图,

直流支撑薄膜电容器采用的高温聚丙并大力发展新能源汽车。 新能源汽车是指采用非常规的车用烯薄膜,具有聚酯薄膜和电解电容没有的燃料作为动力来源,新能源汽车包括混合温度稳定性,具体如下图5,图6。动力汽车、纯电动汽车、燃料电池电动汽从图5中可以看出,随着温度的升高,车、氢发动机汽车、其他新能源(如高效聚丙烯膜电容器容量总体是下降的,但下[1]储能器、二甲醚)汽车等各类别产品。降的比例是很小的,大概是300PPM/?; 电机,电池和电机控制技术是新能源而聚酯膜不管是在高温阶段还是在低温汽车的三大核心。电机控制技术的核心就阶段,容量随温度变化则大了很 多,为是需要高效电机控制的逆变器技术,高效 +200+600PPM/?。从图6可以看出,聚~ 电机控制的逆变器技术则需要一个功能强丙烯膜介质电容图2 第一代丰田Prius电机控制器大的IGBT模块和一个与之匹配的直流支撑器的损耗随温度变化基本不变的,但聚酯 膜介质电容器在低温和高温显示变化规律电容器,如图1所示。 是不一样的。本文主要介绍薄膜电容的优点、采用的 先进技术、相关的选型标准及应用分析。由于聚丙烯膜介质电容器具有良好

电动汽车驱动系统中的超级电容

电动汽车驱动系统中的超级电容作者:清华大学王燕超 超级电容 是一种电化学装置,是介于电 池和普通电容之间的过渡部件。其充放 电过程高度可逆,可进行高效率(0.85~0.98)的快速(秒级)充放电。其优点还包括比功率高、循环寿命长、免维护等。 以前由于超级电容的比能量过低,放电时间太短,难以应用于汽车领域。随着超级电容技术的迅速发展,目前成为汽车领域研究和应用的新热点。超级电容不仅适合用作汽车发动机起动、动力转向等子系统的辅助能源,而且还可以与电池、燃料电池等结合用作电动汽车的辅助能源,从而提高电池寿命,弥补燃料电池比功率不足,最大限度的回收制动能量等。总之,其在汽车领域有十分广阔的应用前景。 超级电容的原理与分类 准确的说,超级电容应该叫做电化学电容器(Electrochemical Capacitor)。它能提供比电解电容器更高的比能量,比电池更高的比功率和更长的寿命。 根据使用电极材料的不同可以把超级电容分为三类: 1、使用碳电极的双电层电容器 (Double Layer Capacitor,DLC)如图1所示,可以把双电层超级电容看成是悬在电解质中的两个非活性多孔板,电压加载到两个板上。加在正极板上的电势吸引电解质中的负离子,负极板吸引正离子。从而在两电极的表面形成了一个双电层电容器。 图1 双电层超级电容器

DLC本质上是一种静电型能量储存方式。所以双电层电容的大小与电极电位和比表面积的大小有关,因而常常使用高比表面积的活性碳作为双电层电容器的电极材料,从而增加电容量。例如,活性碳在经过特定的化学处理后,表面积可以达到1000m2/g,从而使单位重量的电容量可达100F/g,并且电容的内阻还能保持在很低的水平。碳材料还具有成本低,技术成熟等优点。该类超级电容在汽车上应用也最为广泛。 2、使用金属氧化物电极的超级电容器,原来是指贵金属氧化物RuO2 、IrO2 作为电极的电容器。通过发生可逆的氧化/还原反应,使电荷在两个电极上发生转移的同时产生吸附电容。它与双电层电容的机理不同,称为法拉第赝电容 (Faradaic pseudocapacitance)。与双电层电容器的静电容量相比,相同表面积下超电容器的容量要大 10~100倍,因此可以制成体积非常小、容量大的电容器。但由于贵金属的价格高,主要用于军事领域。 3、使用有机聚合物电极的电容。目前技术还不是很成熟,价格较贵,还处于实验室研究阶段。 汽车用超级电容的研究进展 目前,美国、欧洲和日本都在积极开展电动汽车用超级电容的研究开发工作。美国能源部和USABC从1992年开始,组织国家实验室(Lawrence Livermore,Los Alamos等)和工业界(Maxwell,GE等)联合开发使用碳材料的双电层超级电容器。其研究的初期目标是在维持功率密度为1kW/kg的同时,把超级电容的能量密度提高到5Wh/kg。这一目标已经基本达到,但是尚未按进度完成PNGV确定的目标。有关资料表明,如果超级电容的比能量达到20Wh/kg,那么用于混合车将是比较理想的。

