搜档网
当前位置:搜档网 › S-GeMs软件基本原理及三维地质建模应用

S-GeMs软件基本原理及三维地质建模应用

S-GeMs软件基本原理及三维地质建模应用
S-GeMs软件基本原理及三维地质建模应用

目录

第一章 S-Gems软件简介及建模工区概况 (2)

1.1 S-GeMs软件的基本概况 (2)

1.2 建模工区及地质背景简介 (2)

第二章数据的导入及基本分析 (3)

2.1 数据的格式及导入操作 (3)

2.2 数据分析及处理(正态变换) (4)

第三章各变量的变差函数分析 (8)

3.1 变差函数的基本原理 (8)

3.2 S-GeMs软件变差函数分析模块及基本操作简介 (8)

3.3 变差函数分析结果 (10)

第四章三维沉积相建模 (14)

4.1 三维沉积相确定性建模(指示克里金方法) (14)

4.2 三维沉积相随机建模(序贯指示模拟方法) (15)

第五章三维储层参数建模 (20)

5.1 协同克里金方法(cokriging)三维储层参数确定性建模 (20)

5.2 协同序贯高斯模拟方法(cosgsim)三维储层参数随机建模 (22)

第六章 S-GeMs软件建模的优越性与局限性 (26)

6.1 S-GeMs软件建模的优越性 (26)

6.2 S-GeMs软件建模的局限性(约束条件) (26)

参考文献 (27)

S-GeMs软件基本原理与三维地质建模应用

——《地质与地球物理软件应用》课程报告第一章 S-Gems软件简介及建模工区概况

1.1 S-GeMs软件的基本概况

S-GeMS(Stanford Geostatistical Modeling Software)是Nicolas Remy在斯坦福大学油藏预测中心(SCRF:The Stanford Center for Reservoir Forecasting)开发的一套开源地质建模及地质统计学研究软件。2004年首次发布,其后进行了更新和升级。该软件包括传统的经典地质统计学算法和新近发展的多点地质统计学方法。由于操作简单、源代码公开,而且有二次开发的接口,因此日益成为继Gslib之后又一重要的地质统计学研究和应用软件。

1.2 建模工区及地质背景简介

已知建模工区的范围沿x、y、z方向为1000×1300×20米。三维网格数为100×130×10,网格大小为10×10×2米。主要沉积的砂体为发育在泛滥平原泥岩上的河道砂体,且河道砂体近东西向展布。另有部分河道发育决口扇砂体。工区第6网格层的沉积相切片如图1所示。

图1-1 建模工区中部沉积相分布图

本次实验共提供350口井的井数据,所有350井均为直井。垂向上每口井分为10个小层,每层厚度为2米,如图 2 所示。

图1-2 井数据示意图

第二章数据的导入及基本分析

2.1 数据的格式及导入操作

井数据文件(well.dat)中给出了每口井的x,y坐标和每个小层的中部深度,以及每个小层的沉积相类型和波阻抗、孔隙度、渗透率数据。S-GeMS软件的数据格式为Gslib格式 (参考data file in Gslib.pdf)。如下所示:

Well data -----------------------------------文件内容

7 -----------------------------------共有数据变量个数

X -----------------------------------数据变量名称1:x坐标

Y -----------------------------------数据变量名称2:y坐标

Depth -----------------------------------数据变量名称3:小层的中部深度

Facies ----------------------------------数据变量名称4:沉积相,共三种相:1,2,3 Impedance -----------------------------------数据变量名称5:波阻抗

Porosity -----------------------------------数据变量名称6:孔隙度

Permeability -----------------------------------数据变量名称7:渗透率

175.00 15.00 19.0 1 6793.10010 0.26800 301.94699

855.00 1025.00 17.0 3 9852.62988 0.04860 6.33635

585.00 1045.00 15.0 3 9805.87012 0.05030 10.99340 数据导入操作的基本步骤如下:

点击软件主界面:Objects /Load Object; 可以加载三种类型数据:Cartesian grid、meshed grid、point set. (如图2-1)

对于Cartesian grid数据需要指定沿着x,y,z方向的网格个数和原点坐标等参数。对于

meshed grid数据仅指定沿x,y,z方向的网格大小和原点;而对于point set数据,则需设定x,y,z坐标变量所在列(图2-2).

图2-1 S-GeMs软件数据导入基本操作

Cartesian grid meshed grid point set

图2-2 S-GeMs软件不同格式数据导入时所需设置的参数

2.2 数据分析及处理(正态变换)

2.2.1 S-Gems软件数据分析基本操作简介

S-Gems软件可对导入的数据进行常规分析(直方图分析),包括数据的均值,方差,最大值,中值,最小值等等;数据相关性分析,主要分析各种变量数据之间相关性,还可以拟合出回归曲线;变差函数分析(基于克里金地质分析的数学方法,为建模提供数据支持)以及数据的正态转换等数据分析工作。其中常规分析(直方图分析)、数据相关性分析、变差函数分析分别利用软件主界面的Data Analysis/Histogram、Data Analysis/Scatter-plot、Data Analysis/Variogram模块;数据的正态转换则是Algorithms/Trans模块,然后设定转换的参数

便可实现(图2-3)。

常规分析(直方图分析)操作流程数据相关性分析操作流程

变差函数分析操作流程数据正态转换操作流程

图2-3 S-GeMs软件数据分析基本操作流程

2.2.2 数据分析及处理结果

(1)各参数常规分析结果

①波阻抗参数岩石的波阻抗(impedance of rock) 岩石中的纵波速度与岩石密度的乘积。它表明应力波在岩体中传播时,运动着的岩石质点产生单位速度所需的扰动力。如图2-4波阻抗数据的频率及累计概率图所示,本次实验中,波阻抗数据的均值(mean)为7746.05;方差(variance)为2.77919×106

最小值为5075.01 MD。该原始数据呈非正态分布特征,在后面的建模过程中需要通过正态转换再使用。

图2-4 波阻抗数据分析图

②孔隙度参数所谓岩石孔隙度(porosity)是指岩石中孔隙体积(或岩石中未被固体物质充填的空间体积)与岩石总体积的比值,是储层评价的重要参数之一。本次建模实习的孔隙度数据频率和累计概率图如图2-5(1)所示,均值(mean)为0.185002;方差(variance)为0.0122564;最大值为0.347;中值为0.2046;最小值为0.0091。本次建模所提供的孔隙度数据也呈非正态分布的特征,后续的建模需要进行正态变换再使用。

③渗透率参数在一定压差下,岩石允许流体通过的性质称为渗透性;在一定压差下,岩石允许流体通过的能力叫渗透率(permeability)。本次建模实习的孔隙度数据频率和累计概率图如图2-5(2)所示,其中均值(mean)为219.524;方差(variance)为117221;最大值为4290.6;中值为103.091;最小值为0.57576。本次建模所提供的渗透率数据亦呈非正态分布的特征,后续的建模需要进行正态变换再使用。

(1)孔隙度数据分析图

图2-5 孔、渗数据分析图

(2)孔、渗数据正态变换分析结果

为了适用于后续建模过程,需要把非正态分布的孔隙度和渗透率数据进行正态转换,使其呈正态分布。经正态变换后,孔、渗数据分析如图2-6和图2-7所示。

正态变换

(正态变换前)(正态变换后)

图2-6 孔隙度正态转换前后对比图

正态变换

(正态变换前)(正态变换后)

图2-7 渗透率数据正态转换前后对比图

(3)参数之间相关性分析

岩石的波阻抗数值上等于岩石中的纵波速度与岩石密度的乘积,而岩石中的纵波速度与岩石密度受岩石内部孔隙的影响,一般来说,岩石的孔隙度越大,纵波在岩石中传播的速度就越慢,岩石的密度就越小,因而波阻抗也就越小,呈负相关特征。

目前,在地震或测井资料中,基本没有直接反映渗透率变化的属性,渗透率的求取多数通过取芯测定与测井资料或地震资料建立解释模型,求取最佳孔-渗关系,然后用之求取无取芯井段的解释渗透率;孔隙度与波阻抗具有很好的相关性,因此渗透率与波阻抗也会具有较好的相关性。本次建模实习提供的孔隙度、渗透率与波阻抗数据之间的相关性和孔隙度与渗透率数据的相关性分析如图2-8所示。

图2-8 孔、渗与波阻抗参数相关分析及孔-渗相关分析图

第三章 各变量的变差函数分析

3.1 变差函数的基本原理

变差函数是区域化变量空间变异性的一种度量,反映了空间变异程度随距离而变化的特征。变差函数强调三维空间上的数据构形,从而可定量的描述区域化变量的空间相关性,即地质规律所造成的储层参数在空间上的相关性。其数学表达式为:

