搜档网
当前位置:搜档网 › 两轮平衡车说明书

两轮平衡车说明书

两轮平衡车说明书
两轮平衡车说明书

双轮自平衡车

学校:德州学院

学生:唐文涛焦方磊李尧

指导老师:孟俊焕

时间:二О一四年7 月10日~10 月 6 日共12 周

中文摘要

两轮自平衡车是动态平衡机器人的一种。2008年我国奥运会的时候安全保卫工作使用过它,到今年两轮平衡车已经发展的相对成熟。在国家节能、降耗、环保、低碳、经济的方针政策下,两轮平衡车进行了资源整合、技术升级,在原来的两轮单轴式自平衡的基础上采取两轴双轮可折叠设计,两轮自平衡车具有运动灵活、智能控制、操作简单、驾驶姿势多样、节省能源、绿色环保、转弯半径为0等优点。适用于在狭小空间内运行,能够在大型购物中心、国际性会议或展览场所、体育场馆、办公大楼、大型公园及广场、生态旅游风景区、大学校园、城市中的生活住宅小区等各种室内或室外场合中作为人们的中、短距离代步工具。也是集娱乐、代步、炫酷为一体的,主打形象是汽车伴侣解决停车后几公里内的代步问题。

两轮自平衡车主要由驱动电机、锂电池组、车轮、车身等组成。其工作原理:车体内置的精密固态陀螺仪来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。

关键词:陀螺仪,动态稳定,折叠,驱动系统,平衡。

English abstract

Two rounds of self-balancing vehicle is one of the dynamic balance of the robot. In 2008 the Olympic Games security work used it in our country, in the year to balance two rounds of car has developed relatively mature. In the national energy saving, consumption reduction, environmental protection, low carbon, economic policies and regulations, the two rounds of balance of resource integration, technology upgrades, in the original two rounds of single shaft type taken on the basis of self balancing two shaft double folding design, two rounds of

self-balancing vehicle movement, flexible, intelligent control, simple operation and driving posture diversity, save energy, green environmental protection, the advantages of turning radius of 0. Apply to run in narrow space, can in a large shopping center, the international conference and exhibition venues, sports venues, office buildings, large parks and square, ecological tourism scenic spot, the university campus, city life in residential quarters and other indoor or outdoor situations as the medium and short distance transport of people. Is entertainment, walking, cool as a whole, the main image is car partner solve the problem of parking within a few kilometers after walking.

Two rounds of self-balancing vehicle is mainly composed of drive motor, lithium battery pack, wheel, body, etc. Its working principle: the body's built-in precision solid-state gyroscope to judge the body's position, through sophisticated and high-speed central microprocessor

calculates the appropriate command, the drive motor to achieve the effect of the balance.

Key words: gyroscope, dynamic stability, folding, drive system, the balance.

引言:

近年来,伴随着人民生活水平的不断提高,电动自行车以及电动汽车销量不断攀升,电动车已经在城市交通中起到不可替代的作用,两轮自平衡车采取两轮自平衡智能控制,在其具有占用空间小、轻便的同时,加快了城市交通的发展。

两轮自平衡车是新一代节能、环保、便携的代步工具。平衡车适于每日通勤使用或者周末时作为一项休闲运动。

使用者把脚分别放在轮子两侧的折叠式踏板上以后,轻轻向前倾斜身体是前进,向后倾斜是停止,向左和向右倾斜身体是转弯。身体向前倾斜的越厉害,速度就越快,车内的一系列回旋装置确保它能很好地保持平衡。小巧、携带方便,直接可以放进汽车的后备箱,提到家里或是办公室。

“未来中国的城市交通将是大型公交车辆与小型电动车的系统。”中科院院士何祚庥曾如是说。当代的中国,迫于能源、污染、交通拥挤等问题的压力,已经开始重视电动交通工具的轻量化的设计与研发。于此同时,虽然中国在该领域中的技术水平和产业化程度与国外相比仍存在一定的差距,但其市场规模及其可观,发展潜力非常巨大。如今,国内基于自平衡技术平台的电动个人代步工具市场正处于萌芽期,现有产品绝大部分存在形态,体验和功能都比较单一的问题,其技术和服务体系也尚未成熟,想要获得良好的市场效应和社会认可还需要一段时间的发展。

第一章产品简介 (1)

1.1产品结构 (1)

1.2产品参数 (2)

1.3动力学模型分析 (3)

1.4产品特点 (4)

第三章驾驶注意 (6)

接通电源 (7)

尝试站立 (7)

前行 (7)

转弯 (8)

骑行安全 (8)

结论 (10)

参考文献 (10)

致谢及声明 (10)

附录 ........................................................................................................ 错误!未定义书签。

第一章产品简介

1.1产品结构

两轮平衡车的主要组成部分有:车体、车轮、脚踏板等组成。见图1-1

图1-1

1.2产品参数

1.3动力学模型分析

一个控制系统,要想准确、定量的分析设计,提高对系统的认知和掌控能力,首先要对对象建立模型。对于两轮平衡车而言,受力分析建立力学模型是至关重要的,它是是研究控制算法,提高车子性能非常重要的过程,对于系统的参数分析的越接近于实际情况,得到的模型就越准确,控制效果就越好。动力学模型建立的方法,对于两轮车而言,牛顿法和拉格朗日法是都有各自不同的特点。牛顿法的优点是容易分析出车子内部之间力学关系,但是需要考虑的参数和变量比较多。这使得很多条件只能理想化处理,得到的模型有失准确性;应用拉格朗日建立模型只需要计算系统的能量和广义力,使得建模方法简单化,并且能够分析系统的动态特征[34]。两轮车的姿态调整是动态的、时变的,而拉格朗日动力学模型是建立在能量基础上的,可以用传感器测量每个时刻的速度、角度、角速度求出系统的动能和势能就能够实现分析系统的目的,并且之后对系统进行理论研究也需要进行能量分析,综上拉格朗日法对于两轮平衡车系统更加适合[35]。

本文分别采用牛顿力学和拉格朗日方法对系统建立模型,分析系统内部力学特性和整体特性,对于后续控制系统的搭建和控制参数和方法的选择提供了良好的理论保证。

两轮平衡车系统主要由车轮、电机和车体三个部分组成,其中电机带动的车 轮是主动机构,而车体本身是随动机构,要实现系统平衡,就要控制电机实现正反转运动来实现扭矩来实现。假设车体失去平衡向前倾斜,那么电机带动车轮就

