搜档网
当前位置:搜档网 › 线性方程组-练习

线性方程组-练习

线性方程组-练习
线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A

(A)

12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C)

12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关

2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D )

(A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα

(B) s ααα ,,21 中的任何两个向量都线性无关

(C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示

(D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示

3. (1)若两个向量组等价,则它们所含向量的个数相同;

(2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关;

(3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关;

(4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。

A .1 个

B .2 个

C .3 个

D .4个

4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =;

C .()()(,)R A R B R A B ==;

D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。

1234123423412341322235433x x x x x x x x a x x x x x x x b

+++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。

(-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’

6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

??

???=+-=++=++251823532321321x x k kx x x x x kx

1)k 不为0且 不等于2时,有唯一解。

2)k =0或k =2时,无解

7. 已知1(1,0,2,3)α=,2(1,1,3,5)α=, 3(1,1,2,1)a α=-+,4(1,2,4,8)a α=+, (1,1,3,5)b β=+ .

(1),a b 为何值时,β不能表示成1234,,,αααα的线性组合?

(2),a b 为何值时,β能由1234,,,αααα惟一线性表示?并写出表示式。

答案:1) a=-1,b 不为0

2) a 不等于-1,b 为任意常数;2(,1,,0)111

b b b a a a -++++ 8.设n m A ?为矩阵,下面结论正确的是 ( D )

(A) 若0=Ax

仅有零解,则b Ax =有唯一解 (B) 若0=Ax

有非零解,则b Ax =有无穷多解 (C) 若b Ax

=有无穷多解,则0=Ax 仅有零解 (D) 若b Ax =有无穷多解,则0=Ax 有非零解

9.已知12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是0Ax =的基础解系,12,k k 为任意常数,则方程组Ax b =的通解必是( B )

(A )1211212();2

k k ββααα-+++ (B )

1211212();2k k ββααα+++- (C)12

11212();2

k k ββαββ-+++ (D)1

211212().2k k ββαββ+++-

10.设线性方程组(Ⅰ)的导出组(Ⅱ)必有下面 (A)

(A) 当(Ⅰ)只有唯一解,则(Ⅱ)只有零解

(B) (Ⅰ)有解的充分必要是(Ⅱ)有解

(C) (Ⅰ)有非零解,则(Ⅱ)有无穷多解

(D) (Ⅱ)有非零解,则(Ⅰ)有无穷多解

11.记4阶矩阵A=12341234(,,,),,,,αααααααα为A 的列向量,其中123,,ααα线性无关,4122ααα=-.若1234254βαααα=-++,求线性方程组AX β=的通解.

答案:(1,-2,5,4)’+k(1,-2,0,-1),k 为任意常数。

12. 若方程组123121123231120x t x x ?????? ??? ?+= ??? ? ??? ?-??????

无解,则_____.t =若此方程组有唯一解,则

_____.t =

答案:t =-3;t 不等于-3

13.设*η是非齐次线性方程组AX b =的一个解,,,,12n r ξξξ- 是对应的齐次线性方程组的一个基础解系,证明:

(1)*

η,,,,12n r ξξξ- 线性无关; (2)*η,***1,,,2n r ξηξηξη+++- 线性无关;

(3)非齐次线性方程组A X =的任一个解可表示为

*1122x k k k k n r n r ηηηη=++++-- (其中1η=*1ξη+, ,*n r n r ηξη=+--且

112k k k k n r ++++=- )。

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

线性代数练习题集--线性方程组

线性代数练习题 第四章 线性方程组 系 专业 班 姓名 学号 第一节 解线性方程组的消元法 一.选择题: 1.设A 是n m ?矩阵,b Ax =有解,则 [ C ] (A )当b Ax =有唯一解时,n m = (B )当b Ax =有无穷多解时,<)(A R m (C )当b Ax =有唯一解时,=)(A R n (D )当b Ax =有无穷多解时,0=Ax 只有零解 2.设A 是n m ?矩阵,如果n m <,则 [ C ] (A )b Ax =必有无穷多解 (B )b Ax =必有唯一解 (C )0=Ax 必有非零解 (D )0=Ax 必有唯一解 3.设A 是n m ?矩阵,齐次线性方程组0=Ax 仅有零解的充要条件是)(A R [ D ] (A )小于m (B )小于n (C )等于m (D )等于n 二.填空题: 设????? ??-+=21232121a a A ,???? ? ??=031b ,????? ??=321x x x x (1)齐次线性方程组0=Ax 只有零解,则 31a a ≠≠-或 (2)非齐次线性方程组b Ax =无解,则a = 1=- 三.计算题: 1. 求解非齐次线性方程组?? ? ??=--+=+-+=+-+122241 2w z y x w z y x w z y x 21 3122211112111121001421120011000110211110002000020121122000 .2000r r r r r r y x x y y x z w z z w w w --+--?????? ? ? ?-???→-???→- ? ? ? ? ? ?----?????? -?=?+==-????? -=∴==??????-===??? ? 或