()()()212

h E Z x Z x h γ=-+???? 而实验变差函数的计算公式为:

()()()()()

2112N h k k k h Z x Z x h N h γ*

==-+????∑ 根据各井点已知的储层参数值,在同一方向上,对不同的h i (i =1,2…,n)可得到一组不同的实验变差函数值γ*(h i )。以h 为横坐标,γ*(h i )为纵坐标所得到的一组(h,γ*(h i ))点称为变差函数图(见图3-1)。变差函数图中的几个主要参数分别为a 、c 、c o 以及c c 其中,a 表示变程(range),反映区域化变量在空间上具有相关性的范围,在变程范围之内数据具有相关性,在变程范围之外数据互不相关。c o 表示块金效应(nugget effect),用以描述区域化变量在很小的距离内发生的突变程度。块金值越大,说明数据的连续程度越差,反之则相反,它可以由测量误差引起,也可以是来自矿化现象的微观变异性。在数学上,块金效应相当于变量的纯随机部分。c 为基台值( sill),反映变量在空间上的总变异性大小,基台值越大说明数据的波动程度越大,参数变化的幅度越大。c o 为拱高,表示在取得有效数据的尺度上,可观测得到的变异性幅度大小,当块金值等于零时,基台值即为拱高。

变差函数示意图

变差函数模型 图3-1 变差函数示意图

3.2 S-GeMs 软件变差函数分析模块及基本操作简介

3.2.1 模块简介及基本操作简介

S-GeMs 软件主界面中的Data Analysis/Variogram 模块是软件进行变差函数分析与拟合的工具,通过该模块进入变差函数分析的环节,首先选择需要进行变差函数分析的变量(参数),

然后设置滞后距、滞后距个数、滞后距容差、主方向和次方向,角度容差,带宽等参数,软件初步成图后进行变差函数拟合,拟合出最佳的块金值、基台值、主变程和次变差等参数(图3-2)。

图3-2 S-GeMs软件变差函数分析基本操作流程

3.2.2 参数设置的原则

变差函数是分析是建模中至关重要的一步,变差函数是否拟合得当直接影响后续建模的效果。据周游等(2010),进行变差函数分析时,每一个滞后距用于计算变差函数的数值一般应大于30个点对,为了精确地估计变差函数,有的学者甚至建议至少应有100到200个样本数据。为了将滞后距控制在有意义的研究范围内,通常将搜索半径限定为| h |≤L/2 (L为工区内相距最远的2个数据点)。最小滞后距可选为指定方向的平均井距,因为当小于平均井距时得不到足够的点对。滞后距个数与搜索半径及最小滞后距的关系为:滞后距个数=搜索半径/基本滞后距,确定其中2个参数,另一个也就得到了。带宽可选为2倍井距,滞后距容差可选为1 /2该方向的平均井距。容差角与井网的类型密切相关,一般可选为π/8,可根据拟合效果做出变化,比如容差角和滞后距可以在上述原则上适当地增减,直到求出具有较小块金值和主次方向变程为止。计算和分析变差函数的基本流程如图3-3.

图3-3 实验变差函数的计算流程图

本次建模实习过程中,在沉积相三维变差函数分析中采用如表3-1的参数设置。

表3-1 沉积相三维实验变差函数分析参数

3.3 变差函数分析结果

3.3.1 沉积相三维实验变差函数分析

经过变差函数拟合,得出如表3-2的拟合数据结果和各沉积相的拟合曲线图(图3-4、图3-5、图3-6)。

表3-2 沉积相三维实验变差函数拟合结果

图3-4 河道相(Channel)三维实验变差函数拟合图

图3-5 决口扇相(Crevasse )三维实验变差函数拟合图

图3-6 泛滥平原相(Floodplain )三维实验变差函数拟合图

根据拟合出来的结果,可得各种沉积相的变差函数模型(主变程)数学表达式如下:

(1)河道相(channel )变差函数指数模型:

()channel 3h 0.2451-exp -300h γ????=? ??????

?

(2)决口扇相(crevasse )变差函数指数模型:

()channel 3h 0.0571-exp -90h γ????=? ??????

?

(3)泛滥平原(floodplain )变差函数指数模型: ()channel 3h 0.2281-exp -180h γ????=? ???????

3.3.2 孔、渗数据三维变差函数分析

同样,根据以上沉积相的三维实验变差函数分析方法,对经过正态变换后的孔隙度、渗透率数据进行变差函数分析与拟合,具体的参数和拟合结果如表3-3、表3-4和图3-7、图3-8。

表3-3 孔隙度、渗透率(正态变换后)三维实验变差函数分析参数

表3-4 孔隙度、渗透率(正态变换后)三维实验变差函数拟合结果

根据拟合出来的结果,可得孔隙度、渗透率的变差函数模型(主变程)数学表达式如下:

(1)孔隙度(正态变换后)变差函数指数模型:

()channel 3h 0.9851-exp -160h γ????=? ??????

?

(2)渗透率(正态变换后)变差函数指数模型: ()channel 3h 0.941-exp -180h γ????=? ???????

图3-7 孔隙度(正态变换后)三维实验变差函数拟合图

图3-8 渗透率(正态变换后)三维实验变差函数拟合图

第四章三维沉积相建模

4.1 三维沉积相确定性建模(指示克里金方法)

4.1.1 指示克里金方法(indicator_kriging)的基本思想

是基于对原始数据的指示变换值(将数据按照不同的门槛值编码为1或0的过程)进行克里金估计。指示变换的一般原则:对于离散变量来说,目标区内的每一类相,当它出现于某一位置时,指示变量为1,否则为0。而对于连续变量来说,则首先要将连续变量截断为类型变量,然后进行指示变换。指示克里金属于非参数统计方法,不同于其他克里金方法(通过参数的均值和方差来估值),它是以概率形式考虑特异值得存在,在不舍弃特异值数据的条件下进行有效的空间估计。

指示克里金建模的基本流程为:①对变量进行指示变换。②分别求取指示值的变差函数,分别作出变差函数图。③进行指示克里金建模。指示克里金作为一种非参数统计方法,在处理特高值和特低值的分布方面,具有明显的优势。还可综合各种软信息(与硬信息一起)进行指示克里金估计。

4.1.2 S-GeMs软件指示克里金方法建模模块及基本操作流程简介

S-GeMs软件主界面中的Algorithm/Estimation/indicator_kriging是软件建模中基于指示克里金插值的方法。利用指示克里金进行沉积相概率建模时,首先要建立一个基于导入数据的网格,建立网格的基本操作过程如图4-1。

①②

图4-1 S-GeMs软件建立笛卡尔网格的基本操作

然后启动指示克里金插值方法,在general参数设置里选择指示克里金插值的网格和设置插值后数据体的名称,并选择沉积相指示的种类数,勾选种类属性,在相应的位置填上各种沉积相的边缘概率(之间用空格隔开);在data参数设置里选择硬数据(即经过指示变换的数据体),并设置好搜索椭球体的参数;在variogram参数设置里,依次设置好经过指示变换的各种相的变差函数模型。参数设置完毕之后,点击“Run Algorithm”命令,便可得到各种沉积相的三维概率模型。如图4-2

图4-2 S-GeMs软件指示克里金插值建模参数设置

4.1.3 指示克里金方法(indicator_kriging)建模的结果

本次建模实习所建立的三种沉积相(河道相、决口扇相、泛滥平原相)三维概率模型如图4-3、图4-4。

4.2 三维沉积相随机建模(序贯指示模拟方法)

4.2.1 序贯指示模拟方法的基本思想

序贯模拟的基本思想是:某一位置u邻域内的所有已知数据(原始数据和已模拟的数据)都可作为条件数据,在这一前提下进行模拟。考虑N个随机变量Z i的联合分布。Z i可以代表:①某一区域内离散在N个网格节点上的同一属性;②同一点处的N个不同属性;③N’个节点上的K个属性的联合分布,其中N=KN’。

已知N个随机变量的n个数据,其相应N元的条件累积分布函数(conditional cumulative distribution function, ccdf)可表示为:

F N(Z1,Z2,…,Z n|(n))=Prob{Z i

其中Prob{}表示求概率运算。为了得到一个来自上式的N元样本,可以由N个步骤来完成,每一步都是CCDF中的一个抽样,这样先前已模拟的数据可作为下一个抽样的条件数据。随着条件数据的不断增加,已知信息点数目由n更新为n+ 1,序贯考虑所有N个随机变量,可得到N元样本。

