搜档网
当前位置:搜档网 › 理想集成运放工作测试题

理想集成运放工作测试题

理想集成运放工作测试题
理想集成运放工作测试题

第七章测试题(选择题、判断题部分 1-14题)

1、理想集成运放工作在线性区时有()。

A. U + = U ?

B. U + > U ?

C. U + < U ?

D. 无法确定

2、理想集成运放工作在非线性区时,输出状态为()。

A.高电平

B. 低电平

C. 高电平或低电平

D. 无法确定

3、反相比例电路有()的特点。

A. 虚地

B. 共模输入电压小

C. 输出电阻低

D. 三者均有

4、同相比例电路有()的特点。

A. 输入电阻高

B. 共模输入电压大

C. 输出电阻低

D. 三者均有

5、放大电压信号时,应选用()输入方式。

A. 反相

B.同相

C.差分

D.三者均可

6、放大电流信号时,应选用()输入方式。

A. 反相

B.同相

C.差分

D.三者均可

7、实际电路中若要求有效信号为20Hz~20kHz的音频信号,消除其它频率的干扰及噪声,应选用()滤波电路。

A. 低通

B. 高通

C. 带通

D. 带阻

8、若要求有效抑制50Hz的工频干扰,应选用()滤波电路。

A. 低通

B. 高通

C. 带通

D. 带阻

9、集成运放组成的电压比较器,在()时输出状态发生跳变。

A. U + = U ?

B. U + > U ?

C. U + < U ?

D.无法确定

10、电压比较器的阈值指的是()时所对应的输入电压值。

A. U + = U ?

B. U + > U ?

C. U + < U ?

D.无法确定

11、处于线性工作状态下的集成运放,反相输入端可按"虚地"来处理。

×

12、反相比例运算电路属于电压串联负反馈,同相比例运算电路属于电压并联负反馈。

×

13、处于线性工作状态的实际集成运放,在实现信号运算时,两个输入端对地的直流电阻必须相等,才能防止输入偏置电流IIB带来运算误差。

×

14、在反相求和电路中,集成运放的反相输入端为虚地点,流过反馈电阻的电流基本上等于各输入电流之代数和。

×

hspice仿真整理

§电路级和行为级仿真 §直流特性分析、灵敏度分析 §交流特性分析 §瞬态分析 §电路优化(优化元件参数) §温度特性分析 §噪声分析 例(Hspicenetlist for the RC network circuit): .title A SIMPLE AC RUN .OPTIONS LIST NODE POST .OP .AC DEC 10 1K 1MEG .PRINT AC V(1) V(2) I(R2) I(C1) V1 1 0 10 AC 1 R1 1 2 1K R2 2 0 1K C1 2 0 .001U .END 输出文件:一系列文本文件 ?*.ic:initial conditions for the circuit ?*.lis:text simulation output listing ?*.mt0,*.mt1…:post-processor output for MEASURE statements ?*.pa0 :subcircuit path table ?*.st0 :run-time statistics ?*.tr0 ,*.tr1…:post-processor output for transient analysis ?*.ac0,*.ac1…: post-processor output for AC analysis .TITLE 语句 .TITLE 或者: 如果是第二种形式,字符串应该是输入文件的首行;如果一个HSPICE语句出现在文件的首行,则它将被认为是标题而不被执行。 .END 语句 形式:.END 在.END语句之后的文本将被当作注释而对模拟没有影响。 分隔符 ?包括:tab键,空格,逗号,等号,括号 ?元件的属性由冒号分隔,例如M1:beta ?级别由句号指示,例如X1.A1.B 表示电路X1的子电路A1的节点B 常量 ?M-毫,p-皮,n-纳,u-微,MEG-兆,

Hspice 简明手册

Hspice简明手册 Hspice简明手册 Hspice是一个模拟电路仿真软件,在给定电路结构和元器件参数的条件下,它可以模拟和 计算电路的各种性能。用Hspice分析一个电路,首先要做到以下三点: (1)给定电路的结构(也就是电路连接关系)和元器件参数(指定元器件的参数库); (2)确定分析电路特性所需的分析内容和分析类型(也就是加入激励源和设置分析类 型); (3)定义电路的输出信息和变量。 Hspice规定了一系列输入,输出语句,用这些语句对电路仿真的标题,电路连接方式,组 成电路元器件的名称,参数,模型,以及分析类型,以及输出变量等进行描述。 一Hspice输入文件的语句和格式 Hspice输入文件包括电路标题语句,电路描述语句,分析类型描述语句,输出描述语句, 注释语句,结束语句等六部分构成,以下逐一介绍:

1 电路的标题语句 电路的标题语句是输入文件的第一行,也成为标题行,必须设置。它是由任意字母和字 符串组成的说明语句,它在Hspice的title框中显示。 2 电路描述语句 电路描述语句由定义电路拓扑结构和元器件参数的元器件描述语句,模型描述语句和电 源语句等组成,其位置可以在标题语句和结束语句之间的任何地方。(1)电路元器件 Hspice要求电路元器件名称必须以规定的字母开头,其后可以是任意数字或字母。除 了名称之外,还应指定该元器件所接节点编号和元件值。 电阻,电容,电感等无源元件描述方式如下: R1 1 2 10k (表示节点1 与2 间有电阻R1,阻值为10k 欧) C1 1 2 1pf (表示节点1 与2 间有电容C1,电容值为1pf) L1 1 2 1mh (表示节点1 与2 间有电感L1,电感值为1mh) 半导体器件包括二极管,双极性晶体管,结形场效应晶体管,MOS 场效应晶体管等, 这些半导体器件的特性方程通常是非线性的,故也成为非线性有源元件。在电路CAD工具 进行电路仿真时,需要用等效的数学模型来描述这些器件。 (a)二极管描述语句如下:

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

(完整版)HSPICE与CADENCE仿真规范与实例..

电路模拟实验专题 实验文档

一、简介 本实验专题基于SPICE(Simulation Program With Integrated Circuit)仿真模拟,讲授电路模拟的方法和spice仿真工具的使用。 SPICE仿真器有很多版本,比如商用的PSPICE、HSPICE、SPECTRE、ELDO,免费版本的WinSPICE,Spice OPUS等等,其中HSPICE和SPECTRE功能更为强大,在集成电路设计中使用得更为广泛。因此本实验专题以HSPICE和SPECTRE作为主要的仿真工具,进行电路模拟方法和技巧的训练。 参加本实验专题的人员应具备集成电路设计基础、器件模型等相关知识。 二、Spice基本知识(2) 无论哪种spice仿真器,使用的spice语法或语句是一致的或相似的,差别只是在于形式上的不同而已,基本的原理和框架是一致的。因此这里简单介绍一下spice的基本框架,详细的spice语法可参照相关的spice教材或相应仿真器的说明文档。 首先看一个简单的例子,采用spice模拟MOS管的输出特性,对一个NMOS管进行输入输出特性直流扫描。V GS从1V变化到3V,步长为0.5V;V DS从0V变化到5V,步长为0.2V;输出以V GS为参量、I D与V DS之间关系波形图。 *Output Characteristics for NMOS M1 2 1 0 0 MNMOS w=5u l=1.0u VGS 1 0 1.0 VDS 2 0 5 .op .dc vds 0 5 .2 Vgs 1 3 0.5 .plot dc -I(vds) .probe *model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7 .end 描述的仿真电路如下图,