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

线性方程组测试题

课程名称: 工程数学 考试章节: 线性方程组 考生姓名: 一、单选(每题3分,共30分) 1. 1、向量组 , , 线性相关,且秩为 ,则( ) A.s r = B .s r ≤ C.r s ≤ D .r s < 2. 已知向量T T )0,3,4, 1(23,)1,2,2,1(2--=β+α---=β+α,则=β+α( ) A .T )1,1,2,0(-- B .T )1,1,0,2(-- C .T )0,2,1,1(-- D .T )1,5,6,2(--- 3. 下列命题中错误的是( ) A.只含有一个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由一个非零向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关 4. 设α1、α2是非齐次线性方程组Ax=b 的解,β是对应齐次方程组Ax=0的解,则Ax=b 必有一个解是( ) A. 21α+α B. 21α-α C. 21α+α+β D. 213 231α+α+β 5. 对于同一矩阵,关于非齐次线性方程组 ()和齐次线性方程组, 下列说法中正确的是( ) A. 无非零解时, 无解 B.有无穷多解时,有无穷多解 C.无解时, 无非零解 D. 有唯一解时, 只有零解 6. 设21,αα是? ? ?=-=-+021 21321x x x x x 的二个解,则__________。 A. 21αα-是???=-=-+02021321x x x x x 的解 B. 21αα+是???=-=-+0 20 21321x x x x x 的解 C. 12α是?? ?=-=-+02121321x x x x x 的解 D. 22α是? ??=-=-+021 21321x x x x x 的解 二、填空(35分) 1.设()0,2,11 =α,()3,0,12-=α,()4,3,23=α,则32132ααα-+=______________ 2. 设 ()0,0,11=α,()0,1,12=α,()1,1,13=α,()3,2,1=β,且有 332211αααβx x x ++=,则=1x ______,=2x ______,=3x ______ 3. 对于m 个方程n 个未知量的方程组0=AX ,若有r A r =)(,则方程组的基础解系中有 ________个解向量。 4. 已知A 是4×3矩阵,且线性方程组B AX =有唯一解,则增广矩阵A 的秩是_________。 三. 计算(20分) 1.(10分) 已知向量组[][][] 123= 1 01,=035,=237T T T ααα,则求该向量 组的秩和一个极大线性无关组。 2. (5分) 设1α=(1,2,4),2α=(-1,-2,y)且1α与2α线性相关,则求y 的值 A =Ax b ≠0b =0Ax =0Ax =Ax b =0Ax =Ax b =Ax b =0Ax =Ax b =0Ax

线性方程组基础训练

第三章 线性方程组基础训练 在以下, 我们总假设非齐次线性方程组为 ???????=+++=+++=+++s n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 , (1) 其导出组或齐次线性方程组为 ???????=+++=+++=+++0 00221122221211212111n sn s s n n n n x a x a x a x a x a x a x a x a x a . (2) 1.设A 为n 阶方阵,且()n r A R <=,则A 中( ). A .必有r 个列向量线性无关; B .任意r 个列向量线性无关; C .任意r 个行向量构成一个极大无关组; D .任意一个行向量都能被其他r 个行向量线性表示 2. 若( ),则n 元齐次线性方程组(2)有非零解. A . s n < B .A 的秩等于n C .s n > D .A 的秩等于s. 3.齐次线性方程组(2)仅有零解的充分必要条件是( ). A . A 的行向量组线性相关 B .A 的行向量组线性无关 C .A 的列向量组线性相关 D .A 的列向量组线性无关 4. 对于非齐次线性方程组(1),当s=n, 即系数矩阵是n n ?矩阵, 如下结论正确的是( ). A .若方程组无解,则系数行列式0=A ; B .若方程组有解,则系数行列式0≠A 。 C .若方程组有解,则有惟一解,或者有无穷多解; D .系数行列式0≠A 是方程组有惟一解的充分必要条件 5. 设线性方程组的增广矩阵是10721012110242200015????-????---???? ,则这个方程组解的情况是( ). A .有唯一解 B .无解 C .有四个解 D .有无穷多个解 6. 当λ=( )时,方程组1231 231222x x x x x x λ++=??++=?,有无穷多解。 A .1 B .2 C .3 D .4 7.设线性方程组(1)及其导出的齐次线性方程组(2),则下列命题成立的是( )。

