搜档网
当前位置:搜档网 › 解析函数的级数表示(练习题)

解析函数的级数表示(练习题)

解析函数的级数表示(练习题)
解析函数的级数表示(练习题)

基本要求

1. 正确理解级数收敛、发散等概念,了解无穷级数收敛的充分必要条件。

2. 了解绝对收敛及条件收敛的概念及其关系。

3. 掌握简单幂级数的收敛半径和收敛区域的求法。

4. 清楚地知道幂级数的收敛范围是圆域以及它在收敛圆内的性质、有理运算与分析运算。

5. 要求会把比较简单的解析函数用适当的方法展开成泰勒级数,并指出其收敛半径,要记住几个主要的初等函数的泰勒展开式。

6. 要求会把比较简单的函数环绕它的孤立奇点用适当的方法展开成洛朗级数。

一、填空题

1.函数131()z f z e z i

-=-在0z =处泰勒展开式的收敛半径为( 1 ); 2.311z

+的幂级数展开式为( 30(1)n n n z ∞=-∑ ),收敛域为( ||1z < ); 3.函数21

()(1)f z z =+展开成z 的幂级数,有()f z =

( 211123(1),||1n n z z nz z ---+-+-+< );

4.设C 为单位圆周||1z =内包围原点的任一条正向简单闭曲线,则

2()n C n z dz ∞=-=∑? ( 2i π );

5.若幂级数0n n n c z ∞=∑在1(1)2z =

+处收敛,那么该级数在45

z i =处的敛散性为( 绝对收敛 )。

二、计算下列各题

1. 求1()1z f z e z

=-在区域(1)||1z <,(2)0|1|z <-<+∞的幂级数展开式。 解:(1)211,||11n z z z z z =++++<- ,21,2!!

n

z z z e z n =++++ 22()(1)(1)2!!n

n

z z f z z z z z n ?=+++++++++ 21111111(1)(1)(1)1!1!2!1!2!!

n z z z n =++++++++++++

(2)2111(1)(1)()[1(1)]112!!

n

z z z f z e e e z z z n ---=?=??+-++++-- 1

1(1)(1)[1]12!!

n z z e z n ---=-?+++++- 2. 将函数 2

1()1f z z =

+分别在z i =-与z =∞展开成级数。 解:(1)21()1f z z =+有奇点分别为z i =-,z i =,所以()f z 在z i =-处的圆环域0||2z i <+<和2||z i <+<∞可展开成洛朗级数, 在0||2z i <+<圆环内,1111111()()()2212f z z i z i z i z i z i i z i i i

-=?=?=?++-++-+- 221()()()[1]22(2)(2)

n

n i z i z i z i z i i i i +++=?+++++ 1

10()(2)n n n z i i -∞

+=+=-∑。 在2||z i <+<∞圆环内,2111111()2()2()1f z i

z i z i z i z i i z i z i

=?=?=?+-++-+-+ 220012(2)()()n

n n n n i i z i z i z i ∞∞+==??=?= ?+++??∑∑。 (1)21()1f z z

=+有奇点分别为z i =-,z i =,故1||z <<∞内解析, 22(1)02111()(1)1(1)n n n f z z z

z

∞+==?=-+∑。 3. 把1()32f z z =

-分别在0z =和2z =展开为泰勒级数。 4. 将2(1)()(1)

