搜档网
当前位置:搜档网 › 高中数学抽象函数专题含答案-教师版

高中数学抽象函数专题含答案-教师版

高中数学抽象函数专题含答案-教师版
高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版)

抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题.

利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.

(1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.

(2)函数y=f(x)满足f(x+a)=

1

()

f x

,则f(x)是周期函数,且2a是它的一个周期.

(3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期.

:

命题2:若a、b(a b

)是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.

(1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期.

(2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.

(3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.

(4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期.

命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.

(1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期.

(2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期.

我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似.

设条件A: 定义在R上的函数f(x)是一个偶函数.

条件B: f(x)关于x=a对称

条件C: f(x)是周期函数,且2a是其一个周期.

结论: 已知其中的任两个条件可推出剩余一个.

证明: ①已知A、B→ C (2001年全国高考第22题第二问)

∵f(x)是R上的偶函数∴f(-x)=f(x)

又∵f(x)关于x=a对称∴f(-x)=f(x+2a)

)

∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

②已知A 、C →B

∵定义在R 上的函数f(x)是一个偶函数∴f(-x)=f(x)

又∵2a 是f(x)一个周期∴f(x)=f(x+2a)

∴f(-x)=f(x+2a) ∴ f(x)关于x=a 对称

③已知C 、B →A

∵f(x)关于x=a 对称∴f(-x)=f(x+2a)

又∵2a 是f(x)一个周期∴f(x)=f(x+2a)

∴f(-x)=f(x) ∴f(x)是R 上的偶函数

由命题3(2),我们还可以得到结论:f(x)是周期为T 的奇函数,则f(2

T )=0 基于上述命题阐述,可以发现,抽象函数具有某些关系.根据上述命题,我们易得函数周期,从而解决问题,以下探究上述命题在解决抽象函数问题中的运用.

1.求函数值

例1:f(x) 是R 上的奇函数f(x)=- f(x+4) ,x ∈[0,2]时f(x)=x ,求f(2007) 的值

解:方法一 ∵f(x)=-f(x+4) ∴f(x+8) =-f(x+4) =f(x)

∴8是f(x)的一个周期

∴f(2007)= f(251×8-1)=f(-1)=-f(1)=-1

`

方法二∵f(x)=-f(x+4),f(x)是奇函数

∴f(-x)=f(x+4) ∴f(x)关于x=2对称 又∵f(x)是奇函数

∴8是f(x)的一个周期,以下与方法一相同.

例2:已知f(x)是定义在R 上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值 解:由条件知f(x)≠1,故1()(2)1()

f x f x f x ++=- 1(2)1(4)1(2)()

f x f x f x f x ++∴+==--+ 类比命题1可知,函数f(x)的周期为8,故f(2009)= f(251×8+1)=f(1)=2

2. 求函数解析式

}

例3:已知f(x)是定义在R 上的偶函数,f(x)= f(4-x),且当[]2,0x ∈-时,f(x)=-2x+1,则当[]4,6x ∈时求f(x)的解析式

解:当[]0,2x ∈时[2,0]x -∈-∴f(-x)=2x+1

∵f(x)是偶函数∴f(-x)=f(x) ∴f(x)=2x+1

当[]4,6x ∈时4[0,2]x -+∈∴f(-4+x)=2(-4+x)+1=2x -7

又函数f(x)是定义在R 上的偶函数,f(x)= f(4-x),类比命题3(1)知函数f(x)的周期为4 故f(-4+x)=f(x)

∴当[]4,6x ∈时求f(x)=2x -7

3.判断函数的奇偶性

"

例4:已知f(x)是定义在R 上的函数,且满足f(x+999)=1()

f x -,f(999+x)=f(999-x), 试判断函数f(x)的奇偶性.