序贯指示模拟的基本思想是:通过指示克里金确定条件累积概率分布函数(ccdf),并应用序贯模拟得到模拟实现。基本的流程是:

①求取ccdf。在类型变量的模拟过程中,对于三维空间的每一网格(像元),首先通过

指示克里金估计各类型的条件概率,并归一化,使所有类型变量的条件概率之和为1。

根据指示克里金求出的某网格的各类型变量的条件概率,确定该处的累积条件分布函数(ccdf)

②随机模拟。随机提取一个0至1之间的随机数,该随机数在条件概率分布函数(ccdf)

中所对应的变量即为该像元的相类型。这一过程在其它各个象元进行运行,便可得到

研究区内相分布的一个随机实现。

序贯指示模拟的优点是可用于模拟复杂各向异性的地质现象。由于各个类型变量均对应于一个指示变差函数,从而可建立各向异性的模拟图象。缺点是不能很好地恢复目标相的几何形态。

河道相概率(第10层)决口扇相概率(第10层)泛滥平原相概率(第10层)

河道相概率(第9层)决口扇相概率(第9层)泛滥平原相概率(第9层)

河道相概率(第8层)决口扇相概率(第8层)泛滥平原相概率(第8层)

河道相概率(第7层)决口扇相概率(第7层)泛滥平原相概率(第7层)

河道相概率(第6层)决口扇相概率(第6层)泛滥平原相概率(第6层)

图4-3 第10~6层沉积相概率模型(指示克里金方法)

河道相概率(第5层)决口扇相概率(第5层)泛滥平原相概率(第5层)

河道相概率(第4层)决口扇相概率(第4层)泛滥平原相概率(第4层)

河道相概率(第3层)决口扇相概率(第3层)泛滥平原相概率(第3层)

河道相概率(第2层)决口扇相概率(第2层)泛滥平原相概率(第2层)

河道相概率(第1层)决口扇相概率(第1层)泛滥平原相概率(第1层)图4-4 第5~1层沉积相概率模型(指示克里金方法)

4.1.2 S-Gems软件序贯指示模拟方法建模模块及基本操作流程简介

S-GeMs软件主界面中的Algorithm/Simulation/Sisim是软件建模中基于序贯指示模拟的方法。利用序贯指示模拟进行沉积相随机建模时,首先要建立一个基于导入数据的网格,建立网格的基本操作过程在4.1.2中已有阐述(图4-1)。

然后启动序贯指示模拟插值方法,在general参数设置里选择序贯指示模拟的网格和设置插值后数据体的新名称,选择随机模拟实现的个数,勾选种类属性和设置相的种类数,再设置各种沉积相的边缘概率;在data参数设置里选择硬数据(未经指示变换的数据体),并选择利用指示克里金建立的各种相的概率模型;在variogram参数设置里,设置好原始沉积相数据的变差函数模型。参数设置完毕之后,点击“Run Algorithm”命令进行运算,便可得到三维沉积相随机模型。参数设置如图4-5。

图4-5 S-GeMs软件序贯指示模拟随机建模参数设置

4.1.3 序贯指示模拟方法(sisim_kriging)建模的结果

以第1层为例,通过序贯指示模拟方法进行沉积相随机模拟建模,本次建模建立了10个实现(如4-6)。

沉积相Sisim随机模拟实现1 沉积相Sisim随机模拟实现2 沉积相Sisim随机模拟实现3 沉积相Sisim随机模拟实现4 沉积相Sisim随机模拟实现5 沉积相Sisim随机模拟实现6 沉积相Sisim随机模拟实现7 沉积相Sisim随机模拟实现9

沉积相Sisim随机模拟实现9 沉积相Sisim随机模拟实现10

图4-6 三维沉积相序贯指示随机模拟模型(以第1层为例,10个实现)

(备注:红色为河道相;蓝色为泛滥平原相;绿色为决口扇相)

第五章三维储层参数建模

5.1 协同克里金方法(cokriging)三维储层参数确定性建模

5.1.1 协同克里金方法的基本思想

通常地质研究中包含两类数据:硬数据(主要信息)和软数据(次要信息)。一般认为硬数据是基于对客观存在的事物或现象进行测量和观察的结果,而软数据是基于人们的主观判断所得到的统计数据。例如在油藏描述过程中,所能获得的硬数据(井位数据)往往非常少,而关于所研究变量的软数据(如地质解释和地震资料等)却相对较为丰富。软数据一般提供了较广泛范围内的低分辨率信息。

协同克里格方法利用几个变量之间的空间相关性,对其中的一个或几个变量进行空间估计,是一种可以包含多种变量信息的插值方法,它可以同时结合较粗分辨率的空间信息和其他一些较细分辨率的空间信息进行插值估计。与其他一些插值方法相比,协同克里格提供了一种无偏的最小方差估计。

传统的全局协同克里金方法具有交叉矩阵不稳定的问题,基于Markov模型的同位置协同克里金方法可以实现对全局协同克里金的逼近。Markov模型假设;对于软数据而言,与其同位置的硬数据可以屏蔽其他硬数据对于该软数据的影响。

5.1.2 S-Gems软件协同克里金方法建模模块及基本操作流程简介

S-GeMs软件主界面中的Algorithm/Estimation/cokriging是软件建模中基于协同克里金插值的方法。利用协同克里金插值方法进行储层参数确定性建模时,首先要建立一个基于导入数据的网格,建立网格的基本操作过程在4.1.2中已有阐述(图4-1)。

启动协同克里金插值方法,在general参数设置里选择协同克里金插值的网格和设置插值后数据体的新名称,并选择克里金计算方法(可选简单克里金和传统克里金方法),再选择协同克里金的类型(Markov Model 1);在data参数设置里选择主要硬数据和软数据体,设定两种数据体的搜索椭球参数,并设置好搜索椭球体的参数;在variogram参数设置里,设置好硬数据体的变差函数模型、硬数据与软数据的相关系数及软数据的方差。参数设置完毕之后,点击“Run Algorithm”命令运算便可得到储层参数的的三维模型。参数设置如图5-1。