超级电容器的发展与应用

常州信息职业技术学院 学生毕业设计(论文)报告 系别:电子与电气工程学院 专业:微电子技术 班号:微电071 学生姓名:徐天云 学生学号:0706033131 设计(论文)题目:超级电容器的发展与应用指导教师:刘民建 设计地点:常州信息职业技术学院起迄日期:2009.7.1—2009.8.20

毕业设计(论文)任务书 专业微电子信技术班级微电071姓名徐天云 一、课题名称:超级电容器的发展与应用 二、主要技术指标:额定容量、额定电压、额定电流、最大存储能量、能量密度、功率密度、使用寿命、循环寿命、等效串联电阻、漏电流等技术指标 三、工作内容和要求:本文先从普通电容器入手,进而引出超级电容器的产生。从而以此为基础,阐释了超级电容器的构造、定义、以及工作原理。接着从超级电容器的性能技术介绍其使用特点和注意事项,然后又介绍了超级电容器的发展与现状以及其在生产生活中的应用。最后还进行其以后发展的广阔前景。 四、主要参考文献:[1]夏熙、刘洪涛,一种正在发展的储能装置—超电容器(2)[J]电池工业,2004,9(4):181-188; [2]钟海云,李荐,戴艳阳,等,新型能源器件—超级电容器研究发展最新动态[J]电源技术,2004,25(5):367-370; [3]薛洪发,超大容器器在铁路运输生产中的应用[J]中国铁路2000(5):52.。 学生(签名)2009年6 月26 日 指导教师(签名)2009年6 月26 日 教研室主任(签名)2009年6 月27 日 系主任(签名)2009年6 月28 日

毕业设计(论文)开题报告 设计(论文)题目 一、选题的背景和意义: 超级电容器发展始于20世纪60年代,起先被认为是一种低功率、低能量、长使用寿命的器件。但到了20世纪90年代,由于混合电动汽车的兴起,超级电容器才受到广泛的关注并迅速发展起来。现今,大功率的超级电容器被视为一种大功率物理二次电源,各发达国家都把对超级电容器的研究列为国家重点战略研究项目。目前,超级电容器在电力系统中的应用越来越受到关注。此外,超级电容器还活跃在电动汽车、消费类电子电源、军事、工业等高峰值功率场合。 二、课题研究的主要内容: 主要介绍了超级电容器的构造、定义以及其工作原理,还阐释了超级电容器的特点和使用注意事项,以及超级电容器的发展与现状。最后介绍了超级电容器在生产生活中的应用。 三、主要研究(设计)方法论述: 通过查阅书籍了解超级电容器的基本概念等信息,结合以前所学的电子专业知识认真研究课题。借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成