z f z z z +=

-分别在圆环域(1)0||1z <<;(2)1||z <<+∞内展开为洛朗级数。 5. 求下列幂级数的收敛半径(1)21n n z n ∞

=∑;(2)0!n

n z n ∞=∑;(3)0!n n n z ∞=∑。

6. 判断下列级数的敛散性(1)1n n i n ∞=∑;(2)1(35)!n

n i n ∞=+∑;(3)115()2n n i ∞=+∑。

高一基本函数综合测试题及答案解析

温馨提醒:成功不是凭梦想和希望,而是凭努力和实践 过关检测 一、选择题 1.函数y= 2-x + 1 (x>0) 的反函数是( A.y = log2 x 1, x €( 1, B.y =—1og2 x 1 , x €( 1 ,2) C.y = log2 x f(x) 2.已知 (A)(0,1)(3a 1)x 2 】 4a, x log a x, x D.y = —1og2 x 2 】 )上的减函数,那么a的取值范围是 1 (B) (0, 3) (C) [7,3) (D) [7,1) 3?在下列四个函数中,满足性质: “对于区 间 (1,2)上的任意X1,X2(X1 X2) |f(X1) f(X2)| |X2 x1 | 恒成立”的 只有 (A) 1 f (x) X (B) x |x| (C)f(x) 2 x (D)f(x) x 2 4.已知f (x)是周期为2的奇函数,当01 时, f (x) |g x.设 6 f( ),b 5 (A)(B)(C)(D) c a 5?函数 A. 6 、A. f(x) 3x2 1 x lg(3x 1) 的定义域是 (1,) F列函数中, 3 y x ,x ( B. ( C. 1 1 3‘3 D. 在其定义域内既是奇函数又是减函数的是 B y sinx , x R C y x , x 1 7、函数y f(x)的反函数y f (x)的图像与y轴交于点 P(°,2)(如右图所示),则方程f(x) 0在[1,4]上的根是X A.4 B.3 C. 2 D. 1 8设f(x)是R上的任意函数,则下列叙述正确的是 (A) f(X)f( X)是奇函数(B)f (x)|f ( x)| 3 5 I 9,则 1 D. 是奇函数

(完整版)一次函数专项练习题

一次函数专项练习题 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A , B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 任意两点(,),(,)A A B B A x y B x y 的距离为22()()A B A B x x y y -+-; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为 A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 到原点之间的距离为 22A A x y + 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ????- ? ???? ?,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时, ()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法: ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y 轴上同一点。 ☆特殊直线方程: X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。 2、对于函数1223 y x =-, y 的值随x 值的________而增大。 3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__。4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。 5、直线y=kx+b 经过第一、二、四象限,则直线y=-bx+k 经过第____象限。 6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。 7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点? 题型五、待定系数法求解析式 方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。 ☆ 已知是直线或一次函数可以设y=kx+b (k ≠0); ☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。 1、若函数y=3x+b 经过点(2,-6),求函数的解析式。 2、直线y=kx+b 的图像经过A (3,4)和点B (2,7), 4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。6、已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。 7、已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,求k 、b 的值。8、已知直线y=kx+b 与直线y= -3x+7关于原点对称,求k 、b 的值。 5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤9,求此函数的解析式。 题型六、平移 方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。 1. 直线y=5x-3向左平移2个单位得到直线 。 2. 直线y=-x-2向右平移2个单位得到直线 3. 直线y=21x 向右平移2个单位得到直线 4. 直线y=22 3+-x 向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线

(完整版)函数解析式的练习题兼答案

函数解析式的求法 (1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;1.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=() A.x+1 B.2x﹣1 C.﹣x+1 D.x+1或﹣x﹣1 【解答】解:f(x)是一次函数,设f(x)=kx+b,f[f(x)]=x+2, 可得:k(kx+b)+b=x+2.即k2x+kb+b=x+2,k2=1,kb+b=2. 解得k=1,b=1.则f(x)=x+1.故选:A. (2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围; 9.若函数f(x)满足f(3x+2)=9x+8,则f(x)是() A.f(x)=9x+8 B.f(x)=3x+2 C.f(x)=﹣3﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣4 【解答】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2. 所以f(x)=3x+2.故选B. (3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式; 18.已知f()=,则() A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1) C.f(x)=x2﹣1(x≠1)D.f(x)=x2﹣1(x≠0) 【解答】解:由, 得f(x)=x2﹣1, 又∵≠1, ∴f(x)=x2﹣1的x≠1.故选:C. 19.已知f(2x+1)=x2﹣2x﹣5,则f(x)的解析式为() A.f(x)=4x2﹣6 B.f(x)= C.f(x)=D.f(x)=x2﹣2x﹣5 【解答】解:方法一:用“凑配法”求解析式,过程如下: ; ∴. 方法二:用“换元法”求解析式,过程如下: 令t=2x+1,所以,x=(t﹣1), ∴f(t)=(t﹣1)2﹣2×(t﹣1)﹣5=t2﹣t﹣,

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

函数及其表示法练习题

第二节(2-3个课时) 第一课时 1、如下图,求出A 、B 、C 、D 、E 、F 、O 点的坐标. 2、若点A 的坐标为(2,-3),则它在第 象限内,它关于x 轴的对称点的坐标为 ;在第_____________象限.它关于y 轴的对称点的坐标为 ;它关于原点的对称点的坐标为 ;点(3-,π-)在________,点(3,0)在________,点(0,-5)在______. 3、请在下图中建立直角坐标系,并写出图中各点的坐标: A :( , ) B :( , ) C :( , ) D :( , ) 4.下列各点,在第三象限的是( ) A .(2, 4) B .(2, -4) C .(-2, 4) D .(-2, -4) 5、已知点P 在第二象限内,且到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为 ; 6. 若点P 在x 轴的下方, y 轴的左方, 到每条件坐标轴的距离都是3,则点P 的坐标为( )