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

集成运算放大器 习题参考答案

第8章集成运算放大器习题参考答案 一、填空题: 1. 理想运放同相输入端和反相输入端的“虚短”指的是同相输入端与反相输入端两点电位相等,在没有短接的情况下出现相当于短接时的现象。 2. 将放大器输出信号的全部或部分通过某种方式回送到输入端,这部分信号叫做反馈信号。使放大器净输入信号减小,放大倍数也减小的反馈,称为负反馈;使放大器净输入信号增加,放大倍数也增加的反馈,称为正反馈。放大电路中常用的负反馈类型有并联电压负反馈、串联电压负反馈、并联电流负反馈和串联电流负反馈。 3. 若要集成运放工作在线性区,则必须在电路中引入负反馈;若要集成运放工作在非线性区,则必须在电路中引入开环或者正反馈。集成运放工作在线性区的特点是输入电流等于零和输出电阻等于零;工作在非线性区的特点:一是输出电压只具有高电平、低电平两种稳定状态和净输入电流等于零;在运算放大器电路中,集成运放工作在线性区,电压比较器集成运放工作在非线性区。 4. 集成运放有两个输入端,称为同相输入端和反相输入端,相应有同相输入、反相输入和双端输入三种输入方式。 5. 放大电路为稳定静态工作点,应该引入直流负反馈;为提高电路的输入电阻,应该引入串联负反馈;为了稳定输出电压,应该引入电压负反馈。 6. 理想运算放大器工作在线性区时有两个重要特点:一是差模输入电压相同,称为“虚短”;二是输入电流为零,称为“虚断”。 二、判断题: 1. 放大电路一般采用的反馈形式为负反馈。(对) 5. 电压比较器的输出电压只有两种数值。(对) 6. 集成运放未接反馈电路时的电压放大倍数称为开环电压放大倍数。(对) 7. “虚短”就是两点并不真正短接,但具有相等的电位。(对) 8. “虚地”是指该点与接地点等电位。(对) 三、选择题:(每小题2分,共16分) 1. 理想运算放大器的开环放大倍数A U0为(A),输入电阻为(A),输出电阻为(B)。 A、∞; B、0; C、不定。 2. 集成运算放大器能处理(C)。 A、直流信号; B、交流信号; C、交流信号和直流信号。 3. 为使电路输入电阻高、输出电阻低,应引入(A)。 A、电压串联负反馈; B、电压并联负反馈; C、电流串联负反馈; D电流并联负反馈。 4. 在由运放组成的电路中,运放工作在非线性状态的电路是(D)。 A、反相放大器; B、差值放大器; C、有源滤波器; D、电压比较器。

第六章集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名 称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波 变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。 【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。

实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 图(a) 图(b) 【相关知识】 反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。 (2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压

Hspice(中文实用版)

第一章概 论 §1.1 HSPICE简介 随着微电子技术的迅速发展以及集成电路规模不断提高,对电路性能的设计要求越来越严格,这势必对用于大规模集成电路设计的EDA工具提出越来越高的要求。自1972年美国加利福尼亚大学柏克莱分校电机工程和计算机科学系开发的用于集成电路性能分析的电路模拟程序SPICE (Simulation Program with ICEmphasis)诞生以来,为适应现代微电子工业的发展,各种用于集成电路设计的电路模拟分析工具不断涌现。HSPICE是MetaSoftware公司为集成电路设计中的稳态分析,瞬态分析和频域分析等电路性能的模拟分析而开发的一个商业化通用电路模拟程序,它在柏克莱的SPICE(1972年推出),MicroSim公司的PSPICE(1984年推出)以及其它电路分析软件的基础上,又加入了一些新的功能,经过不断的改进,目前已被许多公司、大学和研究开发机构广泛应用。HSPICE可与许多主要的EDA设计工具,诸如Candence,Workview等兼容,能提供许多重要的针对集成电路性能的电路仿真和设计结果。采用HSPICE软件可以在直流到高于100MHz的微波频率范围内对电路作精确的仿真、分析和优化。在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时,其电路规模仅取决于用户计算机的实际存储器容量。 §1.2 HSPICE的特点与结构 HSPICE除了具备绝大多数SPICE特性外,还具有许多新的特点,主要有: 优越的收敛性 精确的模型参数,包括许多Foundry模型参数 层次式节点命名和参考 基于模型和库单元的电路优化,逐项或同时进行AC,DC和瞬态分析中的优化 具备蒙特卡罗(Monte Carlo)和最坏情况(worst-case)分析 对于参数化单元的输入、出和行为代数化 具备较高级逻辑模拟标准库的单元特性描述工具 对于PCB、多芯片系统、封装以及IC技术中连线间的几何损耗加以模拟 在HSPICE中电路的分析类型及其内部建模情况如图1.2.1和图1.2.2所示:

集成运放电路试题及答案

第三章集成运放电路 一、填空题 1、(3-1,低)理想集成运放的A ud= ,K CMR= 。 2、(3-1,低)理想集成运放的开环差模输入电阻ri= ,开环差模输出电阻ro= 。 3、(3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或两种的状态。 4、(3-1,低)集成运放工作在线形区的必要条件是___________ 。 5、(3-1,难)集成运放工作在非线形区的必要条件是__________,特点是___________,___________。 6、(3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。 7、(3-2,低)反相输入式的线性集成运放适合放大 (a.电流、b.电压) 信号,同相输入式的线性集成运放适合放大 (a.电流、b.电压)信号。 8、(3-2,中)反相比例运算电路组成电压(a.并联、b.串联)负反馈电路,而同相比例运算电路组成电压(a.并联、b.串联)负反馈电路。 9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 10、(3-2,难)分别填入各种放大器名称 (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。 11、(3-3,中)集成放大器的非线性应用电路有、等。 12、(3-3,中)在运算电路中,运算放大器工作在区;在滞回比较器中,运算放大器工作在区。 13、(3-3,中)_________和_________是分析集成运算放大器线性区应用的重要依据。