大容量超级电容器在电动汽车中的应用及维护

大容量超级电容器在电动汽车中的应用及维护 发表时间:2018-05-14T16:56:06.437Z 来源:《电力设备》2017年第35期作者:游桂章 [导读] 摘要:据相关数据显示,汽车尾气排放量占城市污染气体总量的70%。 (沈阳市第二十二中学辽宁省沈阳市 110000) 摘要:据相关数据显示,汽车尾气排放量占城市污染气体总量的70%。石油作为不可再生资源,工业革命以来,大量石油被开采和使用,造成石油存储量和总量不断下降。为了保护生态环境,减少废气的排放,近年来,国家大力发展电动汽车。电动汽车的动能主要来自充电蓄电池,因此对电池容技术要求很高。大容量超级电容器性能优于普通电池,因此广泛应用在电动汽车领域。本文就大容量超级电容器在电动汽车中的应用及维护进行分析。 关键词:大容量超级电容器;电动汽车;应用;维护 随着环境污染和能源危机的日益加重,环保和节约能源成为当今社会的重要主题。电动汽车的研究在环境保护问题及能源问题日益受到关注的情况下兴起。在电动汽车性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。常规汽车在城市工况行驶时,制动器所消耗的能量占总驱动能50%左右,因此实现制动能量回收可以大大提高能量利用率。而超级电容器能在汽车起动或制动时快速向负载释放或吸收能量,将汽车的部分动能回馈给蓄电池以对其充电,可以有效的延长电动汽车的行驶距离,所以超级电容器已成为电动汽车开发的重要方向之一。 1 超级电容器的结构原理 超级电容器(supercapacitor),又叫双电层电容器、黄金电池、法拉电池,是一种介于蓄电池和传统电容器之间的储能装置。与电池结构相似,超级电容器单体主要由电极、电解质、集电极、隔膜等、连接线柱等组成。 大容量超级电容器是利用双电层原理的电容器。当外部电源接通超级电容器正负极板时,超级电容器极板的正负电极分别存储正负电荷。同时,为了平衡电解液的内电场,在电场力的作用下,正、负极板界面上产生负、正电荷,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷间极短间隙排列在相反的位置,所以会产生很大的电容。此外,当两极板间电势低于电解液的氧化还原电极电位时,超级电容器为正常状态。大容量超级电容器在运用时没有出现化学反应,只是物理过程发生了变化,因此它的性能是非常稳定的。 2 大容量超级电容器的优点 2.1 与传统的电容器相比,大容量超级电容器的性能比较稳定,超级电荷存储的电能面积大,电容量高,等效电阻小,比功率高,是蓄电池的100倍。 2.2 超级电容的充、放电能力强,在额定电压值内,超级电容器可以快速充电到任一电压值,并将存储的电能一次性放完,同时不会对蓄电池充电和放电功能造成任何的影响。 2.3 大容量超级电容器具有环保效果明显的优点。超级电容器在使用过程中不会污染环境,具有防火防爆的功能,能够连续使用几万甚至十万次,并能进行回收利用,对环境不会产生危害。 3 电动汽车概述 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。这里指的是纯电池驱动车,而更广义的燃料电池和插电式混合动力车均不算在内。 电动汽车的优点是:它本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的城市,对人类伤害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物较容易,也已有了相关技术。有关研究表明,同样的原油经过粗炼,送至电厂发电,经充入电池,再由电池驱动汽车,其能量利用效率比经过精炼变为汽油,再经汽油机驱动汽车高,因此有利于节约能源和减少二氧化碳的排量,正是这些优点,使电动汽车的研究和应用成为汽车工业的一个“热点”。 4 电动汽车中超级电容器的应用 4.1 车辆起步时,电容控制速度 电动汽车起步时,超级电容器中存储了较多的电能。但是当电动汽车加速运动时,超级电容器中存储的容量比较小,才能确保制动过程中接收更多的能量。因此需要超级电容器进行放电,确保电动汽车加速行进。超级电容器蓄电能力与电容器端电压平方成正比,如果超级电容端的电压发生很大变化,电容器控制器放电深度,从而便于汽车在行驶过程中进行二次放电或者再生制动回收充电。 4.2 控制约束电流 电动车在行驶过程中,会根据路况进行加速、减速等不同速度行进,这个时候电动汽车的负载电流变化比较大,如果负载电流过大,超过了蓄电池所承受的最大放电量或者充电量时,则可能造成电池的损坏。因此,为了避免电池组过度放电或者充电,则需要超级电容进行放电和充电,从而延长电池的使用时间。因此,超级电容器应用在电动汽车上,必须合理控制荷载电流,可以采取恒定充电电流的方式,也就是控制蓄电池的充电电流。蓄电池电压再生制动过程中电压不会发生太大变化,但是超级电容蓄电压在单次制动过程中电压会发生剧烈变化,电枢电流急速上升,给电机以及功率器件造成巨大的损害。因此,使用恒定充电电流的方法,能够有效控制再生制动过程中电容器的充电功率。当电容器电压升高时,充电电流下降;如果电容器的电压低,则采用大电流充电的方式。 4.3 作为汽车辅助电源 目前超级电容器作为辅助电源的应用主要有三类:一是替代高功率电池应用在混合电动汽车上;二是作为燃料电池电动车的辅助动力电源;三是与高能量电池组成混合电源应用在纯电动汽车上。超级电容器作为汽车的辅助电源,与动力蓄电池配合使用,则可减少大电流充放电对电池的损害,延长电池的使用寿命。超级电容器的使用可以减少车内用于电制动、电转向等子系统的布线,使车辆的稳定性得到提高。另外,汽车转向、空调、音响、电动座椅等电系统,若使用超级电容,性能将会大大地提高。 5 大容量超级电容应用中存在的问题 大容量超级电容器虽然在应用中有着明显的优势,但依然存在着一些问题。与蓄电池相比,其能量密度偏低,寻找新的电极活性材料,提高超级电容器的能量密度成为根本也是难点所在。另外就是超级电容的一致性检测问题。大容量超级电容的额定电压很低,在应用中需要大量的串联。由于应用中需要大电流充放电,而过充则对电容的寿命有严重的影响,因此,串联中的各个单体电容器上电压是否一