得有个加速度来保持车体处于平衡状态,反之亦然,这样就能保持系统维持平衡状态。平衡车和单级倒立摆力学模型不同,其中单级倒立摆是靠外力实现平衡,但是平衡车系统是依靠自身的电机实现扭矩来达到系统平衡。由于系统的复杂性、非稳定、非线性性,产生了诸如随动、跟踪、鲁棒性等问题。运用牛顿法进行力学分析影响平衡车的主要参数:车身重量、车轮半径、车体重心等。为了使得系统保持动态平衡,车身重心应位于车体中心线一定角度范围之内。在这里假设系统为刚体,并忽略地面与轮胎之间的侧向滑动,根据图1-2车体模型进行受力分析,建立力学模型。在此假设系统中左右两轮对称,根据牛顿力学第二定律ma F =和βj M =的转动惯量定理可以得到左轮的力学方程,其中M 为转动力矩,J 为系统的转动惯量,β为角加速度。因为车轮没有Y 轴方向的位移,所以只建立其在X 轴方向的力学模型。

图1-2车体结构图

图1-3平衡车原理图

1.4动态稳定概述

运用MC9S12XS128单片机,设计一种基于电磁导航的两轮自平衡车系统,并实现车模的直立行走,自主寻迹功能。系统采用飞思卡尔十六位微处理器MC9S12XS128作为核心控制单元,通过运用各种传感器,设计稳压模块、最小系统模块、双轮测速模块、倾角测量模块、电机驱动模块和人机交互模块并编写相应程序以完成平衡控制,速度控制,转向控制三大任务。

1.5产品特点

①电力驱动,节能环保。当前的代步工具的发展趋势是向着小型化,环保节能的方向发展。而随着石油能源的日益枯竭,如何有效的利用电力资源开发下一代主流代步工具成为了大家所关注的核心。电动车无疑将成为未来代步工

具的主流,而两轮自平衡车进一步为未来代步工具指明了方向。

②智能动态稳定系统使用户上手快,操作简单化。

③车身应用多种轻型材料,减轻车身自重,更省电,使驾驶更轻便。

④折叠式设计便于停放与携带,占用空间小。见图1-4、1-5

⑤应用双电动机驱动分别装在两侧车轮轮毂上,是车体能空出更大的空间安装电池,增加续航里程。

⑥安全的刹车系统。对与刹车的控制,一方面受芯片控制,芯片快速给出足够的反馈力矩使之刹车;另一方面人体的重心的改变也有辅助刹车的效果。

图1-4折叠前

图1-5折叠后

第三章驾驶注意

注意事项

1. 利用辅助轮安全学习驾驶

2. 双轮平衡车是利用陀螺仪进行前后稳定的。当身体前倾,独轮车会感知到动作进行加速;当身体后仰,平衡车也会控制电机减速以维持驾驶者与车体的平衡。双轮平衡车能帮助左右平衡,不像是骑自行车一样,需要靠一定的速度和身体来控制左右平衡。

准备工作

1. 选择适合的场地:请在平坦、空旷、无机动车、人少的场地进行试车。

2. 检查车辆:驾驶前需要检查电力是否充足、摇动车辆是否有异响和松动、

手动推行平衡车看车轮是否与外壳产生摩擦。

3. 最好可以找一位朋友一起学习骑行,可以提供协助,会对更快的掌握骑车技巧有帮助。

4. 参考驾驶步骤,开始学习。

使用说明

骑行双轮自平衡车一共分为5步。仔绅阅读并按照说明书指示开始学习,在前一步尚未掌握之前,不要轻易尝试后面的步骤。这样会有利于更快,更扎实的掌握骑行的基本技巧。

接通电源

1) 一只手抓住把手,将双轮自平衡车直立于地面,并将两个脚踏板展开。

2) 短按电源键可以将双轮自平衡车电源打开,此时绿灯亮起。

3) 假如发现有红灯亮起,请不要尝试骑行。

4) 推荐沿着轮子前进后退的方向前后拉动把手几次,感受车轮加减速的力度。

尝试站立

1) 将一只惯用脚站到相应的脚踏板上,注意应该站在脚踏板中心位置,方便将整个身体重心转移至该脚上。

2) 站立身体,站在脚踏板上的那只脚注意控制双轮自平衡车前后平衡,并用小腿靠紧机壳软胶。

3) 将重心逐渐地转移到在双轮自平衡车的那只脚上,过程中要求小腿,脚和双轮自平衡车能组成稳定的三角支撑,否则将很难把重心移移到双轮自平衡车上。在不能将重心成功转移至双轮自平衡车上的那只脚,另一只脚离开地面保持1-2秒钟之前,强烈建议不进行下一步骑行。

前行

1) 初级前行:

像骑自行车那样,将绝大部分重心转移到双轮自平衡车上,并且轻轻向前

踩下脚踏板,同时地面上的那只脚轻轻往后一蹬,双轮自平衡车就会向前行走。就像在上一步保持单脚站立双轮自平衡车的动作一样,需要在骑行过程中尽量保持身体平衡,同时需要将地面上的那只脚快速轻盈地放到另一个脚踏板上。这一步要求至少可以骑行3-5米的距离。

2) 中级前行:

走到这一步,已经基本可以正常驾驶双轮自平衡车了。在这一步中需要注意两个要点:保持一定的速度、通过前倾后仰来控制速度。建议在骑行过程中不断积累经验,不断练习,在比较有信心可以保持骑行很长距离以后再进行下一步。

转弯

关于转弯:初学者都喜欢以转动上身的方法来进行转弯,但是那样的操作效果不好。建议通过调整左右脚踩踏的力度来调整车体的左右倾斜程度进行转弯,通过不断地练习,会达到所期待的转弯效果。

骑行安全

至此,相信已经学会了如何骑行双轮自平衡车。但是还是建议一定要在逐渐了解车辆性能的基础上,去逐渐挑战没有尝试过的动作。双轮自平衡车的动力是有限度的,超过限度双轮自平衡车会无法支撑身体,导致从车上掉下来,所以务必要小心驾驶。

充电

1. 产品内置一套锂离子电池,在第一次使用本产品前,确保电池已充满电

2. 确保在干净、干燥的环境下进行充电。充电器的电源线的一端连接交流电源插座,另一端连接双轮自平衡车,红色指示灯亮起表明充电正在进行。

3. 充电过程大约为四小时,当充电器红色指示灯变为绿时,表明充电完成。维护保养

(一) 保存

1. 不要在潮湿的地方放置双轮自平衡车;