A. (3,3) B. (-3,3) C. (-3,-3) D. (3,-3). 7. 点A 在y 轴上,距离原点4个单位长度,则A 点的坐标是( ) . 8. 在坐标系中, 点C(-2,3)向左平移3个单位长度后坐标为( ) 9. 点P(x ,y)在第四象限,|x |=1,|y |=3,则P 点的坐标是 ( ) A.(1,3) B. (-1,3) C. (-1,-3) D. (1,-3) [B 组] 9、 4. 已知A(a –1,3)在y 轴上,则a = . 10、 13、在直角坐标系中,点(2x -6,x -5)在第四象限,则x 的取值范围是__。A 、3<x <5 B 、-3<x <5 C 、-5<x <3 D 、-5<x <-3 11、(1)在平面直角坐标系中的点与有序实数对之间成___关系. (2)如果点P (x ,y )的坐标满足xy >0,那么点P 在__ 象限,如果满足xy= 0,那么点P __________. (3)如果点P(m -2,m -3)在第四象限,那么m 的取值范围是____ . (4)若点(m,2)与(3, n)关于原点对称,则m+n 的值是 ____ . (5) 已知线段AB 的两个端点的坐标分别是A(3,4),B(-2,1),求: ①把线段AB 向右平移2个单位后的线段的两个端点坐标;__ ②线段AB 关于x 轴对称图形的两个端点的坐标;__ ③线段AB 关于Y 轴对称图形的两个端点的坐标;__ [C 组] 12.平面直角坐标系内,已知点P (a ,b )且ab <0,则点P 在第__象限。 13、如果点M(a +b ,ab)在第二象限,则点N(a ,b)在第__象限。 14、平面直角坐标系中,点A (n ,1-n )一定不在( C ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 15:已知:点A 、B 、C 的坐标分别为)3,0(A 、)5,0(-B 、)0,6(C ,求△ABC 的面积. 16、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在第__象限。 17、已知点P 在第二象限,它的横坐标与纵坐标的和为1,点P 的坐标可以是__(填上一个你认为正确的即可) 第二课时 1、画出函数3 21 +-=x y 的图象,

求二次函数解析式练习题

求二次函数解析式练习题 1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式. 2.已知一个二次函数当x=8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式. 3.已知一个二次函数对称轴x=8,函数最大值9,且图象过点(0,1),求这个二次函数的关系式 4.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.

5.已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式. 6.已知二次函数的图象过(3,0)、(2,-3)、二点,且对称轴是x=1,求这个二次函数的关系式. 7. 已知二次函数的图象过(3,-2)、(2,-3)、二点,且对称轴是x=1,求这个二次函数的关系式. 8.已知二次函数的图象与x轴交于A,B两点,与x轴交于点C。若 AC=20,BC=15,∠ACB=90°,试确定这个二次函数的解析式

9.根据下列条件,分别求出对应的二次函数的关系式.(1).已知抛物线的顶点在原点,且过点(2,8);(2).已知抛物线的顶点是(-1,-2),且过点(1,10);(3).已知抛物线过三点:(0,-2)、(1,0)、(2,3) . 10.已知抛物线过三点:(-1,0)、(1,0)、(0,3).(1).求这条抛物线所对应的二次函数的关系式;(2).写出它的开口方向、对称轴和顶点坐标;(3).这个函数有最大值还是最小值?这个值是多少? 11.根据下列条件,分别求出对应的二次函数的关系式:(1).已知抛物线的顶点在原点,且过点(3,-27);(2).已知抛物线的顶点在(1,-2),且过点(2,3);(3).已知抛物线过三点:(-1,2),(0,1),(2,-7).