超级电容器的主要应用领域

超级电容器的主要应用领域 超级电容器发展展望: 超级电容器也叫做电化学电容器,是介于传统电容器和充电电池之间的一种新型储能装置,比容量为传统电容器的20~200倍,比功率一般大于1000W/kg,循环寿命大于100000次,可储蓄的能量比传统电容要高得多,并且充电快速。由于它们的使用寿命非常长,可被应用于终端产品的整个生命周期。而且超级电容器对环境无污染,可以说,超级电容器是一种高效、实用、环保的能量储蓄装置。当高能量电池和燃料电池与超级电容器技术相结合时,可实现高比功率、高比能量特性和长的工作寿命。近年来,由于超级电容器在新能源领域所表现出的朝阳产业趋势,许多发达国家都已经把超级电容器项目作为国家重点研究和开发项目,超级电容器的国内外市场正呈现出前所未有的蓬勃景象。 依照美国国家能源局的数据预测,超级电容器在全球市场的容量预计将从2007年的4亿美元发展到2013年的120亿美元(见下图1),其中,在电动汽车/新能源汽车领域的市场规模有望在2013年达到40亿美元,在消费电子领域的市场规模有望在2013年达到30亿美元,在工业(风力发电、轨道交通、重型机械等)领域的市场规模有望在2013年达到40亿美元。

根据中商情报预测,截至2014年,我国超容产业的增长率都在30%以上。 超级电容器的主要应用领域: 1.超级电容器在太阳能能源系统中的应用 太阳能源的利用最终归结为太阳能利用和太阳光利用两个方面。太阳能发电分为光伏发电和光热发电,其中光伏发电就是利用光伏电池将太阳能直接转化为电能。光伏发电不论在转化效率、设备成本和发展前景尚都远远强于光热发电。 自从实用型多晶硅的光伏电池问世以来,世界上就便开始了太阳能光伏发电的应

超级电容器应用领域

超级电容器简介https://www.sodocs.net/doc/2f14866617.html, 超级电容器是一种介于电池和普通电容之间的、专门用于储能的特种电容器。具有容量大、功率密度高、循环寿命长等优点,是一种理想的高稳定性、大功率二次电源。超级电容器原理图 特点:双电层储能,物理变化,无化学反应 特性与优势 低内阻,高功率 免维护(500000次循环充放电,10年使用寿命) 定制各类尺寸单体及模组 定制各类耐高温、耐高压、超低内阻、超低自放电、超长寿命的单体 提供完整的系统解决方案 应用类型

●脉冲电源https://www.sodocs.net/doc/2f14866617.html, ●备用电源 ●主电源 ●内存备份电源 应用领域 ●工业 ●消费类电子产品 ●医疗 ●交通运输 ●军事 项目优势 超级电容器应用 在有记忆储存功能的电子产品中做后备电源,数据保护和备份,保持时间,适用于带CPU的 玩具、手电筒、洁具、自行车尾灯、音响、助听器、礼花、充电器、DVD机、收音机、冰箱、空调、背投和液晶电视、洗碗机、鱼漂、消毒柜、电子门锁、热水器、燃气灶、电饭煲、熨衣架、待机转嫁器、数码相框、机顶盒、微波炉、遥控器、汽车黑匣子 公用电器、工业及医疗电器:(用作小功率器件的电源) 税控机、控制器(温度控制器)、触摸屏、摄像头、扫描仪、投影仪、考勤钟、计数