三维数字城市建模技术

三维数字城市建模技术 发表时间:2017-10-16T16:33:38.407Z 来源:《基层建设》2017年第18期作者:梁莉 [导读] 摘要:数字理念应用于城市规划,工程检测,交通服务,政策决定等方面,并在应用中进一步推广了数字应用的纵深发展。 天水三和数码测绘院甘肃省 741000 摘要:数字理念应用于城市规划,工程检测,交通服务,政策决定等方面,并在应用中进一步推广了数字应用的纵深发展。使用较为先进的信息化手段,能够为城市的规划、建设、管理、运营以及一些应急措施的应用发挥良好作用。三维数字城市的建模,能够在很大程度上有效提高政府的实际服务和管理水平,从而有效增强城市的管理效率,为有效节约城市资源发挥重要的作用。 关键词:三维数字;城市建模;建模技术 1引言 城市三维空间信息则具有直观性强、信息量大、内容丰富等优点。三维GIS作为一种能够综合地处理各种空间和属性信息的工具在城市规划、国土监测、交通管理、辅助决策等方面都有广泛的应用,随着人们对三维GIS的认识的不断深入,对城市三维信息需求的不断增加进而提出了三维城市模型的概念。通过对三维GIS中三维城市模型理论及相关的技术方法的探讨,对今后三维城市模型的研究有更为深刻的认识,为今后的工作提供指导。 1.1数字城市概述 随着信息技术的高速发展,美国率先提出了国家信息基础设施和全球信息基础设施计划,随之越来越多的国家加入到全球信息化的行列,从而演变出了数字城市的基本概念。数字城市主要是通过对空间信息的应用,构筑一个虚拟的平台,其中,关于一些社会资源、基础设施、自然资源、人文以及经济方面的信息和内容,能够通过数字形式进行有效获取,从而为社会和政府提供众多的服务。通过数字城市的建设,能够为实现城市信息的综合应用,提供良好的效果。可持续发展是当前社会的重要发展原则之一,对于社会生产生活具有重要影响。建设数字化的城市,能够有效促进可持续发展,增强城市的发展效力。 1.2数字城市是数字地球建设中的重要节点,在实现数字地球计划中占有举足轻重的地位。数字城市建设随着计算机水平的提高,目前正向三维数字城市方向快速发展。自“数字地球”的概念提出以来,在国际国内已引起广泛的关注。数字城市作为数字地球的一个节点,是数字地球中一个不可缺少的重要组成部分。数字城市的建设不仅仅是城市地图的数字化和大比例尺地图测绘、计算机化,它有自身的技术体系。因此,进行相关技术的研究和理论的探讨对数字城市的建设不仅是必要的,而且是必须的。数字城市的建成将为城市各行各业提供权威的、唯一的、通用的空间信息平台,有力促进各部门地理信息资源共享与应用,充分发挥地理信息在政府宏观决策、应急管理、社会公益服务、人民生活改善等方面的作用。 2三维技术构建及建模方法 数字城市需要一个逼真的模拟,实时动态的环境中,考虑到硬件限制和虚拟现实系统。数字城市建模和模拟的动画要求建模方法有一个显着不同的数字城市建模模型分割和纹理映射技术。目前众多世界城市虚拟场景结构在以下方面:基于模型和BR这两种方法可以实现在3DSMAX中验证。多边形模式是第一次使用的建模技术,用一个小平面来模拟表面,从而形成各种形状的三维对象的一个小的平面可以是三角形,矩形或其它多边形,但在实践中更多的使用三角形或矩形。多边形建模的,直接创建基本几何体,根据要求修改调整对象的形状,或使用放样面片建模,组合对象创建的虚拟现实工程,多边形建模的主要优点是简单、方便、快捷,但它产生一个光滑的表面,因此适于构建规则形状的对象,如大多数的人造物体的多边形建模技术是困难的,同时可根据要求,只可通过调整的参数建立的虚拟现实系统该模型可以得到不同的分辨率的模型的虚拟场景的实时显示的需要和适应。 目前实现三维建模的方法大致有以下几种:一是直接利用三维建模软件,如计算机辅助设计软件(AutoCAD)、三维动画渲染和制作软件(3DStudioMax)等工具人机交互式三维建模;二是直接利用GIS的二维数据和高度信息建立三维模型,但这种方法只局限于规则对象的建模;三是基于数字摄影测量原理对物体快速建模。随着数据采集技术的不断发展和自动化,根据三维激光点云数据自动构建三维模型正成为研究的热点。 3三维数字城市建模技术 3.1数字摄影测量技术 数字摄影测量技术的飞速发展与高分辨率卫星影像的出现,使三维数据大批量地快速获取已成为可能。这种建模方法主要的原理是基于遥感影像数据,根据遥感影像之间的相互关系,利用数字摄影测量的基本原理,建立相应的交会模型,进而得到实际地物点的三维坐标,并且建立数字地表模型,再通过相应的纹理映射关系,实现三维景观模型的建立。该技术能够帮助设计人员进行目标建筑物的几何空间与高程数据的快速构建,并且精度高、快速成像。因此,数字摄影测量技术在三维建模中具有十分重要的作用。 3.2航空摄影测量技术 在三维建模领域,航空摄影测量技术的应用较早,在多年来的发展中,已经非常成熟。使用该技术,能够创建立体环境,实现三维模型数据的位置、高度、形状信息的快速与准确获取。然后结合外业纹理采集与正射影响屋顶信息能够进行精细三维模型的构建。然而该技术对建筑物纹理进行提取的过程中,侧面纹理无法被有效获取,因此,同新时期我国的精细化城市三维建模的要求不符。 3.3机载/车载激光扫描技术 在对该技术进行应用的过程中,所构建而成的模型在细节方面可以被充分的表现出来,因此能够形成较高的精度,不需要进行大量的外业就能够完成建模。然而,在应用该技术提取数据的过程中,需要经历复杂的算法过程,可供操作的软硬件短缺,在构建三维模型的时候,应对大量的数据进行应用,如果三维场景模型范围较大,那么在后期传输、存储数据以及浏览的时候,难度较高。 3.4倾斜摄影测量技术 在对近景测量技术和航空摄影技术进行综合应用的过程中,就产生了倾斜摄影测量技术。使用倾斜摄影技术时,能够有效及时地获取到较为丰富的空间影像情况,还能够将其分级别地进行应用,这对于三维建模工作的有效进行,具有较为明显突出的作用。倾斜摄影技术主要是通过倾斜的角度进行成像的,因而,相较于传统的直观角度,这种技术能够让用户们从多个角度进行观察,对于形象、直观地展示地理实际形态具有重要作用,有效改善了正射影像的不足之处。该技术可以从多个层面对建筑物进行观察,同时也能够对贴图纹理进行批量提取,拥有较快的建模速度,也能够更加真实的对地物周边环境进行反映,同时仅需要应用少量的数据就能够完成建模。该技术已经成

你不可错过的25款3D建模常用软件

你不可错过的25款免费3D建模常用软件 技术上,三维指的是在三种平面( X ,Y和Z )上构造对象。创造三维图形的过程可分为三个基本阶段:三维造型,三维动画和三维渲染。 三维( 3D )电脑绘图得到广泛使用,它们在任何地方都可看见,几乎是司空见惯,应用于电影,产品设计,广告,电子等等。虽然它们常见到,但并不意味着它们容易创建。为了交互式控制三维物体,创建3D模型必须使用那些非专业用户少用的3D专业创作工具。 三维模型通常是来源于计算机工程师使用某种工具创建的三维建模。因此创建三维模型是不容易的,而且软件的成本可能要花费一笔资金。另外我们应该去尝试一些实用性的开源三维建模工具。通过网站之间的推广和阅读最终用户的意见和反馈之后,我们为你带来你不应该错过的25个免费3D建模应用程序。清单如下: 1.Blender 一个自由和开放源码的三维建模和动画应用程序,可用于建模,紫外线展开,纹理操纵,水模拟,蒙皮,动画,渲染,粒子和其他仿真,非线性编辑,合成,并建立互动的3D应用程序。 2.K-3D K-3D是免费自由的三维建模和动画软件。其所有内容以采用插件为导向的程序引擎为物色,使K-3D变成一个用途很广,功能强大的软件包。

3.Art of Illusion Art of Illusion 是免费的、开源的3D建模和渲染工作室。一些亮点包括基于细分曲面建模工具,根据骨骼动画,图形和设计语言程序结构和材料。 4.SOFTIMAGE|XSI Mod Tool 一款为那些有志于游戏开发商和模型制作者作出贡献的免费三维建模和动画软件。这款模型工具是一个非商业游戏制作的XSI免费版本。它是每个人游戏、模型、3D等应用的一个必备工具。这款模型工具可插入所有主要的游戏引擎和下一代游戏的开发框架,休闲游戏,现时著称的三维建模,甚至基于Flash 的3D游戏。

基于航测的数字城市三维建模技术

基于航测的数字城市三维建模技术 [摘要]本文概述了数字城市的研究背景及意义,详述了数字城市三维模型的建设方法,重点讲解基于航测的数字城市三维建模技术的步骤,最后概述数字城市的未来发展状况及存在问题。 [关键词]数字城市数字城市三维模型基于航测的三维建模方法 0引言 数字城市的概念来源于数字地球,是数字地球的重要组成部分。同时数字城市也是信息技术发展的必然趋势,城市景观重建是数字城市的首要步骤和重要内容。随着城市化进程的进一步深入,城市建设和管理所需要解决的问题的复杂性和需要处理信息的广义性,都是前所未有的。在城市信息化建设过程中,二维空间数据一直作为空间信息基础设施框架重要的数据内容,其在城市规划、交通、市政等各领域应用广泛,但传统的二维数据很难表现城市三维空间形态的多样性和复杂性以及相互之间的关系。城市三维空间信息则具有直观性强、信息量大、内容丰富等优点。随着人们对三维GIS的认识的不断深入,对城市三维信息需求的不断增加进而提出了数字城市三维模型的概念。 1概述 数字城市三维模型由于其在城市规划、地籍管理、旅游、交通及环境仿真等领域显示出了巨大的潜力,已成为众多领域研究的热点。三维模型是以三维的手法进行建模,模拟出一个三维的建筑场景效果。规划者可以模拟在数字场景中任意游走驰骋、飞行缩放,达到一种惟妙惟肖、变化多姿的动态视觉效果。对规划及参观者来说是一种全新的体验,并能产生强烈的共鸣。 2数字城市三维模型的建设方法 数字城市三维模型数据生产是建设城市三维地理信息系统的核心。三维模型的精度和建模效率直接影响着三维GIS系统的实用性和建设周期,同时也是城市规划、建设与管理部门进行空间分析并做出正确决策的保障。在三维模型中除了建筑物的基本平面位置及高度信息外,还需要表达建筑物的色彩纹理与几何外形特征,这些色彩纹理与几何外形特征往往体现三维对象特别是建筑物对象的独特风格。现将比较有代表性的几种建模方式列出: (1)使用航空影像以及地面摄影对建筑物特征线进行自动提取。这种方法获取速度最快,成熟的DEM数据及DOM数据生产技术路线能快速重建三维场景中的地形数据,同时在立体环境下,能快速准确获取建筑物等三维模型数据的位置,形状及高度信息,真实展现城市风貌。但获取几何信息不够完整,需要外业采集建筑物侧面纹理。