实验课7 全差分运放的仿真方法

CMOS模拟集成电路 实验报告

实验课7 全差分运放的仿真方法 目标: 1、了解全差分运放的各项指标 2、掌握全差分运放各项指标的仿真方法,对全差分运放的各指标进行仿真,给出各指标的 仿真结果。 本次实验课使用的全差分运放 首先分析此电路图,全差分运算放大器是一种具有差分输入,差分输出结构的运算放大器。其相对于单端输出的放大器具有一些优势:因为当前的工艺尺寸在减少,所以供电的电源电压越来越小,所以在供电电压很小的情况下,单端输出很难理想工作,为了电路有很大的信号摆幅,采用类似上图的全差分运算放大器,其主要由主放大器和共模反馈环路组成。 1、开环增益的仿真 得到的仿真图为

1.开环增益:首先开环增益计算方法是低频工作时(<200Hz) ,运放开环放大倍数;通过仿真图截点可知增益为73.3db。 2.增益带宽积:随着频率的增大,A0会开始下降,A0下降至0dB 时的频率即为GBW,所以截取其对应增益为0的点即可得到其增益带宽积为1.03GB。 3.相位裕度:其计算方法为增益为0的时候对应的VP的纵坐标,如图即为-118,则其相位裕度为-118+180=62,而为保证运放工作的稳定性,当增益下降到0dB 时,相位的移动应小于180 度,一般取余量应大于60度,即相位的移动应小于120 度;所以得到的符合要求。 在做以上仿真的时候,关键步骤 在于设定VCMFB,为了得到大的增益,并且使相位裕度符合要求,一直在不停地改变VCMFB,最初只是0.93,0.94,0.95的变化,后来发现增益还是远远不能满足要求,只有精确到小数点后4为到5位才能得到大增益。 2.CMRR 的仿真 分析此题可得共模抑制比定义为差分增益和共模增益的比值,它反映了一个放大器对于共模信号和共模噪声的抑制能力。因此需要仿真共模增益和差分增益。可以利用两个放大器,一 个连成共模放大,一个连成差模放大,

第16章习题_集成运放-理想集成运放例题

16-001、同相比例运算放大电路通常比反相运算放大电路输入阻抗 ________ 16-002、设图中A 为理想运放,请求出各电路的输出电压值。 (12分) U o4 = 10 V U 05 = 2 V 16-003、在图示电路中,设 A 1、A 2、A 3均为理想运算放大器,其最大输出电压幅值为± 12V 。 1. 试说明A 1、A 2、A 3各组成什么电路? 2. A 1、A 2、A 3分别工作在线形区还是非线形区? 3 .若输入为1V 的直流电压,则各输出端 U O1、U θ2、U θ3的电压为多大? ( 10分) 20 k'.1 U o6 20 k' J 20 k'.1 2V U o5 [ 2 V - I R 2

1.A1 组成反相比例电路,A2 组成过零比较器, A组成电压跟随器; 2.A1 和A3 工作在线性区,A2 工作在非线性 区;3.u O1 = -10V,u O2 = -12V ,u O3 = -6V 。

16-301 、试求图P7.8 所示各电路输出电压与输入电压的运算关系式 图 P7.8 解:在图示各电路中,集成运放的同相输入端和反相输入端所 接总电阻均相 等。各电路的运算关系式分析如下: R f R f R f (a) U O U II U i2 (1 ) U I^ -2U ii -2U i2 5U i3 R 1 R 2 R 1// R 2 (b ) U^-RL U I 1 (V-RL ) R3 U I2 (V-RL ) R2 U^-10U I1 10U I2 U 13 R 1 R 1 R 2 + R 3 R 1 R 2 + R 3 (C )UO 送 (U I 2 " )5∣2F) + R f 、 R 4 +“+ R f 、 R 3 f ) 4 U ∣3 (1 f ) - U ∣4 R 1//R 2 R 4 R 3 R//R 2 R 4 R 3 R ? 50kΩ 廿H ---- -I 1 ----------- ? Λi 50k∩ ” O ---- ----------- 卜 R l ∣0kΩ H L IC ----- ? 1 ---------- * R. IOkQ 如 ---- L t I --------- ? Ildt (d ) U O 八 R U II-R U I2 (I R I R 2 =-20U ∣1 -20U ∣2 40U 13 A -I=ZF ∣00kΩ & 20kΩ 如 ------- 匚二I ----- (a) 禺 I(Wka u CiO-一?∑□ ----