器、显示屏、彩票机、银行终端、公汽读卡器、身份识别、复印机、打印机、X光机、磁共振、道钉机、电焊机、皮带机、激光器、矿灯、工业仪表、雷管、电动工具 网络通讯:(中型模组、模块、工作时间不是很长的、瞬间工作的) 电脑、电话、手机、信息终端、通讯站、GPS、电力数据传输 风光发电: 风力发电、变浆、接收转换、太阳能发电(储能)、太阳能灯(警示灯、标识灯、道钉灯、地埋灯)、太阳能手电 交通工具: 摩托车启动、机车启动、电动汽车辅助动力、汽车启动、电动自行车辅助动力、汽车音响、车载监控 后备电源: 开关柜、直流屏、负荷调整电源、故障定位、变频器、脉冲电源、应急灯、救生绳、报警器、卷帘门、与电池配套电源、断电保护 能量回收: 吊车、矿井、机车、电梯、抽油机 军工:战斗机、军车、坦克、雷达、精准炮弹、激光炮、电磁炮、警棍 如果需要以下其中一项,那超级电容就最合适不过了 一、要求瞬间比较大电流放电. 如USB产品要用0.5A以上电流, 闪光灯, 电动工具. 二、要用电池, 但永远不更换, 免维护. 如太阳能道钉灯、地埋灯. 智能水,电,气表 三、要求快速充电, 如警卫手电筒, 玩具,电动工具 四、要求充放次数多过电池, 浮充也不需要更换电池, 如应急灯 五、要求在零下40度也能正常保持能量工作, 如汽车/电动车泠起动 六、要求将微弱至大电流能量快速回收, 如独力太阳能发电, 节能电梯, 环保汽车 七、要求轻的移动电源, 如遥控飞机