函数综合练习题及解析

1.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( ) (A)f(x)+|g(x)|是偶函数 (B)f(x)-|g(x)|是奇函数 (C)|f(x)|+g(x)是偶函数 (D)|f(x)|-g(x)是奇函数 2.已知函数f(x)=2|x-2|+ax(x∈R)有最小值. (1)求实数a的取值范围. (2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式. 3.函数y=f(x)(x∈R)有下列命题: ①在同一坐标系中,y=f(x+1)与y=f(-x+1)的图像关于直线x=1对称; ②若f(2-x)=f(x),则函数y=f(x)的图像关于直线x=1对称; ③若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期; ④若f(2-x)=-f(x),则函数y=f(x)的图像关于(1,0)对称,其中正确命题的序号是. 4.已知f(x)=(x≠a). (1)若a=-2,试证f(x)在(-∞,-2)上是增加的. (2)若a>0且f(x)在(1,+∞)上是减少的,求a的取值范围. 5.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y)(x€R,y€R),且f(0) ≠0,试证f(x)是偶函数 6.判断函数y=x2-2|x|+1的奇偶性,并指出它的单调区间 7.f(x)=的图像和g(x)=log2x的图像的交点个数是( ) (A)4 (B)3 (C)2 (D)1

8. 已知函数f(x)=|x+1|+|x-a|的图像关于直线x=1对称,则a 的值是 . 9. 若直线y=2a 与函数y=|a x -1|(a>0且a ≠1)的图像有两个公共点,a 的取值范围为______ 10. 求函数2()23f x x ax =-+在[0,4]x ∈上的最值 11. 求函数2()23f x x x =-+在x ∈[a,a+2]上的最值。 12. 已知函数22()96106f x x ax a a =-+--在1 [,]3 b -上恒大于或等于0,其中实数[3,)a ∈+∞,求实数b 的范围. 13. 函数f(x)= 的定义域是 ( ) (A)(-∞,-3) (B)(- ,1) (C)(- ,3) (D)[3,+∞) 14. 已知a=log 23.6,b=log 43.2,c=log 43.6,则( ) (A)a>b>c (B)a>c>b (C)b>a>c (D)c>a>b 15. 函数y=log a (|x|+1)(a>1)的图像大致是( )

高一函数的表示方法

函数的表示方法 1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数; 2、 了解简单的分段函数,并能简单应用; 一、函数的常用表示方法简介: 1、解析法 如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。 例如,s =602t ,A =π2 r ,2S rl π=,2)y x = ≥等等都是用解析式表示函 数关系的。 特别提醒: 解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。中学阶段研究的函数主要是用解析法表示的函数。 解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。 2、列表法: 通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。 例如:初中学习过的平方表、平方根表、三角函数表。我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的. 特别提醒: 列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。这种表格

常常应用到实际生产和生活中。 列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。 3、图象法: 用函数图象表示两个变量之间的函数关系的方法,叫做图像法。 例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。 特别提醒: 图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。 图像法的缺点:不能够精确地求出某一自变量的相应函数值。 二、函数图像: 1、判断一个图像是不是函数图像的方法: 要检验一个图形是否是函数的图像,其方法为:任作一条与x轴垂直的直线,当该直线保持与x轴垂直并左右任意移动时,若与要检验的图像相交,并且交点始终唯一的,那么这个图像就是函数图像。 2、函数图像的作图方法大致分为两种: (1)描点作图法。步骤分三步:列表,描点,连线成图。 (2)图像变换法。利用我们熟知基本初等函数图像,将其进行平移、对成等变换,从而得到我们所求的函数图像的方法。 三、根据函数图像确定函数的定义域和值域: 1、由函数图像来确定函数的值域的方法是看函数图像在y轴上的正投影所覆盖的区域; 2、由函数图像来确定函数的定义域的方法是看函数图像在x轴上的正投影所覆盖的区域; 四、分段函数图像: 有些函数在它的定义域中,对于自变量x的不同取值范围,对应法则不同,这样的函数通常称为分段函数。由此可知,作分段函数的图像时,应根据不同定义域上的不同解析式分别作出。

求函数解析式的方法练习题

求函数解析式的方法 、代入法 1、已知函数f(x)=x 2+2x+a,f(bx)=9x 2-6X+2,其中x R,a,b 为常数,贝》f(ax+b)= ______ 2、已知a,b 为常f(x)=x 2+4x +3, f(ax+b) = x2+10x + 24,则5a-b = __________ 二、换元法 1、f(l) = x2 - 2,求f (x)的解析式 x 二、待定系数法 设二次函数f(x)满足f(x-2)=f(-x-2),且图像在y轴上的截距为1,被x 轴截得的线段长为2、2 求f(x)的解析式。