2. 当有一段时间没有使用双轮自平衡车时,需要定期地对设备进行充电,以免电池电量耗尽。同时电池不可被随意拆除。

(二) 更换轮胎

1. 用十字螺丝刀拧松盖子外面的所有螺丝(包括把手上的螺丝),每一边都有7个。

2. 脚踏板下面的两边各有6个螺丝,松动电源开关另一侧的六颗内六角螺丝。注意:永远不要拧动电源开关一侧的内六角螺栓。

4. 当拧开这些螺丝后,将盖子以把手为轴心翻动直至机壳不妨碍拆卸轮胎。在把手的区域有一些电线,小心取开接头不要拉断这些电线,就可以更换轮胎和修理内胎了。

5. 当修理结束后,将盖板安装到原来的位置,拧紧螺丝。

结论

本文分析了两轮自平衡车的结构及参数, 并介绍了平衡车在使用时的注意事项。采用双轮双轴折叠式车轮设计可以使车子行驶更稳定,工作更可靠。本平衡车解决了解决了现在市面上双轮平衡车体积大的缺点,用两个功率较小的驱动电机取代一个功率较大的驱动电机从而简化公控制系统。使其更稳定高效。推动了双轮平衡车的发展。

参考文献

[1]李宏伟基于神经元的倒立摆双闭环PID控制弹箭与制导学报 2005

[2]霍亮两轮自平衡电动车的关键技术研究工学硕士学位论文 2006 9:11

[3]唐春林一种全数字控制的直流伺服驱动器的设计博士专家论坛 2010

[4]张伟民两轮自平衡小车控制研究控制理论与应用 2011

[5]任金星滤波器自适应滑模控制器在自平衡小车中的应用航空计算技术

2008

[6]霍亮两轮自平衡电动车的关键技术研究硕士学位论文 2010

[7]狄海江两轮自平衡机器人中若干问题研究硕士学位论文 2008

[8]张跃宝两轮不稳定小车的建模与变结构控制研究.西安电子科技大学硕士

论文.2007

[9]赵磊两轮平衡车建模与系统设计西南交通大学工学硕士论文 2010

[10]吴广鑫坐式两轮自平衡车的系统研究哈尔滨工程大学工学硕士 2011.12

致谢及声明

衷心的感谢指导老师孟俊焕副教授,在作品的完成过程中,给予了我们莫大的帮助,从课题的选择,到作品的完成,再到作品的修改,老师陪我们度过了十几个日日夜夜,您拿出了宝贵的休息时间,指导我们,尽心竭力的帮助我们完善作品,在此表示由衷的感谢!

本人郑重声明:所呈现的说明书,是在指导老师指导下,独立进行研究工作所得的成果。尽我所知,除文中已经注明引用的内容外,本研究成果不包含任何他人享有著作权的内容。对本说明书所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式表明。

附录

电动机正反转驱动程序:

#include

unsigned char timer1;

sbit PWM=P1^2;

void system_Ini()

{

TMOD|= 0x11;

//PWM

TH1 = 0xfe; //11.0592

TL1 = 0x33;

TR1 = 1;

IE =0x8A;

}

main()

{

system_Ini();

while(1)

{ if(timer1>100) timer1=0;

if(timer1<30) PWM=0;

else PWM=1;

}

}/*************************************

[ t1 (0.5ms)中断] 中断中做PWM 输出

------------1000/(0.02ms*250)=200Hz*************************************/ void T1zd(void) interrupt 3 {

TH1 = 0xfe; //11.0592

TL1 = 0x33;

timer1++;

}

两轮平衡车说明书

双轮自平衡车 学校:德州学院 学生:唐文涛焦方磊李尧 指导老师:孟俊焕 时间:二О一四年7 月10日~10 月 6 日共12 周

中文摘要 两轮自平衡车是动态平衡机器人的一种。2008年我国奥运会的时候安全保卫工作使用过它,到今年两轮平衡车已经发展的相对成熟。在国家节能、降耗、环保、低碳、经济的方针政策下,两轮平衡车进行了资源整合、技术升级,在原来的两轮单轴式自平衡的基础上采取两轴双轮可折叠设计,两轮自平衡车具有运动灵活、智能控制、操作简单、驾驶姿势多样、节省能源、绿色环保、转弯半径为0等优点。适用于在狭小空间内运行,能够在大型购物中心、国际性会议或展览场所、体育场馆、办公大楼、大型公园及广场、生态旅游风景区、大学校园、城市中的生活住宅小区等各种室内或室外场合中作为人们的中、短距离代步工具。也是集娱乐、代步、炫酷为一体的,主打形象是汽车伴侣解决停车后几公里内的代步问题。 两轮自平衡车主要由驱动电机、锂电池组、车轮、车身等组成。其工作原理:车体内置的精密固态陀螺仪来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。 关键词:陀螺仪,动态稳定,折叠,驱动系统,平衡。 English abstract Two rounds of self-balancing vehicle is one of the dynamic balance of the robot. In 2008 the Olympic Games security work used it in our country, in the year to balance two rounds of car has developed relatively mature. In the national energy saving, consumption reduction, environmental protection, low carbon, economic policies and regulations, the two rounds of balance of resource integration, technology upgrades, in the original two rounds of single shaft type taken on the basis of self balancing two shaft double folding design, two rounds of self-balancing vehicle movement, flexible, intelligent control, simple operation and driving posture diversity, save energy, green environmental protection, the advantages of turning radius of 0. Apply to run in narrow space, can in a large shopping center, the international conference and exhibition venues, sports venues, office buildings, large parks and square, ecological tourism scenic spot, the university campus, city life in residential quarters and other indoor or outdoor situations as the medium and short distance transport of people. Is entertainment, walking, cool as a whole, the main image is car partner solve the problem of parking within a few kilometers after walking. Two rounds of self-balancing vehicle is mainly composed of drive motor, lithium battery pack, wheel, body, etc. Its working principle: the body's built-in precision solid-state gyroscope to judge the body's position, through sophisticated and high-speed central microprocessor

两轮自平衡车

两轮自平衡送餐车 【摘要】:本项目为“两轮自平衡车送餐机器人”系统的研究与实现,从加速度计和陀螺仪传感器得出的角度。运用卡尔曼滤波优化,补偿陀螺仪的漂移误差和加速度计的动态误差,得到更优的倾角近似值。根据PID控制调节参数,实现两轮直立行走。通过电磁传感器对电磁线的检测和GPS模块精确定位,实现了平衡车的自动送餐功能。 【关键字】:加速度计陀螺仪卡尔曼滤波PID控制调节电磁传感器GPS模块 【Abstract】:This is a project of "research and Realization of a two wheeled self balancing robot car room" system, from the accelerometer and gyro sensor of angle. Using the Calman filter optimization, the dynamic error of gyroscope drift error and acceleration compensation plan, to get better approximations angle. According to the PID control parameters, achieve two upright. Through the detection and accurate positioning of GPS module electromagnetic sensors on the magnet wire, the balance of the car automatic room function. 【Keyword】:saccelerometer gyroscope Calman filtering PID control electromagnetic sensor GPS module