解:由f(x+999)=1()

f x -,类比命题1可知,函数f(x)的周期为1998即f(x+1998)=f(x);由f(999+x)=f(999-x)知f(x)关于x=999对称,即f(-x)=f(1998+x)

故f(x)=f(-x) ∴f(x)是偶函数

4.判断函数的单调性

例5:已知f(x)是定义在R 上的偶函数,f(x)= f(4-x),且当[]2,0x ∈-时,f(x)是减函数,求证当[]4,6x ∈时f(x)为增函数

解:设1246x x ≤<≤则212440x x -≤-+<-+≤

∵ f(x)在[-2,0]上是减函数∴ 21(4)(4)f x f x -+>-+

又函数f(x)是定义在R 上的偶函数,f(x)= f(4-x),类比命题3(1)知函数f(x)的周期为4 \

故f(x+4)=f(x) ∴21()()f x f x ->- ∵ f(-x)=f(x) ∴ 21()()f x f x >

故当[]4,6x ∈时f(x)为增函数

例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a ∈[5,9]且f(x)在[5,9]上单调.求a 的值.

解:∵ f(x)=-f(6-x) ∴f(x)关于(3,0)对称

∵ f(x)= f(2-x) ∴ f(x)关于x=1对称

∴根据命题2(4)得8是f(x)的一个周期 ∴f(2000)= f(0)

又∵f(a) =-f(2000) ∴f(a)=-f(0)

又∵f(x) =-f(6-x) ∴f(0)=-f(6) ∴f(a)=f(6)∵a ∈[5,9]且f(x)在[5,9]上单调∴a =6

5.—

6.确定方程根的个数

例7:已知f(x)是定义在R 上的函数,f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0,

求在区间[-1000,1000]上f(x)=0至少有几个根?

解:依题意f(x)关于x=2,x=7对称,类比命题2(2)可知f(x)的一个周期是10

故f(x+10)=f(x) ∴f(10)=f(0)=0 又f(4)=f(0)=0

即在区间(0,10]上,方程f(x)=0至少两个根

又f(x)是周期为10的函数,每个周期上至少有两个根,

因此方程f(x)=0在区间[-1000,1000]上至少有1+2200010

?

=401个根.

两类易混淆的函数问题:对称性与周期性

刘云汉

例1. 已知函数y = f (x )(x ∈R )满足f (5+x )= f (5-x ),问:y = f (x )是周期函数吗它的图像是不是轴对称图形

例2. 已知函数y = f (x )(x ∈R )满足f (5+x )= f (5-x ),问:y = f (x )是周期函数吗它的图像是不是轴对称图形

这两个问题的已知条件形似而质异。有的同学往往把它们混为一谈,从而得出错误的结论。为了准确地回答上述问题,必须掌握以下基本定理。

定理1:如果函数y = f (x )(x ∈R )满足f (5+x )= f (5-x ),那么y = f (x )的图像关于直线x a =对称。

证明:设点()P x y 00,是y = f (x )的图像上任一点,点P 关于直线x =a 的对称点为Q ,易知,点Q 的坐标为()200a x y -,。

@

因为点()P x y 00,在y = f (x )的图像上,所以f x y ()00=

于是()()[]()[]()f a x f a a x f a a x f x y 200000-=+-=--==

所以点()Q a x y 200-,也在y = f (x )的图像上。

由P 点的任意性知,y = f (x )的图像关于直线x =a 对称。

定理2:如果函数y = f (x )(x ∈R )满足f (a +x )= f (b -x ),那么y = f (x )的图像关于直线x a b =+2

的对称。 证明:(略)(证明同定理1)

;

定理3:如果函数y = f (x )(x ∈R )满足f (x +a )= f (x -a ),那么y = f (x )是以2a 为周期的周期函数。

证明:令x a x -=',则x x a x a x a =++=+'',2

代入已知条件()()f x a f x a +=-

得:()()f x a f x ''++2

根据周期函数的定义知,y = f (x )是以2a 为周期的周期函数。

定理4:如果函数y = f (x )(x ∈R )满足()()f x a f x b +=-,那么y = f (x )是以a b +为周期的周期函数。

证明:(略)(证法同定理3)