电动汽车中超级电容器的应用及维护

电动汽车中超级电容器的应用及维护 发表时间:2017-05-10T17:11:27.057Z 来源:《教育学文摘》2017年5月总第228期作者:陈忠海[导读] 电动汽车的动能主要来自充电蓄电池,因此对电池容技术要求很高。超级电容器性能优于普通电池,因此广泛应用在电动汽车领域。 杭州汽车高级技工学校浙江杭州310000 摘要:能源危机和环境问题已经成为全球化的问题。因此,世界各国正在积极研究开发新能源和绿色能源,希望能有效地解决能源紧缺问题。近年来,国家大力发展电动汽车,电动汽车的动力来源主要是电能,但是当前我国的电池技术无法有效地满足电动汽车的运行需求。超级电容器具有电容量大、寿命长、经济环保等特性,将其应用在电动汽车领域,效果明显。 关键词:电动汽车超级电容器应用维护 据相关数据显示,汽车尾气排放量占城市污染气体总量的70%。石油作为不可再生资源,工业革命以来,大量石油被开采和使用,造成石油存储量和总量不断下降。为了保护生态环境,减少废气的排放,近年来,国家大力发展电动汽车。电动汽车的动能主要来自充电蓄电池,因此对电池容技术要求很高。超级电容器性能优于普通电池,因此广泛应用在电动汽车领域。 一、超级电容器 1.超级电容器的工作原理。超级电容器是一种新型的储能装置,它具有强大的储电能力,能提供强大的电源,容量可达数万法拉。它包括双电层电容器和赝电容器。超级电容器主要利用双电层,当电压加到超级电容器的两个极板上,极板上的正极存储正电荷,负极存储负电荷。正负极板上的电荷在磁场的作用下,为平衡电解液的电厂,电极间和电解液形成相反的电荷,正、负电荷也在两个不同的接触面上,并吸附周围电解质溶液中的离子,从而形成了双层电容。 2.超级电容器的优点。(1)与传统的电容器相比,超级电容器的性能比较稳定,超级电荷存储的电能面积大,电容量高,等效电阻小,比功率高,是蓄电池的100倍。(2)超级电容的充、放电能力强,在额定电压值内,超级电容器可以快速充电到任一电压值,并将存储的电能一次性放完,同时不会对蓄电池充电和放电功能造成任何的影响。(3)超级电容器具有环保效果明显的优点。超级电容器子在使用过程中不会污染环境,具有防火防爆的功能,能够连续使用几万甚至十万次,并能进行回收利用,对环境不会产生危害。 二、电动汽车中超级电容器的应用 1.车辆起步时,电容控制速度。电动汽车起步时,超级电容器中存储了较多的电能。但是当电动汽车加速运动时,超级电容器中存储的容量比较小,才能确保制动过程中接收更多的能量。因此需要超级电容器进行放电,确保电动汽车加速行进。超级电容器蓄电能力与电容器端电压平方成正比,如果超级电容端的电压发生很大变化,电容器控制器放电深度,从而便于汽车在行驶过程中进行二次放电或者再生制动回收充电。 2.控制约束电流。电动车在行驶过程中,会根据路况进行加速、减速等不同速度行进,这个时候电动汽车的负载电流变化比较大,如果负载电流过大,超过了蓄电池所承受的最大放电量或者充电量时,则可能造成电池的损坏。因此,为了避免电池组过度放电或者充电,则需要超级电容进行放电和充电,从而延长电池的使用时间。因此,超级电容器应用在电动汽车上,必须合理控制荷载电流,可以采取恒定充电电流的方式,也就是控制蓄电池的充电电流。蓄电池电压再生制动过程中电压不会发生太大变化,但是超级电容蓄电压在单次制动过程中电压会发生剧烈变化,电枢电流急速上升,给电机以及功率器件造成巨大的损害。因此,使用恒定充电电流的方法,能够有效控制再生制动过程中电容器的充电功率。当电容器电压升高时,充电电流下降;如果电容器的电压低,则采用大电流充电的方式。 三、超级电容器的维护 双层电容器内部电阻比较大,所以在无负荷电载的情况下,可以直接充电,如果出现过电压充电的情况,双层电容器会自动断开,因此不会损坏内部装置元件。与充电电池相比,超级电容器可无限制充电,充电次数可达106次以上,所以双层电容不仅具有电容特点,而且还具有电池的特性,是一种介于电容和电池的元件。 1.避免对超级电容器连续施加电压。超级电容器受到大气以及人为操作的影响,会导致电流急剧增加,超过电容器额定电流值。因此在日常应用过程中,超级电容器的工作电压值不能超过额定电压值。 2.合理控制超级电容器的温度。超级电容器的使用时间与工作温度息息相关,电容器中的电解液蒸发速度与工作温度密切相关。超级电容器的工作温度降低10摄氏度,超级电容器的使用时间就增加一倍,因此,必须合理控制超级电容器的工作温度。近年我国大力发展电动汽车,国家科技部、财政部、发改委等多部门联合出台了很多鼓励和推广新能源电动汽车的发展政策,极大地推动了电动汽车的发展。北京从2013年开始在市区以及怀柔等一些远郊区投入了大量的纯电动公交车,这种双源无轨电动公交车,既能用电池蓄电,也能用电网充电,非常方便。将超级电容器应用在电动公交车是未来发展的一个方向。由于超级电容器的能源密度小、充电速度快,一分钟之内就可以完成充电,而城市公交车线路是固定的,利用公交车进站时间进行充电,不会影响乘客乘车时间。参考文献 [1]魏家沛超级电容器在电动汽车中的应用及维护[J].机械研究与应用,2016,29,(6),180-181。 [2]倪江锋超级电容器中的物理问题[J].物理教师,2014,35,(11),67。 [3]张鹏浅析超级电容器在新能源汽车中的应用[J].电子测试,2016,(10),132-133。