集成运放电路实验报告

实验报告姓名:学号: 日期:成绩: 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 =∞ 开环电压增益A ud =∞ 输入阻抗r i 输出阻抗r =0 o =∞ 带宽 f BW

失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图6-1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图6-1 反相比例运算电路 图6-2 反相加法运算电路 2) 反相加法电路 电路如图6-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图6-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U - =

hspice语法手册

Hspice语法手册 天津大学电信学院 陈力颖

Preface 最初写作本文的目的是希望提供一份中文版的Hspice手册从而方便初学者的使用,本文的缘起是几位曾经一起工作过的同事分别进入不同的新公司,而公司主要是使用Hspice,对于已经熟悉了Cadence的GUI界面的使用者转而面对Hspice的文本格式,其难度是不言而喻的,而Hspice冗长的manual(长达2000页以上)更让人在短时间内理不出头绪。鉴于我曾经使用过相当一段时间的Hspice,于是我向他们提供了一份简单而明了的handbook来帮助他们学习,本来是准备借助一个具体运放的设计例子,逐步完善成为一份case by case的教程,但由于工作比较浩大,加之时间的关系,一直难以完成,愈拖愈久,在几个朋友的劝说下,与其等其日臻完善后再发布,不如先行发布在逐步完善,以便可以让更多的朋友及早使用收益。本文虽通过网络发表,但作者保留全部的著作权,转载时务请通知本人。由于水平的有限,讨论范围的局限及错误不可避免,恳请读者指正。联系方式为e-mail: nkchenliy@https://www.sodocs.net/doc/3110382169.html,。

目录 一、HSPICE基础知识 (2) 二、有源器件和分析类型 (3) 三、输出格式和子电路 (4) 四、控制语句和OPTION语句 (6) 五、仿真控制和收敛 (7) 六、输入语句 (8) 七、统计分析仿真 (9) 天津大学电信学院 陈力颖 2006年2月

一、HSPICE基础知识 Avant! Start-Hspice(现在属于Synopsys公司)是IC设计中最常使用的电路仿真工 具,是目前业界使用最为广泛的IC设计工具,甚至可以说是事实上的标准。目前,一 般书籍都采用Level 2的MOS Model进行计算和估算,与Foundry经常提供的Level 49 和Mos 9、EKV等Library不同,而以上Model要比Level 2的Model复杂的多,因此 Designer除利用Level 2的Model进行电路的估算以外,还一定要使用电路仿真软件 Hspice、Spectre等进行仿真,以便得到精确的结果。 本文将从最基本的设计和使用开始,逐步带领读者熟悉Hspice的使用,以便建立   IC设计的基本概念。文章还将对Hspice的收敛性做深入细致的讨论。 Hspice输入网表文件为.sp文件,模型和库文件为.inc和.lib,Hspice输出文件有运 行状态文件.st0、输出列表文件.lis、瞬态分析文件.tr#、直流分析文件.sw#、交流分析 文件.ac#、测量输出文件.m*#等。其中,所有的分析数据文件均可作为AvanWaves的 输入文件用来显示波形。 表1 Hspice所使用的单位 单位缩写含义 F(f) 1e-15 P(p) 1e-12 N(n) 1e-10 U(u) 1e-06 M(m) 1e-03 K(k) 1e+03 Meg(meg) 1e+06 G(g) 1e+09 T(t) 1e+12 DB(db) 20log10 注:Hspice单位不区分大小写 独立电压和电流源包括: 1. 直流源(DC):