由以上的定理可知,在已知条件()()f a x f b x +=-或()()f x a f x b +=-中,等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为x a b =+2

。 等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )是周期函数,其周期T=a +b 。

容易证明:定理1、2、3、4的逆命题也是成立的。

牢牢掌握以上规律,则例1、例2迎刃而解。

例1中,()()5510++-=x x ,因此f (x )的图像关于直线x =5对称。由这个已知条件我们不能判定f (x )是周期函数。

例2中,()()x x +--=5510,因此f (x )是周期函数,其周期T=10。由这个已知条件我们不能判定它是轴对称图形。

例3. 若函数f (x )=x 2+bx +c 对于任意实数t 均有f (3+t )= f (1-t ),那么( ) /

A. f (2)< f (1)< f (4)

B. f (1)< f (2)< f (4) (2)< f (4)< f (1) D. f (4)< f (2)< f (1)

解析:在f(3+t)= f(1-t)中(3+t)+f(1-t)=4

所以抛物线f(x)=x2+bx+c的对称轴为x=2

作示意图如图1,可见,应选A。

图1

例4. 设f(x)是定义在R上的奇函数,且f(x-2)=-f(x),给出下列四个结论:

①f(2)=0;

②f(x)是以4为周期的函数;

③f(x)的图像关于直线x=2对称;

④f(x+2)=f(-x)

其中所有正确命题的序号是___________。

解析1:(1)因为y= f(x)(x∈R)是奇函数,所以f(-x)=-f(x)

令x=0,得f(-0)=-f(0)

:

000200

()()()

f f f

?+==

所以f(0)=0

又已知f(x-2)=-f(x)

令x=2,得f(0)=-f(2)

所以f(2)=-f(0)=0

故①成立。

(2)因为f(x-2)=-f(x),所以

()()[]{}()f x f x f x f x ()=--=----=-2224

! 由x -(x -4)=4(两自变量相减得常数)

所以f (x )是以4为周期的周期函数。

故②成立。

(3)由f (x +2)= f (-x )得:(x +2)+(-x )=2(两自变量相加得常数)

所以f (x )的图像关于直线x =1对称。而不是关于直线x =2对称。

故③是错误的。

(4)由(2)知,f (x )应满足f (x +2)= f (x -2)

而f (x -2)=-f (x )

所以f (x +2)= -f (x )= f (-x )

故④成立。

综上所述,应填①②④。

解析2:根据题设条件,构造出函数f x ()的图像如图2。

图2

由图可见,①②④正确,而③不正确。

:

例5. 函数()y ax a =-≠log 210的图像关于直线x =2对称,则a =___________。 解析:因为函数()y ax a =-≠log 210的图像关于直线x =2对称

所以有()()log log 222121a x a x +-=--(定理1的逆定理)

()()()?+-=--?+-=±--a x a x a ax a ax 2121

2121

?=a 0(与题设矛盾,舍去)或a =

12 所以a =

12

。 例6. 设f (x )是R 上的奇函数,又f (x )的图像关于直线x =a 对称。问函数y = f (x )是不是周期函数如果是,求出它的一个周期。

解:因为f (x )的图像关于直线x =a 对称

由定理1的逆定理知:f (a +x )= f (a -x )

用a -x 代换上式中的x ,得:f (2a -x )= f (x )

再用-x 代换x ,得:f (2a +x )= f (-x ) <1>

再用2a +x 代换x ,得:

()[]()f a x f a x -+=+24

又f (x )为奇函数,即()()

-+=+<>f a x f a x 242

由<1><2>得:()()--=+f x f a x 4

即f (x )= f (x +4a )

根据周期函数的定义,f (x )是周期函数,且T=4a 是它的一个周期。

(完整版)高考函数专题复习-教师版

函数与基本初等函数 函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则 f ,对于集合A 中任何一个数x ,在集合B 中都 有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区 间,分别记做 [,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③ ()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π ≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2 ()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2 ()4()()0b y a y c y ?=-?≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. 函数的表示法 (5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对 应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念 ①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