GOCAD 软件三维地质建模方法

GOCAD 软件三维地质建模方法 1建模方法 GOCAD 三维地质建模主要包括两类:一类是构造模型(structural modeling)建模,一类是三维储层栅格结构(3D Reservoir Grid Construction)建模。 (1)构造模型(structural modeling)建模建立地质体构造模型具有非常重要的意义。通过建立构造模型能够模拟地层面、断层面的形态、位置和相互关系;结合反映地质体的各种属性模型的可视化图形,还能够用于辅助设计钻井轨迹。此外,构造模型还是地震勘探过程中地震反演的重要手段。 (2)三维储层栅格结构(3D Reservoir Grid Construction)建模根据建立的构造模型,在3D Reservoir Grid Construction 中可以建立其体模型;同时地质体含有多种反映岩层岩性、资源分布等特性的参数,如岩层的孔隙度、渗透率等,可对这些物性参数进行计算和综合分析,得到地质体的物性参数模型。 当采样值在地质体内密集、规则分布时,可以直接建立采样值到应用模型的映射关系,把对采样值的处理转化为对物性参数的处理,这样可以充分利用计算机的存储量大、计算速度快的特点。 当采样值呈散乱分布,并且数据量有限时,需要采用数学插值方法,拟合出连续的数据分布,充分利用由采样值所隐含的数据场的内部联系,精确的模拟模型中属性场的分布。 图1-1孔隙度参数模型分布图 2 建模流程 2.1数据分析 (1)钻孔、测井分布及数据分析 支持三维建模的数据主要为钻孔和测井。由于对区域范围和建立三维地质建模的精度要求不同,得对所得到的钻孔、测井的分布和根据其取得的数据进行分析和处理是的必要。根据钻孔、测井的分布范围和稠密程度可以大致确定地层的分布界限,对钻孔较少区域采取补充钻探或者采用其它方法进行处理。 (2)地质剖面

地质建模软件介绍

地质建模软件介绍 康文彬 摘要:随着信息技术手段的高速发展,传统工程地质学领域在地勘成果信息化设计方面渐渐形成了初步的理论与方法体系,并在此基础上对工程勘察全过程提出了一体化设计需求。实现工程三维地质信息建模与分析的目标,对工程全生命周期以三维地质模型作为支撑,将能够实现各方面的多种需求,而其最大的优势就是可以更为快速和准确、方便、直观的体现地质体的三维信息,还可以利用其剖切的功能实现二维图件的快速绘制。本文主要对地质建模理论和现有地质建模软件相关情况进行简要客观的介绍。 关键词:地质软件 1 三维地质建模的必要性 长久以来,对于地学信息的表示和处理都是基于二维的,通常将垂直方向的信息抽象成一个属性值,其实质就是将三维地质环境中的地质现象投影到某一平面(XY平面、XZ平面或YZ平面)上进行表达,称为2.5维或假三维,它描述空间地质构造的起伏变化直观性差,往往不能充分揭示其空间变化规律,难以使人们直接、完整、准确地理解和感受具体的地质情况,越来越不能满足工程设计和分析的需求,因此,真三维处理显得愈来愈迫切。与此同时,众多新型勘探手段的应用,诸如地震勘探、探地雷达、遥感,以及地球化学勘探等,致使各种地质资料急速膨胀,迫使地质工作者不得不采用新的手段来综合利用这些信息。因此,空间三维地质建模及可视化技术的研究是计算机在工程地质领域应用的一个必然趋势。 1994年加拿大学者Houlding最早提出了三维地学建模(3D Geosciences Modeling)的概念,即在三维环境下将地质解译、空间信息管理、空间分析和预测地质统计学、实体内容分析以及图形可视化等结合起来,并用于地质分析的技术。工程地质三维建模及可视化技术借助于计算机和科学计算可视化技术,直接从3D空间角度去理解和表达地质对象的几何形态、拓扑信息和物性信息,这对工程决策和灾害防治意义重大,已经成为岩土工程科学、工程地质学、数学地质学和计算机科学等多学科交叉领域研究的前沿和热点。 三维地质建模体系大致概括为地质数据处理、地质体建模和模型应用三个阶段。为充分了解现有三维地质建模软件的相关情况,选取满足当前工作使用需求的软件进行地质模型的创建,有必要对相关理论及各软件的相关情况进行简要介绍。

S-GeMs软件基本原理及三维地质建模应用

目录 第一章 S-Gems软件简介及建模工区概况 (2) 1.1 S-GeMs软件的基本概况 (2) 1.2 建模工区及地质背景简介 (2) 第二章数据的导入及基本分析 (3) 2.1 数据的格式及导入操作 (3) 2.2 数据分析及处理(正态变换) (4) 第三章各变量的变差函数分析 (8) 3.1 变差函数的基本原理 (8) 3.2 S-GeMs软件变差函数分析模块及基本操作简介 (8) 3.3 变差函数分析结果 (10) 第四章三维沉积相建模 (14) 4.1 三维沉积相确定性建模(指示克里金方法) (14) 4.2 三维沉积相随机建模(序贯指示模拟方法) (15) 第五章三维储层参数建模 (20) 5.1 协同克里金方法(cokriging)三维储层参数确定性建模 (20) 5.2 协同序贯高斯模拟方法(cosgsim)三维储层参数随机建模 (22) 第六章 S-GeMs软件建模的优越性与局限性 (26) 6.1 S-GeMs软件建模的优越性 (26) 6.2 S-GeMs软件建模的局限性(约束条件) (26) 参考文献 (27)

S-GeMs软件基本原理与三维地质建模应用 ——《地质与地球物理软件应用》课程报告第一章 S-Gems软件简介及建模工区概况 1.1 S-GeMs软件的基本概况 S-GeMS(Stanford Geostatistical Modeling Software)是Nicolas Remy在斯坦福大学油藏预测中心(SCRF:The Stanford Center for Reservoir Forecasting)开发的一套开源地质建模及地质统计学研究软件。2004年首次发布,其后进行了更新和升级。该软件包括传统的经典地质统计学算法和新近发展的多点地质统计学方法。由于操作简单、源代码公开,而且有二次开发的接口,因此日益成为继Gslib之后又一重要的地质统计学研究和应用软件。 1.2 建模工区及地质背景简介 已知建模工区的范围沿x、y、z方向为1000×1300×20米。三维网格数为100×130×10,网格大小为10×10×2米。主要沉积的砂体为发育在泛滥平原泥岩上的河道砂体,且河道砂体近东西向展布。另有部分河道发育决口扇砂体。工区第6网格层的沉积相切片如图1所示。 图1-1 建模工区中部沉积相分布图 本次实验共提供350口井的井数据,所有350井均为直井。垂向上每口井分为10个小层,每层厚度为2米,如图 2 所示。

三维建模在各个领域的应用

三维建模在各个领域的应用 (武汉纺织大学工程造价11403王博) 摘要:自上世纪五十年代马特龙把地质统计学引用地质研究以来三维建模已经在多个领域得到应用,本文通过对前人的文献进行分析整理得出三维建模在各个领域中的应用及其发展始末。 关键词:三维设计;三维建模;技术应用 Application of three dimensional modeling in various Fields Abstract:since the1950s matalon applied geological statistics to the geology,the study of geological3D modeling has got application in many areas.In this paper,we give a sight on the application of3D modeling in various fields and the development of the whole story through the previous literature collation and analysis Keywords:3D design;3D modeling;application technology 1引言 随着社会经济的迅速发展,人民生活水平的不断提高和三维建模技术的不断完善,人们对三维建模产品的需求急剧增加。而三维建模技术在对交通、能源、动画、影视、通讯等各个项目中的利用也急剧增加。本文从三维建模的发展历史及其应用和意义三个方面对三维建模进行綜述。 根据百度百科的定义,三维模型是物体的多边形表示,通常用计算机或者其它视频设备进行显示。显示的物体是可以是现实世界的实体,也可以是虚构的物体。任何物理自然界存在的东西都可以用三维模型表示。回顾一下地质建模在油田开发中的作用,可以发现目前的三维建模主要有两个作用:一个是为数值模拟提供基础模型,第二是用于油藏的整体评价,例如油藏勘探开发的风险评价。但三维建模一直没能深入到油田的生产中。 油田开发地质研究工作中,目前还没有十分有效、先进的技术。油藏地质研究还主要依靠手工编制的厚度图、油藏剖面图、连通图等。十分需要新的技术的补充与提高。在整个开发阶段地质研究工作中,唯一可以称为新技术的就是三维建模。因此三维建模完全可以在开发阶段地质研究中起到更为突出的作用。实际上,三维建模应该,也完全可以成为油藏开发阶段油藏精细描述和生产措施部署的核心技术。 现在,三维模型已经用于各种不同的领域。在医疗行业使用它们制作器官的精确模型;电影行业将它们用于活动的人物、物体以及现实电影;视频游戏产业将它们作为计算机与视频游戏中的资源;在科学领域将它们作为化合物的精确模型;建筑业将它们用来展示提议的建筑物或者风景表现;工程界将它们用于设计新设备、交通工具、结构以及其它应用领域;在最近几十年,地球科学领域开始构建三维地质模型。 2.三维建模的发展历史