理想集成运放工作测试题

第七章测试题(选择题、判断题部分 1-14题) 1、理想集成运放工作在线性区时有()。 A. U + = U ? B. U + > U ? C. U + < U ? D. 无法确定 2、理想集成运放工作在非线性区时,输出状态为()。 A.高电平 B. 低电平 C. 高电平或低电平 D. 无法确定 3、反相比例电路有()的特点。 A. 虚地 B. 共模输入电压小 C. 输出电阻低 D. 三者均有 4、同相比例电路有()的特点。 A. 输入电阻高 B. 共模输入电压大 C. 输出电阻低 D. 三者均有 5、放大电压信号时,应选用()输入方式。 A. 反相 B.同相 C.差分 D.三者均可 6、放大电流信号时,应选用()输入方式。 A. 反相 B.同相 C.差分 D.三者均可 7、实际电路中若要求有效信号为20Hz~20kHz的音频信号,消除其它频率的干扰及噪声,应选用()滤波电路。 A. 低通 B. 高通 C. 带通 D. 带阻 8、若要求有效抑制50Hz的工频干扰,应选用()滤波电路。 A. 低通 B. 高通 C. 带通 D. 带阻 9、集成运放组成的电压比较器,在()时输出状态发生跳变。 A. U + = U ? B. U + > U ? C. U + < U ? D.无法确定 10、电压比较器的阈值指的是()时所对应的输入电压值。 A. U + = U ? B. U + > U ? C. U + < U ? D.无法确定 11、处于线性工作状态下的集成运放,反相输入端可按"虚地"来处理。 √ ×

12、反相比例运算电路属于电压串联负反馈,同相比例运算电路属于电压并联负反馈。 √ × 13、处于线性工作状态的实际集成运放,在实现信号运算时,两个输入端对地的直流电阻必须相等,才能防止输入偏置电流IIB带来运算误差。 √ × 14、在反相求和电路中,集成运放的反相输入端为虚地点,流过反馈电阻的电流基本上等于各输入电流之代数和。 √ ×

简析集成运算放大器的发展及典型精典应用电路

模拟电子技术科技小论文 简析集成运算放大器的发展及典型精典 应用电路 姓名: 学院:电子工程学院 专业:电子信息工程 班级:2016级5班 指导老师:

一、集成运算放大器的发展历史及现状 1934年的某天,哈里·布莱克(Harry·Black)搭渡从他家所在的纽约到贝尔实验室所在的新泽西去上班。渡船舒缓了他那紧张的神经,使得他可以做一些概念性的思考。哈里有个难题要解决:当电话线延伸得很长时,信号需要放大。但放大器是如此的不可靠,使得服务质量受到严重制约。首先,初始增益误差很大,但这个问题很快就通过使用一个调节器解决了。第二,即使放大器在出厂时调节好了,但是在现场应用的时候,增益的大范围漂移使得音量太低或者输入的语音失真。 为了制造一个稳定的放大器,很多的方法都尝试过了,但是变化的温度和极差的电话线供电状况所导致的增益漂移,一直难以克服。被动元件比主动元件有更好的漂移特性,如果放大器的增益取决于被动元件的话,问题不就解决了吗?在这次搭渡途中,哈里构思了这样一个新奇的解决方法,并记录了下来。 这个方法首先需要制造一个增益比实际应用所需增益要大的放大器,然后将部分的输出信号反馈到输入端,使得电路(包括放大器和反馈元件)增益取决于反馈回路而不是放大器本身。这样,电路增益也就取决于被动的反馈元件而不是主动的放大器,这叫做负反馈,是现代运算放大器的工作原理。哈里在渡船上记录了史上第一个有意设计的反馈电路,但是我们可以肯定在这之前,有人曾无意构建过反馈电路,只不过忽视了它的效果而已。起初,管理层和放大器设计者有很大的抱怨:“设计一个30-KHz增益带宽积(GBW)的放大器已经够难的了,现在这个傻瓜想要我们设计成3-MHz的增益带宽积,但他却只是用来搭建一个30-KHz增益带宽积的电路!”然而,时间证明哈里是对的。但是哈里没有深入探讨这带来的一个次要问题——振荡。当使用大开环增益的放大器来构建闭环电路时,有时会振荡。直至40年代人们才弄懂了个中原因,但是要解决这个问题需要经过冗长繁琐的计算,多年过去了也没有人能想出简单易懂的方法来。 1945年,H.W.Bode提出了图形化方式分析反馈系统稳定性的方法。此前反馈的分析是通过乘除法来完成的,传函的计算十分费时费力,需要知道的是,直至70年代前工程师是没有计算器和计算机的。波特使用了对数的方法将复杂的数学计算转变成简单直观的图形分析,虽然设计反馈系统仍然很复杂,但不再是只被“暗室”里的少数电子工程师所掌握的“艺术”了。任何电子工程师都可以使用波特图去寻找反馈电路的稳定性,反馈的应用也得以迅速增长。 世界上第一台计算机是模拟计算机!它使用预先编排的方程和输入数据来计算输出,因为这种“编程”是硬件连线的——搭建一系列的电路,这种局限性最