两轮自平衡小车控制系统的设计

两轮自平衡小车控制系统的设计 摘要:介绍了两轮自平衡小车控制系统的设计与实现,系统以飞思卡尔公司的16位微控制器MC9S12XS128MAL作为核心控制单元,利用加速度传感器MMA7361测量重力加速度的分量,即小车的实时倾角,以及利用陀螺仪ENC-03MB测量小车的实时角速度,并利用光电编码器采集小车的前进速度,实现了小车的平衡和速度控制。在小车可以保持两轮自平衡前提下,采用摄像头CCD-TSL1401作为路径识别传感器,实时采集赛道信息,并通过左右轮差速控制转弯,使小车始终沿着赛道中线运行。实验表明,该控制系统能较好地控制小车平衡快速地跟随跑道运行,具有一定的实用性。 关键词:控制;自平衡;实时性 近年来,随着经济的不断发展和城市人口的日益增长,城市交通阻塞以及耗能、污染问题成为了一个困扰人们的心病。新型交通工具的诞生显得尤为重要,两轮自平衡小车应运而生,其以行走灵活、便利、节能等特点得到了很大的发展。但是,昂贵的成本还是令人望而止步,成为它暂时无法广泛推广的一个重要原因。因此,开展对两轮自平衡车的深入研究,不仅对改善平衡车的性价比有着重要意义,同时也对提高我国在该领域的科研水平、扩展机器人的应用背景等具有重要的理论及现实意义。全国大学生飞思卡尔智能车竞赛与时俱进,第七届电磁组小车首次采用了两轮小车,模拟两轮自平衡电动智能车的运行机理。在此基础上,第八届光电组小车再次采用两轮小车作为控制系统的载体。小车设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械及能源等多个学科的知识。 1 小车控制系统总体方案 小车以16位单片机MC9S12XS128MAL作为中央控制单元,用陀螺仪和加速度传感器分别检测小车的加速度和倾斜角度[1],以线性CCD采集小车行走时的赛道信息,最终通过三者的数据融合,作为直流电机的输入量,从而驱动直流电机的差速运转,实现小车的自动循轨功能。同时,为了更方便、及时地观察小车行走时数据的变化,并且对数据作出正确的处理,本系统调试时需要无线模块和上位机的配合。小车控制系统总体架构。 2 小车控制系统自平衡原理 两轮小车能够实现自平衡功能,并且在受到一定外力的干扰下,仍能保持直立状态,是小车可以沿着赛道自动循线行走的先决条件。为了更好地控制小车的行走方式,得到最优的行走路径,需要对小车分模块分析与控制。 本控制系统维持小车直立和运行的动力都来自小车的两个轮子,轮子转动由两个直流电机驱动。小车作为一个控制对象,它的控制输入量是两个电机的转动速度。小车运动控制可以分解成以下3个基本控制任务。 (1)小车平衡控制:通过控制两个电机正反方向运动保持小车直立平衡状态; (2)小车速度控制:通过调节小车的倾斜角度来实现小车速度控制,本质上是通过控制电机的转速来实现小车速度的控制。 (3)小车方向控制:通过控制两个电机之间的转动差速实现小车转向控制。 2.1 小车平衡控制 要想实现小车的平衡控制,需要采取负反馈控制方式[2]。当小车偏离平衡点时,通过控制电机驱动电机实现加、减速,从而抵消小车倾斜的趋势,便可以保持车体平衡。即当小车有向前倾的趋势时,可以使电机正向加速,给小车一个向前的加速度,在回复力和阻尼力的作用下,小车不至于向前倾倒;当小车有向后倾的趋势时,可以使小车反向加速,给小车一个向后的加速度,从而不会让小车向后倾倒,。

基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计 摘要 两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用STC 公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。 整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。通过蓝牙,还可以控制小车前进,后退,左右转。 关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法 Design of Control System of Two-Wheel Self-Balance Vehicle based on Microcontroller Abstract Two-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometer

双轮自平衡小车机器人系统设计与制作

燕山大学 课程设计说明书题目:双轮自平衡小车机器人系统设计与制作 学院(系):机械工程学院 年级专业:12级机械电子工程 组号:3 学生: 指导教师:史艳国建涛艳文史小华庆玲 唐艳华富娟晓飞正操胡浩波 日期: 2015.11

燕山大学课程设计(论文)任务书院(系):机械工程学院基层教学单位:机械电子工程系

摘要 两轮自平衡小车是一种非线性、多变量、强耦合、参数不确定的复杂系统,他体积小、结构简单、运动灵活,适合在狭小空间工作,是检验各种控制方法的一个理想装置,受到广大研究人员的重视,成为具有挑战性的课题之一。 两轮自平衡小车系统是一种两轮左右并行布置的系统。像传统的倒立一样,其工作原理是依靠倾角传感器所检测的位姿和状态变化率结合控制算法来维持自身平衡。本设计通过对倒立摆进行动力学建模,类比得到小车平衡的条件。从加速度计和陀螺仪传感器得出的角度。运用卡尔曼滤波优化,补偿陀螺仪的漂移误差和加速度计的动态误差,得到更优的倾角近似值。通过光电编码器分别得到车子的线速度和转向角速度,对速度进行PI控制。根据PID控制调节参数,实现两轮直立行走。通过调节左右两轮的差速实现小车的转向。 制作完成后,小车实现了在无线蓝牙通讯下前进、后退、和左右转向的基本动作。此外小车能在正常条件下达到自主平衡状态。并且在适量干扰下,小车能够自主调整并迅速恢复稳定状态。 关键词:自平衡陀螺仪控制调试