地质体三维建模方法与技术指南

内容简介 本书系统分析了目前国内外地质体三维模拟技术和应用软件开发的现状,由此提出了不同领域地质体 三维建模的数据需求、技术流程和主要建模软件的数据接口;详细阐述了Micmmine、surpac、Mapgis、3D-Grid等三维地质体模拟软件在矿山、地下水、城市地质等领域的应用实践和示范工作,以及提交的相 应三维模型成果;并对今后如何展开相关工作提出了建议。 本书可作为开展三维地质建模工作的指导用书,同时亦可作为地质及相关专业学生的专业参考书。 【节选】 (一)地下水三维地质建模所需数据类型 在地下水三维地质建模中,会涉及的地质现象主要有:地貌(或地形)、地层、褶 皱、断裂、透镜体及侵人体等,为刻画这些地质现象,就需要用到地表数字高程模型数据 (DEM)、遥感影像数据、地理信息数据、钻孔数据及剖面数据等。具体来说,为刻画三 维模型中的各种地质现象,需要的相关数据包括以下几种: 1.地表数字高程模型(DEM)数据 地表数学高程模型数据用于生成三维地质结构模型顶面(地表面),此部分数据可以 从测绘主管部门获取或向国家测绘局基础地理信息中心购买,从基础地理信息中心购买的 数据属于标准数据,数据以ARCINFO数据格式存放。DEM数据比例尺有多种,其中,全 国的1:25万数据库在空间上包含816幅地形图数据,覆盖整个国土范围,国外部分沿国 界外延25公里采集数据。地貌统一在TERLK层中存放,包括等高线、等深线、冲沟等, DEM等高线的等高距,在全国范围内共分40 m、50 m、100 m三种,使用时可参照等分 布图确定。对于标准数据,可以根据需要进行数据格式转换、比例变换、投影变换等多种 处理。 另外,如果不能获取现成的DEM数据,也可以自己使用专门的地理信息系统软件用 地形图生产。即把纸质地形图数字化及几何纠正校准,然后进行高程信息的提取——对等 高线进行屏幕矢量跟踪并对等高线标赋高程值,同时编辑、检查、拼接以生成各种拓扑关 系,最后用软件进行内插值、裁剪生成DEM数据。 2.遥感影像数据

4 项目建设技术路线与三维建模方案

4 项目建设技术路线与三维建模方案

朝阳区数字化三维仿真模拟城市管理系统 建设方案

版本控制 修改记录说明

1.概述 1.1.项目建设背景 “数字城市”是城市信息化发展的方向,是数字地球的一部分,三维地理信息是“数字城市”的重要基础空间信息。三维城市的建立能够全方位地、直观地给人们提供有关城市的各种具有真实感的场景信息,并可以以第一人称的身份进入城市,感受到与实地观察相似的体验感。 随着二十一世纪的互联网技术、计算机技术、3S(GIS/RS/GPS)技术、虚拟现实、航空与航天技术等的飞速发展,给地理信息技术手段带来前所未有的变革,利用高分辨率卫星影像以及航空像片,通过对影像的平面、高程、结构、色彩等的数字化处理,按照统一坐标无缝拼接而成可以迅速建立基于真实影象的“三维数字城市”,人们可以直观的从三维城市上判读处山川、河流、楼宇、道路。借助传统平面地图的概念,叠加空间矢量数据,地物兴趣点数据、以及三维模型数据形成可视化“三维数字”城市展示系统。 与传统二维地图相比,“三维数字城市”展示系统突破平面地图对空间描述二维化、三维空间尺度感差、没有要素结构与纹理信息等诸多限制,通过对真实地形、地物、建筑的数字化三维模拟和三维表达,提供给使用者一个与真实生活环境一样的三维城市环境。通过数字化三维仿真模拟城市的实现对城市的管理,把传统的限于二维的城市管理范围扩展到了三维甚至多维的管理范畴,为城市建设、政务管理、企业信息发布与公众查询提供多维的、可持续发展的信息化服务,将大大提高城市整体信息化管理和经营管理水平,并有利于提高公众参与城市管理的积极性和参与性。 1.2.项目建设目标 以先进的技术手段,在三维仿真模拟城市场景中实现朝阳辖区单位、人口、部件、事件、社区绿化等相关信息的管理,进一步提高朝阳区政府城市管理水平,提高居民参与城市管理的积极性。另一方面,能够很好的展现数字朝阳的建设成果。最终为建设和谐朝阳提供技术保障,为数字奥运做出贡献。

一款简单实用的三维建模软件:Moi3D

龙源期刊网 https://www.sodocs.net/doc/3016139607.html, 一款简单实用的三维建模软件:Moi3D 作者:盘俊春 来源:《中国信息技术教育》2018年第13期 立体几何是学生比较害怕的知识,主要是内容太抽象,教师也不太好讲解。像三视图这个知识点,几乎每年高考都会考到,很多学生明知高考必考,也在考前练了很多题,可是高考还是拿不到分。如果教师在教学中能够利用计算机模拟制作出三维立体图给学生观察,学生就能很轻松地掌握这部分知识了。三维作图常用软件有3DMax等,但这些软件功能复杂,用户主要是一些专业的CAD设计人员,而教师只是要求制作一些简单的几何体就可以了,所以并不需要用这些复杂的三维制作软件。那么有哪些软件比较简单易用呢?前面曾介绍过的Cabri 3D 就很不错,这里再介绍另一款比较好用的三维建模软件:Moi3D。 Moi3D是一款来自国外的三维建模类软件,该软件采用多元化的操作方式,支持多个功能视图界面,可以实现常见物体的三维建模以及编辑修改。 下载并安装好软件(官方下载地址:http://https://www.sodocs.net/doc/3016139607.html,/),软件是多国语言版本,包括中文版,图1是软件的界面,Moi3D的界面和大多数的三维制作软件差不多,但相对3DMax等软件来说,它的程序文件很小,才十多兆,而且界面比3DMax等软件简洁很多。 操作上它比3DMax等软件简单很多,并没有过多的菜单,而且都是很人性化的图形按钮,Moi3D只提供了简单的存储、视图角度、命令选项、参数选择等基本功能,工具也是最基本的简单得不能再简单的工具。软件有以下的主要功能及特点: (1)功能强大且易掌握:Moi3D的用户界面非常简单,但功能并不弱,很适合非专业CAD的人员使用。 (2)适合手写板的友好用户界面:Moi3D独特用户界面的特性,能和手写板很好地融合。 (3)能在低端显卡中展示高质量的画面:Moi3D即使在低端的显卡配置中也能展示漂亮的平滑曲面。 (4)自由多样的3D建模:能快速地创建3D NURBS模型。 Moi3D简单易学,只需要几个步骤就可以完成简单的三维图像制作。下面通过一个实例来说明它在三视图教学中的简单用法。 1.利用三视图还原几何体 先看一道习题:根据如上页图2所示的三视图,判断几何体的名称。

精细三维建模技术规定

精细三维建模技术规定

2011年10月31日

引用文件 本技术规定参考了以下标准及规范。 1)《基础地理信息三维模型生产规范(征求意见稿)》; 2)《基础地理信息三维模型产品规范(征求意见稿)》; 3)《基础地理信息三维模型数据库规范(征求意见稿)》; 4)《城市三维建模技术规范》(CJJ/T 157-2010); 5)《数字测绘成果质量检查与验收》(GB/T 18316-2008); 6)《测绘技术设计规定》(CH/T 1004-2005)。