电动汽车的电池和超级电容

电动汽车的电池和超级电容 仿真结果表明,省油的混合动力电动汽车可以设计成使用电池或者超级电容,而这是由两者之间的技术成本和使用年限决定的。 摘要 电池和超级电容器在纯电动汽车、充电保持型混合动力汽车和插电式混合动力汽车上的电能存贮单元中应用已经被详细地进行了研究。对于混合动力汽车而言,内燃机和氢燃料电池的使用时作为初级的替代能源来考虑的。研究重点是锂电池和碳/双层碳超级电容器作为能量存贮技术非常可能应用在未来汽车上。这项研究的主要结果如下:1)电池和超级电容器的能量密度和功率密度特点对设计纯电动汽车、充电保持型混合动力汽车和插电式混合动力汽车有着足够的吸引力。2)持续充电,混合动力汽车引擎动力可以被设计成使用电池或者超级电容器从而使燃油经济性改善50%甚至更好。3)插电式混合动力汽车可以设计成相对较小的锂电池使有效行程在30-60公里的范围内。对较长的日常驾驶范围(80-150公里)插电式混合动力汽车燃油经济消耗率可以非常高(大于100mpg),因为绝大部分能量(大于75%)通过电流用于驱动汽车。4)轻度混合动力汽车可以设计使用一个储能容量75-150Wh的超级电容器。使用超级电容器时的燃油经济性提升要比使用同质量的电池组高10%-15%,这是因为超级电容器的高效率和更高效率的引擎运转。5)用氢燃料电池供能的混合动力汽车可以使用电池组或者超级电容器作为储能器。仿真结果表明,在同等车重和道路负载情况下,燃料电池汽车的等效燃油经济性是汽油机汽车燃油经济性的2-3倍。相比一辆引擎驱动的混合动力汽车,氢燃料电池的等效燃油经济性会是它的1.66-2倍。 关键词:电池组控制策略燃料电池混合动力汽车改善燃油经济性超级电容器 I.引言 为了提高传动系统效率,提供比其他道路交通方式更加节省石油能量,世界各地的汽车公司正在开发混合动力和燃料电池引擎。这些车辆的动力传动系统利用电动机和电能储存器补充引擎输出或者车辆在加速和巡航时燃料电池的补充以及制动时的能量回收。目前正在利用的能量存储技术是充电电池和超级电容器(电化学电容器)。能量储存单元可以从发动机、燃料电池或者电网充电,非常像一辆电动汽车。在后来的例子(通常称为插电式混合动力汽车),车辆可以同时

超级电容器基本原理及性能特点

超级电容器基本原理及性能特点 中心议题: ?超级电容器的原理、结构和特点 ?Maxwell超级电容器结构 ?超级电容选型与应用 超级电容的容量比通常的电容器大得多。由于其容量很大,对外表现和电池 相同,因此也有称作“电容电池”。超级电容属于双电层电容器,它是世界上已投入 量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 超级电容器原理 电化学双层电容器(EDLC)因超级电容器被我们所熟知。超级电容器利用静 电极化电解溶液的方式储存能量。虽然它是一个电化学器件,但它的能量储存机制 却一点也不涉及化学反应。这个机制是高度可逆的,它允许超级电容器充电放电达 十万甚至数百万次。 超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关 的多孔板。对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另 外一层。 传统的电解电容器存储区域来自平面,导电材料薄板。高电容是通过大量的 材料折叠。可能通过进一步增加其表面纹理,进一步增加它的表面积。过去传统 的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。电介质越薄,在空间受限的区域越可以获得更多的区域。可以实现对介质厚度的表面面积限制 的定义。 超级电容器的面积来自一个多孔的碳基电极材料。这种材料的多孔结构,允 许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。超级电容 器的充电距离取决于电解液中被吸引到电极的带电离子的大小。这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。 超级电容可以用做后备电源,类似于UPS,在系统突然断电后,负责在极短时间内为系统提供能量。在这种应用中,需要后备电源有快速的启动时间。由于