前言 移动机器人是机器人学的一个重要分支,对于移动机器人的研究,包括轮式、腿式、履带式以及水下式机器人等,可以追溯到20世纪60年代。移动机器人得到快速发展有两方面原因:一是其应用围越来越广泛;二是相关领域如计算、传感、控制及执行等技术的快速发展。移动机器人尚有不少技术问题有待解决,因此近几年对移动机器人的研究相当活跃。 近年来,随着移动机器人研究不断深入、应用领域更加广泛,所面临的环境和任务也越来越复杂。机器人经常会遇到一些比较狭窄,而且有很多大转角的工作场合,如何在这样比较复杂的环境中灵活快捷的执行任务,成为人们颇为关心的一个问题。双轮自平衡机器人概念就是在这样的背景下提出来的。两轮自平衡小车是一个高度不稳定两轮机器人,是一种多变量、非线性、强耦合的系统,是检验各种控制方法的典型装置。同时由于它具有体积小、运动灵活、零转弯半径等特点,将会在军用和民用领域有着广泛的应用前景。因为它既有理论研究意义又有实用价值,所以两轮自平衡小车的研究在最近十年引起了大量机器人技术实验室的广泛关注。 本论文主要叙述了基于stm32控制的两轮自平衡小车的设计与实现的整个过程。主要容为两轮自平衡小车的平衡原理,直立控制,速度控制,转向控制及系统定位算法的设计。通过此设计使小车具备一定的自平衡能力、负载承载能力、速度调节能力和无线通讯功能。小车能够自动检测自身机械系统的倾角并完成姿态的调整,并在加载一定重量的重物时能够快速做出调整并保证自身系统的自我平衡。能够以不同运动速度实现双轮车系统的前进、后退、左转与右转等动作,同时也能够实现双轮自平衡车系统的无线远程控制操作

大学毕业设计---基于arm的两轮自平衡车模型系统设计课程

中北大学 课程设计说明书 学生姓名: *杰学号:* 学院: 仪器与电子学院 专业: * 题目: 基于ARM的两轮自平衡车模型系统设计 指导教师:李锦明职称: 副教授 2015 年1 月30 日

摘要 近年来,两轮自平衡车的研究与应用获得了迅猛发展。本文提出了一种两轮自平衡小车的设计方案,采用陀螺仪L3G4200以及MEMS加速度传感器MMA7260构成小车姿态检测装置,使用卡尔曼滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用飞思卡尔32位单片机Kinetis K60为控制核心,通过滤波算法实现车身控制,人机交互等。 整个系统制作完成后,各个模块能够正常并协调工作,小车可以在无人干预条件下实现自主平衡。同时在引入适量干扰情况下小车能够自主调整并迅速恢复稳定状态。 关键词:两轮自平衡陀螺仪姿态检测卡尔曼滤波数据融合

目录 1 课程设计目的 (1) 2 设计内容和要求 (1) 2.1 设计要求 (1) 2.2 研究意义 (1) 2.3 研究内容 (2) 3 设计方案及实现情况 (2) 3.1 两轮平衡车的平衡原理 (2) 3.2 系统方案设计 (3) 3.3 系统最终方案 (6) 3.4 系统软件设计 (9) 3.5 电路调试 (16) 4 课程设计总结 (18) 参考文献 (19) 附录 (20) 致谢 (21)

1 课程设计目的 (1)掌握嵌入式系统的一般设计方法和设计流程; (2)学习嵌入式系统设计,掌握相关IDE开发环境的使用方法; (3)掌握ARM的应用; (4)学习掌握嵌入式系设计的全过程; 2 设计内容和要求 2.1 设计要求 (1)学习掌握基于ARM Cortex-M4内核的Kinetis K60系列单片机的工作原理及应用;(2)学习掌握加速度计、陀螺仪的工作原理及应用; (3)设计基于PID控制的两轮自平衡车模型系统的工作原理图及PCB版图; 2.2 研究意义 近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科 学研究最活跃的领域之一,移动机器人的应用范围越来越广泛,面临的环境和任务也 越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。比如,户外 移动机器人需要在凹凸不平的地面上行走,有时环境中能够允许机器人运行的地方比 较狭窄等。如何解决机器人在这些环境中运行的问题,逐渐成为研究者关心的问题[1]。 两轮自平衡机器人的概念正是在这样一个背景下提出来的,这种机器人区别于其 他移动机器人的最显著的特点是:采用了两轮共轴、各自独立驱动的工作方式(这种驱 动方式又被称为差分式驱动方式),车身的重心位于车轮轴的上方,通过轮子的前后移 动来保持车身的平衡,并且还能够在直立平衡的情况下行驶。由于特殊的结构,其适 应地形变化能力强,运动灵活,可以胜任一些复杂环境里的工作。 两轮自平衡机器人自面世以来,一直受到世界各国机器人爱好者和研究者的关 注,这不仅是因为两轮自平衡机器人具有独特的外形和结构,更重要的是因为其自身 的本质不稳定性和非线性使它成为很好的验证控制理论和控制方法的平台,具有很高 的研究价值。

自平衡车模型分析

自平衡车模型分析

一、 求解车体除两轮外部分动能 车体沿X 轴方向速度: R L V R L x 2 )(cos θθθθ&&&++= 车体沿Y 轴方向速度: R D L V R L y )(sin θθθ&&-= 车体沿Z 轴方向速度 θθsin &L V z = 车体沿过质心的Z 轴的转动惯量为: m yz J J J y z z ???++=d sin cos 22θθθ 由于假设车体关于ZY 平面对称,因此 0d =???m yz 因此 θθθ22sin cos y z z J J J += 则可以得到车体的平动动能: ??? ? ??+-+++=2221)sin ())(sin ()2)(cos 21θθθθθθθθθ&&&&&&L R D L R L E R L R L kp ( 车体的转动动能为: ??? ? ??+-+=22222 ))()(sin cos (21θθθθθ&&&x R L y z kp J R D J J E 则车体的总动能为: 21kp kp kp E E E += 二、 求解车轮动能 左车轮平动速度为:

R V L x w L θ&= 右车轮平动速度为 R V R x w R θ&= 两轮有同样的绕垂直于半径的转动速度: R D R L w )(θθω&&-= 则左车轮的动能为: 2 22)(2121)(21??? ? ??-++=D R J J R m E R L R L L kw L θθθθφ&&&& 则右车轮的动能为: 222)(2121)(21??? ? ??-++=D R J J R m E R L R R R kw R θθθθφ&&&& 三、 求解车体势能 由于在平地上行进,车轮势能不变。车体整体势能可变部分表示为: θcos g m E p p = 四、 拉格朗日函数的求解 得到最终的拉格朗日函数为: p kw kw kp kp E E E E E L L R -+++=21 依据拉格朗日动力学法求解,进行如下运算: R L M M L dt L d --=??-??θ θ& L L L M L dt L d =??-??θθ& R R R M L dt L d =??-??θθ& 得到动力学方程: 方程一: () R L R L z y p p R L p x p M M R D J J L m gL m R L m J L m --=??? ? ??--+--+++222 )(cos sin sin 2)(cos )θθθθθθθθθ&&&&&&&&(