TSPC锁存器的设计与HSPICE仿真

IC课程设计报告 题目TSPC锁存器的设计与HSPICE仿真学院 专业 班级 学生姓名 日期 指导教师(签字)

HSPICE简介 SPICE(Simulator Program with Integrated Circuit Emphasis,以集成电路为重点的模拟程序)模拟器最初于20世纪70年代在berkeley开发完成,能够求解描述晶体管、电阻、电容以及电压源等分量的非线性微分方程。SPICE模拟器提供了许多对电路进行分析的方法,但是数字VLSI电路设计者的主要兴趣却只集中在直流分析(DC analysis)和瞬态分析(transient analysis)两种方法上,这两种分析方法能够在输入固定或实时变化的情况下对节点的电压进行预测。SPICE程序最初是使用FORTRAN语言编写的,所以SPICE就有其自身的一些相关特点,尤其是在文件格式方面与FORTRAN有很多相似之处。现在,大多数平台都可以得到免费的SPICE版本,但是,往往只有商业版本的SPICE 才就有更强的数值收敛性。尤其是HSPICE,其在工业领域的应用非常广泛,就是因为其具有很好的收敛性,能够支持最新的器件以及互连模型,同事还提供了大量的增强功能来评估和优化电路。PSPICE也是一个商业版本,但是其有面向学生的限制性免费版本。本章所有实例使用的都是HSPICE,这些实例在平台版本的SPICE中可能不能正常运行。 虽然各种SPICE模拟器的细节随着版本和操作平台的不同而各不相同,但是所有版本的SPICE都是这样工作的:读入一个输入文件,生产一个包括模拟结果、警告信息和错误信息的列表文件。因为以前输入文件经常是以打孔卡片盒的方式提供给主机的,所以人们常常称输入文件为SPICE“卡片盒(deck)”,输入文件中的每一行都是一张“卡片”。输入文件包含一个由各种组件和节点组成的网表。当然输入文件也包含了一些模拟选项、分析指令以及器件模型。网吧可以通过手工的方式输入,也可以从电路图或者CAD工具的版图(layout)中提取。 一个好的SPICE“卡片盒”就好像是一段好的软件代码,必须具有良好的可读性、可维护性以及可重用性。适当地插入一些注释和空白间隔有助于提高“卡片盒”的可读性。一般情况下,书写SPICE“卡片盒”的最好方法就是:先找一个功能完备、正确的“卡片盒”范例,然后在此基础上对其进行修改。 二、要与要求 在两相时钟技术中,必须十分小心的对两个时钟信号进行布线以保证它们的

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

第六节 集成运放组成的运算电路典型例题

例6-6例例 例例 例例 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。 【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。

实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 图(a) 图(b) 【相关知识】 反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。 (2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压

当时,稳压管导通,电路的输出电压被限制在,即。根据以上分析,可画出的波形如图(c)所示。 图(c) (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。 【例6-3】在图(a)示电路中,已知, ,,设A为理想运算放大器,其输出电压最大值为,试分别求出当电位器的滑动端移到最上端、中间位置和最下端时的输出电压的值。 图(a) 【相关知识】 反相输入比例器。 【解题思路】 当时电路工作闭环状态;当时电路工作开环状态。 【解题过程】

运算放大器基本应用

东南大学电工电子实验中心 实验报告 课程名称:电子电路实验 第一次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化 姓名:周晓慧学号:61010212 实验室: 105实验组别: 同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:

实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、 带宽的测量方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念; 5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。 二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。

2、 设计一个反相比例放大器,要求:|A V |=10,Ri>10K Ω,将设计过程记录在预习报告上; (1) 仿真原理图 (2) 参数选择计算 因为要求|A v |=10,即|V 0/V i |= |-R f /R 1|=10,故取R f =10R 1,.又电阻应尽量大些,故取:R 1=10k Ω,Rk=100 k Ω, R L =10 k Ω (3) 仿真结果 图中红色波形表示输入,另一波形为输出,通过仿真可知|V 0/V i |=9.77≈10,仿真正确。 3、 设计一个电路满足运算关系U O = -2U i1 + 3U i2

相关主题