2009届高考数学快速提升成绩题型训练——抽象函数

2009届高考数学快速提升成绩题型训练——抽象函数 D

7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有b a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小; (2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知 22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数; (2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:

()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

【精品】高中数学函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映. 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。 因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。 1.掌握描绘函数图象的两种基本方法——描点法和图象变换法. 2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力. 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点. 例1设a>0,求函数 ) ln( ) (a x x x f+ - =(x∈(0,+∞))的单调区间. 分析:欲求函数的单调区间,则须解不等式 ()0 f x '≥ (递增)及 ()0 f x '< (递减)。

专题02 函数-2014年高考数学(理)试题分类解析(教师版)

目录 专题21 函数及其表示 (1) 专题22 函数的定义域与值域 (1) 专题23 函数的单调性与最值 (2) 专题24 函数的奇偶性与周期性 (4) 专题25 二次函数与幂函数 (6) 专题26 对数与对数函数 (7) 专题27 函数的图象 (8) 专题28 函数与方程 (10) 专题29 分段函数 (11) 专题210 新定义函数 (13) 专题21 函数及其表示 1【2014高考安徽卷理第6题】设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623( πf ( ) A.21 B 23 C 0 D 21- 【答案】A 【曹亚云·解析】231717()()sin 666f f πππ=+ 111117()sin sin 666 f πππ=++ 551117()sin sin sin 6666f ππππ=+++ 0sin sin sin 666πππ=+-+ 12 = 2【2014江西高考理第3题】已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A 1 B 2 C 3 D -1 【答案】A 【曹亚云·解析】()()11f g = |(1)|51g ?= ()10g ?= 10a ?-= 1a ?= 专题22 函数的定义域与值域 3【2014江西高考理第2题】函数)ln()(2x x x f -=的定义域为( ) A )1,0( B ]1,0[ C ),1()0,(+∞-∞ D ),1[]0,(+∞-∞

【答案】C 【曹亚云·解析】20x x ->,10x x ∴><或所以选C 4【2014山东高考理第3题】函数的定义域为( ) A B C D 【答案】C 【曹亚云·解析】()22log 10x ->2log 1x ?>或2log 1x <-,解得 2x >或 102x ∴ <> 专题23 函数的单调性与最值 5【2014高考北京版理第2题】下列函数中,在区间(0,)+∞为增函数的是( ) A .y =.2(1)y x =- C .2x y -= D .0.5log (1)y x =+ 【答案】A 【曹亚云·解析】因为函数y =[1,)-+∞ 上单调递增,所以选项A 正确; 因为函数2(1)y x =-在区间(,1)-∞ 上单调递减,在区间[1,)+∞ 上单调递增,所以选项B 错误; 因为函数2x y -=在区间(,)-∞+∞ 上单调递减,所以选项C 错误; 因为函数0.5log (1)y x =+在区间(1,)-+∞ 上单调递减,所以选项D 错误; “高中数学师生群”QQ 群号码:341383390,欢迎各位在读高中学生加入,欢迎各位一线高中数学教师加入 “高中数学教师俱乐部”QQ 群号码:44359573,欢迎各位一线高中数学教师加入注:该群为教师群,拒绝学生申请 6【2014高考福建卷第4题】若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( ) 1)(log 1 )(22-=x x f )21,0(),2(+∞),2()21,0(+∞ ),2[]21,0(+∞