两轮自平衡车

两轮自平衡车 算法:和大家的一样,一个倾角环,一个车速环。取得角度、角速度、车速、车位移四个量后经过运算送给PWM驱动电机。 硬件: 主控:atmega16; 角度传感器:角速度传感器(陀螺仪)ENC-03MB(直接接AD输入,未加硬件滤波)、加速度传感器MMA7260,二者kalman融合取得角度、角速度。PS:抄zlstone的,呵呵。 电机速度传感器:每个电机两个霍尔传感器(AB相)。 电机:型号不清楚,很常见的减速电机。额定电压6V,功率3W。 电机驱动:L298N 电源:变压器整流桥那种普通电源,几块钱一个。两个,电机、MCU分开供电。电机电源电压打到最高不接电机时15V多,接了电机5V多,汗。。 显示器:LCD1602B 遥控:电视红外遥控器

引用图片 (原文件名:20110110_0104.jpg) 引用图片 源代码WINAVR20100110+AVRStudio4.18ourdev_610434C8FD1C.rar(文件大小:104K)(原文件名:Balance.rar)原理图: atmega16最小系统版ourdev_610214M89OEI.pdf(文件大小:30K)(原文件名:M16迷你板电路图.pdf)

上位机,带波形、数据显示ourdev_610318TY8G24.rar(文件大小:48K)(原文件名:串口调试.rar) 车速未滤波之前波形(原文件名:车速未滤波之前波形.JPG)

车速10Hz低通滤波后波形(原文件名:车速10Hz低通滤波后波形.JPG) 视频在这里https://www.sodocs.net/doc/3115468816.html,/v_show/id_XMjM1OTQ3NzU2.html 现在还不是很稳,我想有两个原因,一个是参数没调到最佳,调了好久,先这样吧。再有就是电源太烂了,电机是额定6V的可实际电压空载的时候才打到5伏多一点,在平衡的时候没测,肯定更低了。 陀螺仪ENC-03是直接接AD输入端的,因为按照datasheet上边的参考电路有过冲问题,这个问题有个帖子已经讨论过,很多人都是 围绕怎么补救这个问题,我来算一下为什么这样子,呵呵~如下: 高通滤波脉冲响应(原文件名:QQ截图未命名.jpg) 因为有这个问题,会给倾角数据造成影响,所以我就去掉了滤波,直接接到AD。这样1deg/s有0.67mv,10位AD参考电压是3.36V,最小才能测到3.28mv,小于4.8deg时就测不到了。本来担心这个问题,但试了下KALMAN滤波,真是强啊!角度很精确,就这么用了。 车体研究了好久,没有用钢化玻璃的设备,就一直没动工。有天去打水突然看到旁边有个大的三合板,呵呵,于是乎。。

基于PID控制器的两轮自平衡小车设计

本科毕业设计 基于PID控制器的两轮自平衡小车设计 摘要 两轮自平衡小车具有体积小、结构简单、运动灵活的特点,适用于狭小和危险的工作空间,在安防和军事上有广泛的应用前景。两轮自平衡小车是一种两轮左右平衡布置的,像传统倒立摆一样,本身是一种自然不稳定体,其动力学方程具有多变量、非线性、强耦合、时变、参数不确定性等特性,需要施加强有力的控制手段才能使其保持平衡。 本文在总结和归纳国内外对两轮自平衡小车的研究现状,提出了自己的两轮自平衡小车软硬件设计方案,小车硬件采用陀螺仪和加速度传感器检测车身的重力方向的倾斜角度和车身轮轴方向上的旋转加速度,数据通过控制器处理后,控制电机调整小车状态,使小车保持平衡。由于陀螺仪存在温漂和积分误差,加速度传感器动态响应较慢,不能有效可靠的反应车身的状态,所以软件使用互补滤波算法将陀螺仪和加速度传感器数据融合,结合陀螺仪的快速的动态响应特性和加速度传感器的长时间稳定特性,得到一个优化的角度近似值。 文中最后通过实验验证了自平衡小车软硬件控制方案的可行性。 关键词:自平衡互补滤波数据融合倒立摆 Two-wheeledSelf-balancingRobot MaXuedong (CollegeofEngineering,SouthChinaAgriculturalUniversity,Guangzhou510642,China) Abstract:Thetwo-wheeledself-balancingrobotissmallinmechanism,withsimplest ructureandcanmakeflexiblemotion,目录 华南农业大学本科生毕业设计成绩评定表

平衡车介绍

平衡车介绍 概述 编辑 随着人们环保意识的加强,电动车的数量与日俱增。与此同时,科学家经过潜心的研究,终于开发出新款两轮电动平衡车。两轮电动平衡车是一种新型的交通工具,它与电动自行车和摩托车车轮前后排列方式不同,而是采用两轮并排固定的方式。两轮电动平衡车采用两个轮子支撑,蓄电池供电,无刷电机驱动,加上单片机控制,姿态传感器采集角速度和角度信号,共同协调控制车体的平衡,仅仅依靠人体重心的改变便可以实现车辆的启动、加速、减速、停止等动作。[1] 技术原理 编辑 运作原理主要是建立在一种被称为“动态稳定”(DynamicStabilization)的基本原理上,也就是车辆本身的自动平衡能力。以内置的精密固态陀螺仪(Solid-StateGyroscopes)来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。 技术特点 编辑 1、左右两轮电动车,独特的平衡设计方案。 2、集“嵌入式+工业设计+艺术设计”的产品集成创新技术,以嵌入式技术提升产品的内在智能化,以适应当代产品数字化、智能化的趋势,实现由内而外的创新。 3、产品信息建模,建立一套既包含产品形状特征,也包含用户认知意象的心理特征体系,并在此基础上进一步开发以用户对产品的最终要求驱动的产品生成系统。 功能配置 编辑 代步出行 代步是电动平衡车以及同类型产品具有的物理特性,时速最高可达20km,单次充电可完成20-70km的续航里

程。 移动视频 电动平衡车可以与手机、DV、相机等设备结合,利用其自动行走功能,成为移动拍摄平台。 APP应用 电动平衡车可以与手机互联,通过手机APP,可以实时了解体感车的行驶、售后信息,同时,APP还可以实现交友、分享等功能,同时还具有蓝牙配置功能,通过手机蓝牙来控制车子。 蓝牙音箱 配备蓝牙音箱,通过手机蓝牙播放音乐,成为移动音乐平台。产品特色 电力驱动,噪音小:电动平衡车采用锂电池组作为动力来源,实现了碳的零排放,并采用了动力转换技术,能够在下坡行驶的过程中自动为锂电池组进行充电,使电能与动能可以循环利用,同时由于改良了电机性能,所以电动平衡车的噪音非常小。 体积小,重量轻:两双拖鞋大小的垂直投影面积,占地空间小,并且把手可以快速拆卸。电动平衡车整车重量在15kg左右,同时车体配有提拉杆,便于搬运携带。 站立式驾驶:电动平衡车采用站立式驾驶方式,通过身体重心和操控杆控制车体运行。同时可以使用配件中 的短把手,用小腿控制车体运动,解放双手。

双轮自平衡车设计报告

双轮自平衡车设计报告 学院………….......... 班级…………………… 姓名………………..手机号…………………..姓名………………..手机号…………………..姓名………………..手机号…………………..