线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D ) (A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα (B) s ααα ,,21 中的任何两个向量都线性无关 (C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示 (D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示 3. (1)若两个向量组等价,则它们所含向量的个数相同; (2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关; (3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关; (4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。 A .1 个 B .2 个 C .3 个 D .4个 4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =; C .()()(,)R A R B R A B ==; D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’ 6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性方程组练习题(免费下载)

《线性代数》第三章练习题 一、思考题 1、设有线性方程组b AX =,其中A 为n 阶方阵,j A 为A 中第j 列元素换为b 所得行列式的值,判断下列命题是否正确? (1)若0≠A ,则b AX =有唯一解; (2)若0=A ,且至少有一)1(0n j A j ≤≤≠,则b AX =无解; (3)若0=A ,且),,2,1(0n j A j ==,则b AX =有无穷多解。 2、判断下列命题是否正确?其中A 为n m ?矩阵。 (1)非齐次线性方程组b AX =,当n m <时,有无穷多解;当n m =时,有唯一解;当n m >时,无解; (2)齐次线性方程组0=AX ,当n m <时,必有非零解; (3)非齐次线性方程组b AX =,当m A r =)(时,必相容。 3、设向量组4321,,,αααα线性无关,判断向量组14433221,,,αααααααα++++是否也线性无关。 4、判断下列命题是否正确? (1)若向量组m ααα,,,21 线性相关,则存在全不为零的数m k k k ,,,21 ,使得 02211=+++m m k k k ααα ; (2)若向量组m ααα,,,21 线性相关,且有02211=+++m m k k k ααα ,则 m k k k ,,,21 必不全为零; (3)若当数021====m k k k 时,02211=+++m m k k k ααα ,则向量组m ααα,,,21 线性无关; (4)若02211=+++m m k k k ααα ,必有021====m k k k ,则向量组m ααα,,,21 线性无关; (5)向量β不能由m ααα,,,21 表示,则βααα,,,,21m 线性无关; (6)若向量组m ααα,,,21 线性无关,则其中每一个向量都不能表示成其余向量的线性组合; (7)若向量组m ααα,,,21 线性无关,向量组s βββ,,,21 线性无关,则向量组 m ααα,,,21 ,s βββ,,,21 线性无关。 二、单项选择题 1. 设321,,X X X 是b AX =的三个特解,则下列哪个也是b AX =的解 ( ) (A )332211X k X k X k ++; (B )332211X k X k X k ++,1321=++k k k ; (C )321)(X X X k ++ ; (D ) 32211)(X k X X k +-。 2.设321,,ξξξ是0=AX 的一组基础解系,则下列哪组也是0=AX 的一基础解系( ) (A )133221,,,ξξξξξξ+-; (B )312321,,ξξξξξξ++-; (C ) 13321,ξξξξξ-++ ; (D ) 3121,,ξξξξ- 。 3.设A 是n 阶矩阵,并且0=A ,则A 的列向量中 ( ) (A )必有一个向量为零向量 ; (B)必有两个向量的对应分量成比例; (C )必有一个向量是其余向量的线性组合 ; (D )任一向量是其余向量的线性组合。 4.如果4),,,(21=m r ααα ,则下列正确的是 ( ) (A )如果 m ααα,,,21 的一个部分组线性无关 ,则该部分组包含的向量个数一定不超过4;

线性方程组练习题

线性方程组练习题 §1 向量的线性关系 1.判断下列向量组是否线性无关: (1)????? ??-11 2,????? ??-840,????? ??-311; (2)??????? ??01014,??????? ??1521,??????? ??1202,?????? ? ??7024。 2.讨论下面向量组的线性相关性: ???????? ??12211,???????? ??-15120,???????? ??-141b a 。 3.设????? ??=1111a ,????? ??=3211a ,???? ? ??=t 311a 。 (1)问当t 为何值时,321,,a a a 线性相关? (2)问当t 为何值时,321,,a a a 线性无关? (3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。 4.设有向量组 ??????? ??+=11111t a ,??????? ??+=22222t a ,??????? ??+=33333t a ,?????? ? ??+=t 44444a 。 问:(1)当t 为何值时,4321,,,a a a a 线性相关? (2)当t 为何值时,4321,,,a a a a 线性无关? 5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关? 6.设m a a a ,,,21 线性无关,作 211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。 判别m b b b ,,,21 的线性相关性。 7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示? 8.设321,,a a a 线性相关,432,,a a a 线性无关。问: (1)1a 能否由32,a a 线性表示; (2)4a 能否由321,,a a a 线性表示。 9.若T k k ),,0(2=b 能由T k )1,1,1(1+=a ,T k )1,1,1(2+=a ,T k )1,1,1(3+=a 唯一