四、配方(凑)法 已知f(X+丄)=x2?—,求f(x)的解析式 X X 五、构造法 1、定义在区间(-1,1)上的函数f(x)满足2f(x)-f(-x)=lg (x+1 )则f(x)的解析式为___________ 1 2、已知函数f(x)+3f( -)=3x (x工0)求f(x)的解析式 3、已知函数f(x)是奇函数,g(x)是偶函数,且满足f(x)+g(x)=x 2 +2x, 分别求f(x)、g(x)的解析式

4、已知函数f(x)=x2(a 1)x Iga 2(a R,a—2) 若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x) 的解析式. 5、若函数f(x),g(x)分别为R上的奇函数、偶函数,且满足f(x)— g(x)=e x,则有 A、f(2)vf(3)vg(0) B、g(0)

求二次函数解析式 综合题 练习+答案

求二次函数解析式:综合题 例1 已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 分析:本题可以利用抛物线的一般式来求解,但因 A(-1,0)、B(1,0)是抛物线与x轴的交点,因此有更简捷的解法. 如果抛物线y=ax2+bx+c与x轴(即y=0)有交点(x1,0),(x2,0).那么显然有 ∴x1、x2是一元二次方程ax2+bx+c=0的两个根.因此,有 ax2+bx+c=a(x-x1)(x-x2) ∴抛物线的解析式为 y=a(x-x1)(x-x2) (*) (其中x1、x2是抛物线与x轴交点的横坐标) 我们将(*)称为抛物线的两根式.

对于本例利用两根式来解则更为方便. 解:∵抛物线与x轴交于A(-1,0)、B(1,0) ∴设抛物线的解析式为 y=a(x+1)(x-1) 又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-1 ∴函数解析式为y=-x2+1. 说明:一般地,对于求二次函数解析式的问题,可以小结如下: ①三项条件确定二次函数; ②求二次函数解析式的一般方法是待定系数法; ③二次函数的解析式有三种形式: 究竟选用哪种形式,要根据具体条件来决定. 例2 由右边图象写出二次函数的解析式.

分析:看图时要注意特殊点.例如顶点,图象与坐标轴的交点. 解:由图象知抛物线对称轴x=-1,顶点坐标(-1,2),过原点(0,0)或过点(-2,0). 设解析式为y=a(x+1)2+2 ∵过原点(0,0),∴a+2=0,a=-2.故解析式为 y=-2(x+1)2+2,即y=-2x2-4x. 说明:已知顶点坐标可以设顶点式. 本题也可设成一般式y=ax2+bx+c,∵过顶点(-1,2)和过原点(0,0),

函数的三种表达方法习题及答案

一.选择题 1.如图反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,如果菜地和青稞地的距离为akm,小刚在青稞地除草比在菜地浇水多用了bmin,则a和b的值分别是()A.1,8; B.0.5,12; C.1,12; D.0.5,8 答案:D 2.星期六,小亮从家骑自行车到同学家去玩,然后返回,如图是他离家的路程y千米与时间x分钟的函数图象,根据图象信息,下列说法不一定正确的是() A.小亮家到同学家的路程是3千米; B.小亮在同学家逗留的时间是1小时; C.小亮去时走上坡路,回家时走下坡路; D.小亮回家时用的时间比去时用的时间少答案:C 3.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100km/h,特快车的速度为150km/h,甲乙两地的距离是1000km,两车同时出发,则图中折线大致表示两车之间的距离y(km)与快车行驶时间t(h)之间的函数图象的是()

答案:C 4.一根弹簧原长12cm,它所挂重物质量不超过10kg,并且每挂重物1kg,就伸长1.5cm,挂重物后弹簧长度y(cm)与重物x(kg)之间的函数关系式是() A.y=1.5(x+12)(0≤x≤10); B.y=1.5x+12(0≤x≤10); C.y=1.5x+10(0≤x); D.y=1.5(x-12)(0≤x≤10) 答案:B 5.百货大楼进了一批画布,出售时要在进价的基础上加一定的利润,其数量x(米)与售价y(元)如下表: 下列用数量x(米)表示售价y(元)的关系式中,正确的是() A.y=8x+0.3; B.y=(8+0.3)x; C.y=8+0.3x; D.y=8+0.3+x 答案:B 6.图中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离。根据图象提供的信息,以下四个说法错误的是()

函数解析式求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ? =+=3 42b ab a , ∴????? ?=-===3 2 1 2b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f + =+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解 析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表 示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置

解析函数的级数表示(练习题)