1.工艺流程设计 项目实施的工艺主要包括四个主要阶段,分别是:项目准备阶段、基础数据整理阶段、三维数据生产阶段和三维效果整合阶段。项目准备阶段主要是成立项目组,并确定项目目标以及分配任务。基础数据整理阶段包括现有基础资料收集整理、管理细分与区域分级、建模基础资料的采集和补充和基础资料完备性检查四个步骤。三维数据生产阶段包括除三维模型数据生产、基础三维模型数据质检和基础三维模型数据成果抽样检查三个步骤。三维效果整合阶段包括三维模型效果整合与实时浏览和三维模型效果质检两个步骤。综合各阶段共为10个步骤,详见图2工艺流程图。 1.1.成立项目组并确定项目目标 根据合同要求,成立项目组负责项目实施。召开项目启动会议,要求项目组成员必须参加,明确项目要求,统一工作思路和项目目标,并明确现势性时点、工作分工并分配任务。 1.2.现有基础资料收集整理 该步骤主要收集项目实施需要的基础资料,包括实施标准,基础数据等。实施标准为项目相关的技术标准,作为项目实施的依据。基础数据为项目实施需要的基础测绘成果,主要包括大比例尺数字地形图,数字正射影像图,数字高程模型等。 1.3.管理细分与区域分级 该步骤主要分为两部分工作,一部分是管理单元和建模单元的划分,另一部分是区域的分级划分。建模单元和管理单元的划分依据为《基础地理信息三维模型生产规范(征求意见稿)》,根据要求对建模范围进行二级划分,分别为管理单元和建模单元,并根据标准中要求进行命名。区域分级的依据为《基础地理信息三维模型产品规范(征求意见稿)》,将整个区域分为四级,其中I、II、III、IV四级要求依次降低。

三维建模软件概述

三维建模软件概述 三维建模软件概述 一、市面上软件概览(一)国外软件1.CATIA CATIA是英文Computer Aided Tri-Dimensional Interface Application 的缩写。是世界上一种主流的CAD/CAE/CAM一体化软件。在70年代Dassault Aviation 成为了第一个用户,CATIA 也应运而生。从1982年到1988年,CATIA 相继发布了1版本、2版本、3版本,并于1993年发布了功能强大的4版本,现在的CATIA 软件分为V4版本和V5版本两个系列。V4版本应用于UNIX 平台,V5版本应用于UNIX和Windows 两种平台。V5版本的开发开始于1994年。为了使软件能够易学易用,Dassault System 于94年开始重新开发全新的CATIA V5版本,新的V5版本界面更加友好,功能也日趋强大,并且开创了CAD/CAE/CAM 软件的一种全新风格。法国Dassault Aviation 是世界著名的航空航天企业。其产品以幻影2000和阵风战斗机最为著名。CATIA的产品开发商Dassault System 成立于1981年。而如今其在CAD/CAE/CAM 以及PDM 领域内的领导地位,已得到世界范围内的承认。其销售利润从最开始的一百万美圆增长到现在的近二十亿美圆。雇员人数由20人发展到2,000多人。CATIA是法国Dassault System公司的CAD/CAE/CAM一体化软件,居世界CAD/CAE/CAM领域的领导地位,广泛应用于航空航天、汽车制造、造船、机械制造、电子\电器、消费品行业,它的集成解决方案覆盖所有的产品设计与制造领域,其特有的DMU电子样机模块功能及混合建模技术更是推动着企业竞争力和生产力的提高。CATIA 提供方便的解决方案,迎合所有工业领域的大、中、小型企业需要。包括:从大型的波音747飞机、火箭发动机到化妆品的包装盒,几乎涵盖了所有的制造业产品。在世界上有超过13,000的用户选择了CATIA。CATIA 源于航空航天业,但其强大的功能以得到各行业的认可,在欧洲汽车业,已成为事实上的标准。CATIA 的著名用户包括波音、克莱斯勒、宝马、奔驰等一大批知名企业。其用户群体在世界制造业中具有举足轻重的地位。波音飞机公司使用CATIA完成了整个波音777的电子装配,创造了业界的一个奇迹,从而也确定了CATIA 在CAD/CAE/CAM 行业内的领先地位。CATIA V5版本是IBM和达索系统公司长期以来在为数字化企业服务过程中不断探索的结晶。围绕数字化产品和电子商务集成概念进行系统结构设计的CATIA V5版本,可为数字化企业建立一个针对产品整个开发过程的工作环境。在这个环境中,可以对产品开发过程的各个方面进行仿真,并能够实现工程人员和非工程人员之间的电子通信。产品整个开发过程包括概念设计、详细设计、工程分析、成品定义和制造乃至成品在整个生命周期中的使用和维护。CATIA V5版本具有:1.重新构造的新一代体系结构为确保CATIA产品系列的发展,CATIA V5新的体系结构突破传统的设计技术,采用了新一代的技术和标准,可快速地适应企业的业务发展需求,使客户具有更大的竞争优势。2.支持不同应用层次的可扩充性CATIA V5对于开发过程、功能和硬件平台可以进行灵活的搭配组合,可为产品开发链中的每个专业成员配置最合理的解决方案。允许任意配置的解决方案可满足从最小的供货商到最大的跨国公司的需要。3.与NT和UNIX硬件平台的独立性CATIA V5是在Windows NT平台和UNIX平台上开发完成的,并在所有所支持的硬件平台上具有统一的数据、功能、版本发放日期、操作环境和应用支持。CATIA V5在Windows平台的应用可使设计师更加简便地同办公应用系统共享数据;而UNIX平台上NT风格的用户界面,可使用户在UNIX平台上高效地处理复杂的工作。4.专用知识的捕捉和重复使用CATIA V5结合了显式知识规则的优点,可在设计过程中交互式捕捉设计意图,定义产品的性能和变化。隐式的经验知识变成了显式的专用知识,提高了设计的自动化程度,降低了设计错误的风险。5.给现存客户平稳升级CATIA V4和V5具有兼容性,两个系统可并行使用。对于现有的CATIA V4用户,V5年引领他们迈向NT

三维建模软件工作流程图

我们在工作中经常需要绘制一些简单的流程图,我们经常用软件工具来绘制。每款软件都有自己的 独到之处,也有自己的缺点。通过比较不同软件和工具的使用效果,我们总能选出适合自己的一款。我们在这里说的流程图,仅仅指日常用到的常规的,用来表示某项工作的流程规划图,并不是指某 项专业领域的流程图,当然以下叙述的软件中也有能绘制一些专业流程图的功能。 当你对那些简洁美观的流程图感到羡慕不已,是否好奇它们是怎样做出来的,是否想知道需要 什么样的专业技能。今天,这一切将变得非常简单,你只需要点击几下鼠标就能制作出属于自己的 可视化流程图。而且一切操作都异常简洁。

流程图的基本符号 首先,设计流程图的难点在于对业务逻辑的清晰把握。熟悉整个流程的方方面面。这要求设计者自己对任何活动、事件的流程设计,都要事先对该活动、事件本身进行深入分析,研究内在的属性和规律,在此基础上把握流程设计的环节和时序,做出流程的科学设计。研究内在属性与规律,这是流程设计应该考虑的基本因素。也是设计一个好的流程图的前提条件。

然后再根据事物内在属性和规律进行具体分析,将流程的全过程,按每个阶段的作用、功能的不同,分解为若干小环节,每一个环节都可以用一个进程来表示。在流程图中进程使用方框符号来表达。 既然是流程,每个环节就会有先后顺序,按照每个环节应该经历的时间顺序,将各环节依次排开,并用箭头线连接起来。箭头线在流程图中表示各环节、步骤在顺序中的进展。 对某环节,按需要可在方框中或方框外,作简要注释,也可不作注释。 经常判断是非常重要的,用来表示过程中的一项判定或一个分岔点,判定或分岔的说明写在菱形内,常以问题的形式出现。对该问题的回答决定了判定符号之外引出的路线,每条路线标上相应的回答。 选择好的流程图制作工具 亿图发布第一款支持快捷操作的流程图制作工具从而极大的降低了专业流程设计的门槛,让大多数人可以在很短的时间里绘制出专业的流程图。