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

第三章 线性方程组习题

第三章 线性方程组 习题 姓名 学号 一、 填空题 1. 如果一个线性方程组的系数矩阵的秩为r ,则增广矩阵的秩为__________. 2. 非齐次线性方程组1212222n n x x x a x x x b +++=??+++=? 有解的充要条件是__________. 3. 齐次线性方程组12340x x x x +++=的基础解系是____________________. 4. 若矩阵A 中有一个r 级子式不为零,则()R A __________. 5. 已知向量组123(1,4,3),(2,,1),(2,3,1)k ααα==-=-线性相关,则参数k =__________. 6. 齐次线性方程组111122121122221122000 n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=??+++=????+++=? (*)只有零解的充要条件有 ______________________________________________________ _(至少写两个). 二、 判断题 1. 如果当12n k k k === 时,11220n n k k k ααα+++= ,则向量组12,,,n ααα 线性相关. ( ) 2. 若12(,,,),1,2,,i i i in a a a i s α== 线性相关,则向量组1212(,,,,,,,),i i i in i i im a a a b b b β= 1,2,,i s = 也线性相关. ( ) 3. 任意3n +个n 维向量必线性相关. ( ) 4. 若向量12,,,s ααα 和向量组12,,,t βββ 都线性无关,则向量组1212,,,,,,,s t αααβββ 线性无关.( ) 5. 若向量12,,,s ααα 线性相关,则其中每一个向量皆可由其余向量线性表出.( ) 6. 非齐次线性方程组的两个解的和不再是它的解. ( ) 7. 方程个数小于未知量个数的线性方程组必有无穷多个解.( ) 8. 设12,αα线性相关,12,ββ也线性相关,则1122,αβαβ++线性相关.( ) 三、计算与证明 1. 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3),(4,3,1,3)αααα==--=-=--的秩和极大线性无关组,并用极大无关组表示其余向量 2.λ取何值时,线性方程组12312312 3322x x x x x x x x x λλλλ++=-??++=-??++=-?有唯一解、无解、或无穷多解?在有无穷多解时,求通解.

线性方程组的直接解法

第2章线性方程组的直接解法 2.1实验目的 理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。 2.2概念与结论 1. n阶线性方程组 如果未知量的个数为 n ,而且关于这些未知量x1,x2, …,x n的幂次都是一次的(线性的)那末, n 个方程 a11x1+a12x2+ … +a1n x n=b1 ┆┆┆ (1) a n1x1+a n2x2+ … +a nn x n= b n 构成一个含n个未知量的线性方程组,称为n阶线性方程组。其中,系数a11,…,a1n,a21, …,a2n, …,a n1, …,a nn 和b1, …,b n都是给定的常数。 方程组(1)也常用矩阵的形式表示,写为 Ax=b 其中,A是由系数按次序排列构成的一个n阶矩阵,称为方程组的系数矩阵,x和b都是n维向量,b称为方程组的右端向量。 2. n阶线性方程组的解 使方程组(1)中每一个方程都成立的一组数x1*,x2*, …,x n*称为式(1)的解,把它记为向量的形式,称为解向量. 3.一些特殊的线性方程组 1) 上三角方程组 2) 三对角方程组 ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - n n nn n n n n n n n n b b b x x x a a a a a a a a a a a a 2 1 2 1 1 1 1 2 1 2 23 22 1 1 1 13 12 11

4.矩阵的Doolittle 分解 5.Doolittle 分解的紧凑格式 6.矩阵的Crout 分解 ????????? ? ??=?????????? ???????????? ? ?--n n n n n n d d d x x x b a c b c b a c b a c b 21 2111333 22211???? ?? ? ? ???????? ??=??????? ??nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a 222 11211 2 1 21 2 1 2222111211111 ???? ?? ? ? ???????? ??=??????? ??11 1 21122 1 2221 11 2 1 2222111211 n n nn n n nn n n n n u u u l l l l l l a a a a a a a a a ????? ?? ? ??nn n n n n n n u l l l u u l l u u u l u u u u 3 2 1 333323122322211131211

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

相关主题