基本要求 1. 正确理解级数收敛、发散等概念,了解无穷级数收敛的充分必要条件。 2. 了解绝对收敛及条件收敛的概念及其关系。 3. 掌握简单幂级数的收敛半径和收敛区域的求法。 4. 清楚地知道幂级数的收敛范围是圆域以及它在收敛圆内的性质、有理运算与分析运算。 5. 要求会把比较简单的解析函数用适当的方法展开成泰勒级数,并指出其收敛半径,要记住几个主要的初等函数的泰勒展开式。 6. 要求会把比较简单的函数环绕它的孤立奇点用适当的方法展开成洛朗级数。 一、填空题 1.函数131()z f z e z i -=-在0z =处泰勒展开式的收敛半径为( 1 ); 2.311z +的幂级数展开式为( 30(1)n n n z ∞=-∑ ),收敛域为( ||1z < ); 3.函数21 ()(1)f z z =+展开成z 的幂级数,有()f z = ( 211123(1),||1n n z z nz z ---+-+-+< ); 4.设C 为单位圆周||1z =内包围原点的任一条正向简单闭曲线,则 2()n C n z dz ∞=-=∑? ( 2i π ); 5.若幂级数0n n n c z ∞=∑在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 )。 二、计算下列各题 1. 求1()1z f z e z =-在区域(1)||1z <,(2)0|1|z <-<+∞的幂级数展开式。 解:(1)211,||11n z z z z z =++++<- ,21,2!! n z z z e z n =++++ 22()(1)(1)2!!n n z z f z z z z z n ?=+++++++++ 21111111(1)(1)(1)1!1!2!1!2!! n z z z n =++++++++++++

综合题:高一数学函数经典习题及答案

函 数 练 习 题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

函数的几种表示方法

D C B A 1.2.2 函数的表示方法 第一课时 函数的几种表示方法 【教学目标】 1.掌握函数的三种主要表示方法 2.能选择恰当的方法表示具体问题中的函数关系 3.会画简单函数的图像 【教学重难点】 教学重难点:图像法、列表法、解析法表示函数 【教学过程】 一、复习引入: 1.函数的定义是什么?函数的图象的定义是什么? 2.在中学数学中,画函数图象的基本方法是什么? 3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征? 二、讲解新课:函数的表示方法 表示函数的方法,常用的有解析法、列表法和图象法三种. ⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式. 例如,s=602 t ,A=π2 r ,S=2rl π,y=a 2 x +bx+c(a ≠0),y= 2-x (x ≥2)等等都是用解析 式表示函数关系的. 优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数. ⑵列表法:就是列出表格来表示两个变量的函数关系. 学号 1 2 3 4 5 6 7 8 9 身高 125 135 140 156 138 172 167 158 169 用列表法来表示函数关系的.公共汽车上的票价表 优点:不需要计算就可以直接看出与自变量的值相对应的函数值. ⑶图象法:就是用函数图象表示两个变量之间的关系. 例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本 中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的. 优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质. 三、例题讲解 例1某种笔记本每个5元,买 x ∈{1,2,3,4}个笔记本的钱数记为y (元),试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像 解:这个函数的定义域集合是{1,2,3,4},函数的解析式为 y=5x ,x ∈{1,2,3,4}.

高中数学函数的解析式和抽象函数定义域练习题

1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ D P C P A P B

换元法(3)13)2(2++=-x x x f 待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

第四章解析函数的级数表示(3)

第四章 解析函数的级数表示 §1. 复数项级数 一. 复数序列的极限 定义: 设{}n z 为一个复数序列,其中n n n y i x z +=, 又设000y i x z +=为一个复定值. 若 ,0,0>?>?N ε使得,N n >?有不等式 ε<-0z z n 恒成立,则称复数序列{}n z 收敛于0z ,或称 {}n z 以0z 为极限,记作 0lim z z n n =∞ → 或()∞→→n z z n 0. 如果对于任意复数0z ,上式均不成立,则称复数序列{}n z 不收敛或发散. 定理1 设000y i x z +=,n n n y i x z +=,则 ?????==?=∞ →∞→∞→.lim ,lim lim 000y y x x z z n n n n n n 定理1说明: 可将复数列的敛散性转化为判别两 个实数列的敛散性.

二. 复数项级数 定义: 设{}n z 为一个复数序列,表达式 +++++n z z z z 321 称为复数项无穷级数.如果它们的部分和序列 () 2,1321=++++=n z z z z S n n 有极限S S n n =∞ →lim (有限复数),则称级数是收敛的,S 称为级数的和;如果{}n S 没有极限,则称级数是发散的. 例1. 当1

相关主题