地质体三维建模方法与技术指南

地质体三维建模方法与技术 指南 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

内容简介 本书系统分析了目前国内外地质体三维模拟技术和应用软件开发的现状,由此提出了不同领域地质体 三维建模的数据需求、技术流程和主要建模软件的数据接口;详细阐述了Micmmine、surpac、Mapgis、 3D-Grid等三维地质体模拟软件在矿山、地下水、城市地质等领域的应用实践和示范工作,以及提交的相 应三维模型成果;并对今后如何展开相关工作提出了建议。 本书可作为开展三维地质建模工作的指导用书,同时亦可作为地质及相关专业学生的专业参考书。 【节选】 (一)地下水三维地质建模所需数据类型 在地下水三维地质建模中,会涉及的地质现象主要有:地貌(或地形)、地层、褶 皱、断裂、透镜体及侵人体等,为刻画这些地质现象,就需要用到地表数字高程模型数据(DEM)、遥感影像数据、地理信息数据、钻孔数据及剖面数据等。具体来说,为刻画三 维模型中的各种地质现象,需要的相关数据包括以下几种: 1.地表数字高程模型(DEM)数据 地表数学高程模型数据用于生成三维地质结构模型顶面(地表面),此部分数据可以 从测绘主管部门获取或向国家测绘局基础地理信息中心购买,从基础地理信息中心购买的 数据属于标准数据,数据以ARCINFO数据格式存放。DEM数据比例尺有多种,其中,全

国的1:25万数据库在空间上包含816幅地形图数据,覆盖整个国土范围,国外部分沿国界外延25公里采集数据。地貌统一在TERLK层中存放,包括等高线、等深线、冲沟等,DEM等高线的等高距,在全国范围内共分40 m、50 m、100 m三种,使用时可参照等分布图确定。对于标准数据,可以根据需要进行数据格式转换、比例变换、投影变换等多种处理。 另外,如果不能获取现成的DEM数据,也可以自己使用专门的地理信息系统软件用 地形图生产。即把纸质地形图数字化及几何纠正校准,然后进行高程信息的提取——对等高线进行屏幕矢量跟踪并对等高线标赋高程值,同时编辑、检查、拼接以生成各种拓扑关系,最后用软件进行内插值、裁剪生成DEM数据。 2.遥感影像数据 遥感影像是地球空问数据最直接、时效性最强的数据形式,模型的表面需要用影像数 据进行贴图,来表达真实的地表景观。由于影像数据的容量大,为了能够快速、高质量地进行显示,需要根据显示的范围、显示的比例选择分辨率最合适的影像进行纹理映射。一个模型可以有不同分辨率的多套卫星/航测影像数据,某些影像数据有可能只局限于某个局部。因此,在显示时,所有的影像数据都需要读入内存,以实现多分辨显示。这就需要在技术上做一些处理,比如图像格式的转换,根据显示分辨率和比例的不同,转换为不同分辨率的图像如BMP、TIFF、GIF等图像格式。 对遥感影像数据的处理主要包括对遥感影像的几何精纠正和不同分辨率影像数据的融合。一般使用遥感处理软件ERDAS和ENVI软件进行处理。遥感影像几何精纠正的目的

三维建模软件大比拼

目前人们对城市三维景观建模作了很多研讨,三维建模从技巧实质上将,大致有如下三种实现技巧:一是直接应用三维模型制造软件,如Sketch Up、3DMAX等软件进行建模; 二是直接应用传统GIS的二维线划数据及其相应的高度属性进行三维建模,各建筑物表面还可以加上相应的纹理; 三是应用数字摄影丈量技巧进行三维建模。 在Skyline 系列的TerraExplorer Pro软件中加载之前天生的地形数据集,导进建筑物矢量数据,依照高度属性进行拉伸处置,得到建筑物体块。由于数据源的时间差问题,可能会存在少量的建筑物与遥感底图中显示的建筑物不匹配的问题,须要使用TerraExplorer Pro中的3D-Building功效,在建筑物的地位上进行三维建模,使建筑物体块与远感底图一致,并辅以简略同一的纹理。对于处于城市地块内部的大批建筑群可采取这种方法进行建模。 Anim8or 是一个三维建模和人物动画程序,容许用户创立和修正3D模型与内置的模型,如范畴,气瓶,柏拉图式的固体等;网编纂和细分;样条,挤压,板条,改性剂,锥和扭曲。利用3DPlus您只需几分钟时光eDrawings是一个免费软件工具,能给用户查看才能,创立和共享三维模型和二维图纸。eDrawings供给了奇特的才能,像点击动画,这样更轻易与任何一台PC来说明和懂得2D和3D设计数据。ImageModeler是最酷的三维建模工具软件,它可以通过一张照片来完成三维建模。只要在照片上的二维物体上标志点就可以树立真切的三维模型,然后导出成Cult3D格局进行虚拟设计。 在Skyline 系列的TerraExplorer Pro软件中加载之前天生的地形数据集,导进建筑物矢量数据,依照高度属性进行拉伸处置,得到建筑物体块。由于数据源的时光差问题,可能会存在少量的建筑物与远感底图中显示的建筑物不匹配的问题,须要应用TerraExplorer Pro中的3D-Building功效,在建筑物的地位上进行三维建模,使建筑物体块与远感底图一致,并辅以简略同一的纹理。对于处于城市地块内部的大批建筑群可采取这种方法进行建模。 Anim8or 是一个三维建模和人物动画程序,容许用户创立和修改3D模型与内置的模型,如范畴,气瓶,柏拉图式的固体等;网编纂和细分;样条,挤压,板条,改性剂,锥和扭曲。应用3DPlus您只需几分钟时光AutoQ3D Community是一种简略,重量轻,快速三维模型编纂工具,能够利用你电脑显卡的全体处置资源,让您快速形成原型的三维设计。其界面非常直观,易于使用,并免费供给。这是在GNU通用公共允许证的条件下宣布的,因此它将可免费应用,修正和分发,利用于任何教导,专业或贸易用处。通过SolidWorks对减速器进行三维建模,并对齿轮受力时的应力应变情形进行了初步剖析,可以看出SolidWorks 在三维建模和剖析方面所供给的便捷。除此以外,其操作符合人的思维习惯,修正也极其便利,信息交换方法普遍等特色同时也为设计者减轻了不少累赘。相关的主题文章: 最佳答案 3ds max上手易,国人大部分都学它。相关资料在国内比其它的多。但很多插件都是第三方公司提供,兼容性没有maya好。多边形建模很强,最适合做游戏。 maya把集成了很多大型插件(如衣料及毛发插件),并且兼容性很好,初学难上手。但制影片比max要强。

三维地质建模

三维地质建模技术在定边油田中的应用 petrel软件 自上个世纪九十年代,建模软件诞生以来,建模软件得到了不断的发展。从刚开始的简单构造建模到现在的精细、复杂的建模,产生了很多建模软件。根据本设计要求,我选择斯伦贝谢公司的petrel 2009建模软件(如下图4-1)。 图4-1 petrel 软件模型建立界面 Petrel是一种三维可视化建模软件,在众多建模软件中它在国际上占主导有十分重要的地位。Petrel软件在地质建模方面得到了比较广泛的应用,如地震解释、构造建模、岩相建模、油藏属性建模和油藏数值模拟显示等,因而使从事地质工作者可以获得更多的信息,为石油工业做出更大的贡献。同时为了满足油藏和地质工作者定位要求,Petrel中也采用了一些先进技术:有效的构造建模技术、精确的三维网格化技术、沉积相模型建立技术和虚拟现实技术等。 Petrel软件能够给开发工作提供详细的信息来使开发成本最大化地降低。它不仅能使人们对油藏内部细节的认识得到提高,而且能够准确描述透视油藏属性的空间分布、计算储层地质储量、估算开发的风险、设计井位和钻眼轨迹,发现隐蔽性油藏和剩余油藏[26]。同样重要的是,Petrel使管理者不再局限于传统的方式来做开发决策,他们根据软件所提供的数字模拟及虚拟现实技术和专业人员一起通过现实资料与虚拟技术结合,认真研究目的层的储油物性和岩性,运用不同思路的模型建立和模拟结果,降低开发风险优化生产方式。Petrel软件能够为地

质模型的精细研究提供更快、更精确和更经济等优良的特性。 储层地质建模的步骤 储层三维建模过程一般包括以下环节:数据准备、构造模型、储层属性建模、图形显示,具体的储层建模的基本步骤(见图4-2)。基本数据一般有: (1)坐标数据:包括井位坐标、地震测网坐标等; (2)分层数据:包括各井的砂组、油组、小层、砂体的划分对比数据,地震资料解释的层面数据等; (3)断层数据:包括断层位置、断点、断距等; (4)储层数据:储层数据是储层建模中最重要的数据,其中包括井眼储层数据、地震储层数据和试井储层数据。 图4-2 储层建模流程图

相关主题