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性 关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。 一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2 对称。 证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b = +2的对称点为()A a b m n '+-,。 []∵f a b m f b b m f m n ()()()+-=--== ∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2 对称。 二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2 的对称点为()A b a m n '--,。 ∵f b b a m f a m n [()]()---=+= ∴点A'在y f b x =-()的图象上 反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2 的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++? ? ???2与y f x a b =-++?? ?? ?2的图象关于直线x =0对称,由y f x a b =++?? ???2的图象平移得到y f x b a a b f a x =--?? ???++?? ????=+22()的图象,由y f x a b =-++?? ???2的图象平移得到y f x b a a b f b x =---?? ???++????? ?=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 三、设y f x =()是定义在R 上的函数,若f a x c f b x ()()+=--2,则函数y f x =()的图象关于点a b c +?? ?? ?2,对称。 证明:设点() A m n ,是y f x =()图象上任一点,则f m n ()=,点A 关于点a b c +?? ?? ?2,的对称点为()A a b m c n '+--,2。 []∵f a b m c f b b m c f m c n ()()()+-=---=-=-222 ∴点A'也在y f x =()的图象上,故y f x =()的图象关于点a b c +?? ?? ?2,对称 说明:(1)当a b c ===0时,奇函数图象关于点(0,0)对称。(2)易知此命题的逆命题也成立。 四、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y c f b x =--2()的图象关于点b a c -?? ?? ?2,对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于点b a c -?? ?? ?2,的对称点为()A b a m c n '---,2

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

专题04_三角函数(教师版)自己整理

2014届高考数学二轮复习资料 专题三:三角函数(教师版) 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出2 πα±,πα±的正弦、余弦、正切的诱导公式;理解同角的三角函 数的基本关系式:sin 2 x+cos 2 x=1, sin tan cos x x x =. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2 π, 2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ω?=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【要点梳理】 1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式. 2.三角函数中常用的转化思想及方法技巧: (1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22 sin cos 1αα+=; (3)切弦互化:弦的齐次式可化为切; (4)角的替换:2()()ααβαβ=++-,()2 2 αβ αβ ααββ+-=+-=+ ; (5)公式变形:2 1cos 2cos 2αα+= , 2 1cos 2sin 2 αα-=, tan tan tan()(1tan tan )αβαβαβ+=+-;

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

抽象函数、图像、函数零点

函数基本知识 抽象函数: 1. 已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立. 证明:(1)函数()y f x =是R 上的减函数;(2)函数()y f x =是奇函数. 2. 已知)(x f 在(-1,1)上有定义,且满足),1( )()()1,1(,xy y x f y f x f y x --=--∈有 证明:)(x f 在(-1,1)上为奇函数; 3. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对于任意的实数x ,y 都有 )12()()(+--=-y x y x f y x f 成立,则=)(x f _____________. 4. 已知定义在R + 上的函数()f x 同时满足下列三个条件:① (3)1f =-; ② 对任意x y R +∈、 都有()()()f xy f x f y =+;③0)(,1<>x f x 时. (1)求)9(f 、)3(f 的值; (2)证明:函数()f x 在R + 上为减函数; (3)解关于x 的不等式2)1()6(--

(新)高一数学函数专题训练(一)

函数专题训练(一) 一、选择题 1.(文)若函数f(x)的定义域是[0,4],则函数g(x)=f (2x )x 的定义域是( ) A .[0,2] B .(0,2) C .(0,2] D .[0,2) (理)(2013·湖北荆门期末)函数f(x)=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( ) A .(-∞,-4]∪(2,+∞) B .(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1) 2.(文)(2012·江西文,3)设函数f(x)=????? x 2+1,x ≤1,2x ,x>1.则f(f(3))=( ) A.15 B .3 C.23 D.139 (理)已知函数f(x)=??? 2x +1,x ≤0,f (x -3),x>0, 则f(2014)等于( ) A .-1 B .1 C .-3 D .3 3.已知函数f(x)=??? 2x +1,x<1,x 2+ax ,x ≥1, 若f[f(0)]=4a ,则实数a 等于( ) A.12 B.45 C .2 D .9 4.(2013·银川模拟)设函数f(x)=??? x 2-4x +6,x ≥0,x +6,x<0, 则不等式f(x)>f(1)的解集是( A .(-3,1)∪(3,+∞) B .(-3,1)∪(2,+∞) C .(-1,1)∪(3,+∞) D .(-∞,-3)∪(1,3) 5.(文)函数f(x)=22x -2 的值域是( ) A .(-∞,-1) B .(-1,0)∪(0,+∞)C .(-1,+∞) D .(-∞,-1)∪(0,+∞) (理)若函数y =f(x)的值域是[12,3],则函数F(x)=f(x)+1f (x ) 的值域是( ) A .[12,3] B .[2,103] C .[52,103] D .[3,103] 6.a 、b 为实数,集合M ={b a ,1},N ={a,0},f 是M 到N 的映射,f(x)=x ,则a +b