电动汽车搭载超级电容器

电动汽车搭载超级电容器 超级电容器:是一种功率型的储能器件,通过电极材料与电解液界面形成双电层,或电极表面快速的氧化还原反应来储存电能。与普通电容器相比,相同重量下电能储存量和放电时间要大出成百上千倍,而功率只有普通电容器的1/10左右。 电动汽车电池领域被投下了一颗“深水炸弹”?近日,自主研发的新电池是“无钴电池”,即“干电池技术+超级电容”组合,这迅速点燃了市场对电动汽车新一轮能源革命的热情。 伴随着新能源技术的突飞猛进,锂电池、燃料电池等相关产品技术备受关注,而同样作为储能装置的超级电容器在电动汽车上还鲜少被关注。事实上,超级电容器在风光储、家庭储能、地铁能量回收等多种储能领域都可应用,而在电动汽车领域,业界寄望它可以改变充电时间长的难题——充电往往只需要数秒。 那么,超级电容到底是什么“黑科技”,它真的适合用在电动汽车领域吗? 仔细观察,有轨电车头顶上没有如“蜘蛛网”般的电线,只有脚底两条细轨“镶嵌”在草皮上。 G有轨电车建成通车,其采用了单体容量达7000法拉的超级电容器组储能,和普通有轨电车相比,最大的特点是在行进中不用外部供电,利用停靠站台上落客时间完成充电,充电时间仅需25秒。就在你上下车的一瞬间,电车就已经满电蓄势待发。 超级电容器主要通过双电层或赝电容原理储存电荷,前者是基于离子在多孔材料表面的吸脱附,后者主要是表面快速的氧化还原反应,因为反应通常发生在表面,因此超级电容器和电池相比储存电荷较少,能量密度不高,也正是因为反应发生在表面,电荷储存速度非常快,超级电容器具有很高的功率密度。 打个比方,湿毛巾中的水,通过擦拭的办法可以快速取出少量表面吸附水,这相当于双电层电容;通过挤压和拧干的方式可取出毛巾中更多的水,这相当于赝电容。水就类似于电荷,擦拭的过程就相当于接触放电,如果要更多的电荷,就需要更大力气挤压。 相比之下,以往的储能设备是由电能转变成化学能,再由化学能转变成电能,两次转变能量有损失,超级电容器直接充电,再直接放电,其过程中并不发生化学反应。同时,由于这种储能过程是可逆的,超级电容器可以反复充放电数十万次,由于能量形式没有转变,损失也很小,充放电效率更高。 与G有轨电车相似,超级电容以其环保、节能的优势,成为公共交通领域的一个解决方案。

超级电容器在汽车启动中的应用

超级电容器在汽车启动中的应用 1 引言 蓄电池是汽车中的关键电器部件,其性能直接影响汽车的启动。现在的汽车启动无一例外地采用启动电动机启动方式。 在启动过程中特别是在启动瞬间,由于启动电动机转速为零,不产生感生电势,故启动电流:I=E/(RM+RS+RL);其中:E为蓄电池空载端电压,RM为启动电动机的电枢电阻,RS为蓄电池内阻、RL为线路电阻。由于RM、RB、RL均非常低,启动电流非常大。例如用12 V、45 Ah的蓄电池启动安装1.9 L柴油机的汽车,蓄电池的电压在启动瞬间由12.6 V降到约3.6 V,启动过程的蓄电池电压波形如图1所示。启动瞬时的电流达550 A,约为蓄电池的12C的放电率>启动过程的蓄电池电流波形如图2所示。 电流传感器的电流/电压变换比率为100 A/V。尽管车用蓄电池是启动专用蓄电池,可以高倍率放电,但从图l可以看出,10倍以上高倍率放电时的蓄电池性能变得很差,而且,如此高倍率放电对蓄电池的损伤也是非常明显的。启动过程的电压剧烈变化也是极强的电磁干扰,可以造成电气设备掉电,迫使电气设备在发电机启动过程结束后重新上电,计算机在这个过程中非常容易死机。因此,从改善汽车电气设备的电磁环境、改善汽车的启动性能和蓄电池性能或延长蓄电池使用寿命来考虑,改善汽车电源在启动过程中的性能是必要的。解决问题的方案之一是加大蓄电池的容量,但需要增加很多,并使其体积增大,这并不是好的选择。而将超级电容器与蓄电池并联可以很好地解决这个问题。

2 超级电容器的原理及特点 2.1 超级电容器的原理 超级电容器是一种电容量可达数千法拉的极大容量电容器。以美国库柏Cooper公司的超级电容为例,根据电容器的原理,电容量取决于电极间距离和电极表面积,为了得到如此大的电容量,要尽可能缩小超级电容器电极间距离、增加电极表面积,为此,采用双电层原理和活性炭多孔化电极。 超级电容器的结构如图3所示。双电层介质在电容器的二个电极上施加电压时,在靠近电极的电介质界面上产生与电极所携带的电荷极性相反的电荷并被束

相关主题