高考复习---利用函数性质研究函数图像专题-教师版

高考复习---利用函数性质研究函数图像专题 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.函数2||1 ()x x f x e -=的图象大致为( ). A . B . C . D . 【答案】C 【解析】 【分析】 先由函数解析式,判断函数奇偶性,排除A,B ;再由特殊值验证,排除D ,进而可得出结果. 【详解】 因为()21x x f x e -=,所以()()21 x x f x f x e --==,因此()f x 为偶函数,所以排除选项A,B , 又()23 21f e =<,所以排除D. 故选C 【点睛】 本题主要考查函数图像的识别,一般先考虑函数奇偶性,再特殊值验证,属于常考题型. 2.函数f (x )=的图象大致为( )

A . B . C . D . 【答案】C 【解析】 【分析】 根据奇偶性的定义,得出函数的奇偶性,以及函数值的符号,利用排除法进行求解,即可得到答案. 【详解】 由题意,函数满足()()x -x f x f x e e -==-=-+,即()f x 是奇函数,图象关于原点对称,排除B ,又由当x 0>时,()f x 0>恒成立,排除A ,D , 故选C . 【点睛】 本题主要考查了函数的奇偶性,以及函数值的应用,其中解答中熟记函数的奇偶性的定义,得出函数的奇偶性,再利用函数值排除是解答的关键,着重考查了推理与运算能力,属于基础题. 3.函数()21cos 1x f x x e ??=- ?+?? 图象的大致形状是( ) A . B . C . D . 【答案】B 【解析】 【分析】 利用奇偶性可排除A 、C ;再由(1)f 的正负可排除D.

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

2017高中数学抽象函数专题

三、值域问题 例4.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。 解:令x=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故 f(0)≠0,必有 f(0)=1。由于f(x+y)=f(x)f(y)对任意实数x 、y 均成立,因此,0 )2()(2 ≥? ? ? ? ? =x f x f , 又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0. 四、求解析式问题(换元法,解方程组,待定系数法,递推法,区间转移法, 例6、设对满足x ≠0,x ≠1的所有实数x ,函数f(x)满足,()x x x f x f +=?? ? ??-+11 ,求f(x)的解析式。 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且Θ---- ,1 2)11()1(:x 1-x x x x f x x f x -=-+-得代换用 (2) :)1(x -11 得中的代换再以x .12)()x -11f(x x x f --=+---(3)1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 例8.是否存在这样的函数f(x),使下列三个条件: ①f(n)>0,n ∈N;②f(n 1+n 2)=f(n 1)f(n 2),n 1,n 2∈N*;③f(2)=4同时成立? 若存在,求出函数f(x)的解析式;若不存在,说明理由. 解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,…,由此猜想:f(x)=2x (x ∈N*) 小结:对于定义在正整数集N*上的抽象函数,用数列中的递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解. 练习:1、.23 2|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:0 2)x (x f 3 x ,x 1)x (f 2)x 1(f ,x x 12 =++=-与已知得得代换用,. 23 2 |)x (f |,024)x (9f 02 ≥ ∴≥?-≥?得由 3、函数f (x )对一切实数x ,y 均有f (x +y)-f (y)=(x +2y+1)x 成立,且f (1)=0, (1)求(0)f 的值; (2)对任意的11 (0,)2 x ∈,21(0,)2 x ∈,都有f (x 1)+2

相关主题