目录 一、双轮自平衡车原理 二、总体方案 三、电路和程序设计 四、算法分析及参数确定过程

一.双轮自平衡车原理 1.控制小车平衡的直观经验来自于人们日常生活经验。一般的人通过简单练习就可以让一个直木棒在手 指尖上保持直立。这需要两个条件:一个是托着木棒的手掌可以移动;另一个是眼睛可以观察到木棒的倾斜角度和倾斜趋势(角速度)。通过手掌移动抵消木棒的倾斜角度和趋势,从而保持木棒的直立。这两个条 件缺一不可,让木棒保持平衡的过程实际上就是控制中的负反馈控制。 图1 木棒控制原理图 2.小车的平衡和上面保持木棒平衡相比,要简单一些。因为小车是在一维上面保持平衡的,理想状态下,小车只需沿着轮胎方向前后移动保持平衡即可。 图2 平衡小车的三种状态 3.根据图2所示的平衡小车的三种状态,我们把小车偏离平衡位置的角度作为偏差;我们的目标是通过 负反馈控制,让这个偏差接近于零。用比较通俗的话描述就是:小车往前倾时车轮要往前运动,小车往后倾时车轮要往后运动,让小车保持平衡。 4.下面我们分析一下单摆模型,如图4所示。在重力作用下,单摆受到和角度成正比,运动方向相反的回复力。而且在空气中运动的单摆,由于受到空气的阻尼力,单摆最终会停止在垂直平衡位置。空气的阻尼力与单摆运动速度成正比,方向相反。 图4 单摆及其运动曲线

类比到我们的平衡小车,为了让小车能静止在平衡位置附近,我们不仅需要在电机上施加和倾角成正比的回复力,还需要增加和角速度成正比的阻尼力,阻尼力与运动方向相反。 5 平衡小车直立控制原理图 5.根据上面的分析,我们还可以总结得到一些调试的技巧:比例控制是引入了回复力;微分控制是引入了阻尼力,微分系数与转动惯量有关。 在小车质量一定的情况下,重心位置增高,因为需要的回复力减小,所以比例控制系数下降;转动惯量变大,所以微分控制系数增大。在小车重心位置一定的情况下,质量增大,因为需要的回复力增大,比例控制系数增大;转动惯量变大,所以微分控制系数增大。 二.总体方案 ■小车总框图

基于ARM的两轮自平衡车模型系统设计课程设计

课程设计说明书 学生姓名:学号: 学院: 专业: 题目: 基于ARM的两轮自平衡车模型系统设计

摘要 近年来,两轮自平衡车的研究与应用获得了迅猛发展。本文提出了一种两轮自平衡小车的设计方案,采用陀螺仪L3G4200以及MEMS加速度传感器MMA7260构成小车姿态检测装置,使用卡尔曼滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用飞思卡尔32位单片机Kinetis K60为控制核心,通过滤波算法实现车身控制,人机交互等。 整个系统制作完成后,各个模块能够正常并协调工作,小车可以在无人干预条件下实现自主平衡。同时在引入适量干扰情况下小车能够自主调整并迅速恢复稳定状态。 关键词:两轮自平衡陀螺仪姿态检测卡尔曼滤波数据融合

目录 1 课程设计目的 (1) 2 设计内容和要求 (1) 2.1 设计要求 (1) 2.2 研究意义 (1) 2.3 研究内容 (2) 3 设计方案及实现情况 (2) 3.1 两轮平衡车的平衡原理 (2) 3.2 系统方案设计 (3) 3.3 系统最终方案 (6) 3.4 系统软件设计 (9) 3.5 电路调试 (16) 4 课程设计总结 (18) 参考文献 (19) 附录 (20) 致谢 (21)

1 课程设计目的 (1)掌握嵌入式系统的一般设计方法和设计流程; (2)学习嵌入式系统设计,掌握相关IDE开发环境的使用方法; (3)掌握ARM的应用; (4)学习掌握嵌入式系设计的全过程; 2 设计内容和要求 2.1 设计要求 (1)学习掌握基于ARM Cortex-M4内核的Kinetis K60系列单片机的工作原理及应用;(2)学习掌握加速度计、陀螺仪的工作原理及应用; (3)设计基于PID控制的两轮自平衡车模型系统的工作原理图及PCB版图; 2.2 研究意义 近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科 学研究最活跃的领域之一,移动机器人的应用范围越来越广泛,面临的环境和任务也 越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。比如,户外 移动机器人需要在凹凸不平的地面上行走,有时环境中能够允许机器人运行的地方比 较狭窄等。如何解决机器人在这些环境中运行的问题,逐渐成为研究者关心的问题[1]。 两轮自平衡机器人的概念正是在这样一个背景下提出来的,这种机器人区别于其 他移动机器人的最显著的特点是:采用了两轮共轴、各自独立驱动的工作方式(这种驱 动方式又被称为差分式驱动方式),车身的重心位于车轮轴的上方,通过轮子的前后移 动来保持车身的平衡,并且还能够在直立平衡的情况下行驶。由于特殊的结构,其适 应地形变化能力强,运动灵活,可以胜任一些复杂环境里的工作。 两轮自平衡机器人自面世以来,一直受到世界各国机器人爱好者和研究者的关 注,这不仅是因为两轮自平衡机器人具有独特的外形和结构,更重要的是因为其自身 的本质不稳定性和非线性使它成为很好的验证控制理论和控制方法的平台,具有很高 的研究价值。

基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

基于单片机的两轮自平衡车控制系统设计 摘要 两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。 整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。通过蓝牙,还可以控制小车前进,后退,左右转。 关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法Design of Control System of Two-Wheel Self-Balance Vehicle based on Microcontroller Abstract Two-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity

线控两轮平衡车的建模与控制研究

线性系统理论 上机实验报告 题目:两轮平衡小车的建模与控制研究 完成时间:2016-11-29 1.研究背景及意义 现代社会人们活动范围已经大大延伸,交通对于每个人都十分重要。交通工具的选择则是重中之重,是全社会关注的焦点。 随着社会经济的发展,人民生活水平的提高,越来越多的小汽车走进了寻常百姓家。汽车快捷方便、省时省力,现代化程度高,种类繁多的个性化设计满足了不同人的需求。但它体积大、重量大、污染大、噪声大、耗油大、技术复杂、使用不便、价格贵、停放困难,效率不高,而且还会造成交通拥堵并带来安全隐患。相比之下,自行车是一种既经济又实用的交通工具。中国是自行车大国,短距离出行人们常选择骑自行车。自行车确实方便,但在使用之前需要先学会骑车,虽然看似简单,平衡能力差的人学起来却很困难,容易摔倒,造成人身伤害。另外,自行车毕竟不适宜长距离的行驶,遥远的路程会使人感到疲劳。 那么,究竟有没有这样一种交通工具,集两者的优点于一身呢既能像汽车一样方便快捷又如自行车般经济简洁,而且操作易于掌握,易学又易用。两轮自平衡车概念就是在这样的背景下提出来的。 借鉴目前国内外两轮自平衡车的成功经验,本文提出的研究目标是设计一款新型的、结构简单、成本低的两轮自平衡车,使其能够很好地实现自平衡功能,同时设计结果通过MATLAB进行仿真验证。

2.研究内容 自平衡式两轮电动车是一个非线性、强耦合、欠驱动的自不稳定系统,对其控制策略的研究具有重大的理论意义。我们通过分析两轮平衡车的物理结构以及在平衡瞬间的力学关系,得到两轮车的力学平衡方程,并建立其数学模型。运用MATLAB 和SIMULINK 仿真系统的角度θ、角加速度? θ、位移x 和速度的? x 变化过程,对其利用外部控制器来控制其平衡。 3.系统建模 两轮平衡车的瞬时力平衡分析如图1所示。下面将分析归纳此时的力平衡方程[1-3],并逐步建立其数学模型。 对两轮平衡车的右轮进行力学分析,如图2所示。 依据图2对右轮进行受力分析,并建立其平衡方程: =R R R R M X f H ? - (1) R R R R J C f R ??? =- (2) 同理,对左轮进行受力分析,并建立其平衡方程: =R L L L M X f H ? - (3) L L L L J C f R ??? =- (4) 两轮平衡车摆杆的受力分析如图3所示,由图3可以得到水平和垂直方向的平衡方程以及转矩方程。 水平方向的平衡方程: H H x R L p m +=? ? (5) 其中θsin L x x m p +=,则有: ? ?? ?? ?*+*-=θθθθcos sin 2 L L x x m p (6)

两轮自平衡智能车硬件系统计

两轮自平衡智能车硬件系统计 发表时间:2017-09-06T11:16:11.530Z 来源:《电力设备》2017年第14期作者:胡巍郑琼伟毛玉列刘青松[导读] 摘要:针对智能车为两轮直立行走的要求,提出了系统的设计方案。微处理器采用MC9S12XS128,用加速度传感器检测车的倾角,陀螺仪检测车的角加速度;通过控制两个电机的加减速实现车的自平衡控制。 (嘉兴学院浙江嘉兴 314001) 摘要:针对智能车为两轮直立行走的要求,提出了系统的设计方案。微处理器采用MC9S12XS128,用加速度传感器检测车的倾角,陀螺仪检测车的角加速度;通过控制两个电机的加减速实现车的自平衡控制。实验表明:该方法制作的两轮自平衡车构造简单,控制方便,能够较好的实现自平衡控制。 关键词:自平衡;智能车;传感器;驱动 两轮自平衡小车本质上是一类两轮智能机器人,是机器人研究领域中一个崭新的方向。与传统的机器人相比,它具有更广阔的发展前景。开展该领域的研究,对拓展机器人的应用范围、提高国内两轮机器人的研究水平和机器人控制水平有重要的理论和现实意义。本文以MC9S12XS128为微处理器,采用MMA7260加速度传感器和NEC-03陀螺仪共同检测车模的角度信息,通过控制两个电机的加减速度来实现了智能车的自平衡控制,实验表明:该方法制作的两轮自平衡车构造简单,控制方便,适应性强、响应迅速快,能够较好的实现自平衡控制并有很强的抗干扰能力。 1.设计原理 两轮车是一个高度不稳定系统,在重力作用下车体姿态本征不稳定,致使在没有外加调控下必然倾倒的现象。因此,要保持车的平衡只有通过控制轮子转动,抵消车体倾斜的趋势以保持平衡。为了保持智能车的直立自平衡状态,需要满足以下两个条件:一是需要准确测量车体的倾角和角加速度的大小,以得到车的状态和趋势;二是需要控制车轮的速度和加速度,使智能车保持直立的状态。因此,从控制角度来看,将智能车作为一个控制对象,两个车轮的转动速度为控制输量。整个控制系统又可分为三个子系统:(1)智能车的平衡控制:车的倾角为输入量,通过控制两个电机的加速度保持小车衡。(2)智能车的速度控制:在保持平衡的基础上,改变车的倾角来调节车的速度,实际上还是通过对电机的控制来实现速度控制。(3)智能车方向控制:控制两个电机的转速差来实现车的转向。 2.自平衡智能车系统结构 自平衡智能车系统主要包括系统主要由以下几个模块组成:MC9S12XS128单片机最小系统硬件设计、电源模块硬件设计、倾角传感器信号调理电路设计、电机驱动电路设计、速度检测电路。自平衡智能车系统结构框图如图1所示。 图1自平衡智能车系统结构框图 通过加速度传感器和陀螺仪共同检测智能车的角度信息(即角度和角速度信息),智能车使用H桥驱动来驱动直流电机;为了实现对车速精准的控制,需要测速模块。 2.1 加速度传感器 本系统采用的加速度计是飞思卡尔公司三轴加速度计MMA7260。可以同时输出3个方向上的加速度模拟信号,该加速度传感器是一种低g值的传感器,输出信号很大,不需要再进行放大。电路搭建简单,测量精度高。 2.2 陀螺仪 陀螺仪可以用来测量物体的旋转角速度,因此,本系统采用陀螺仪进行角速度的测量。根据精度需要选用了村田公司出品的ENC-03系列的加速度传感器,是一种低成本压电式陀螺仪,利用陶瓷双压电片受振动来检测哥式加速度,响应范围从 DC到50Hz。它利用了旋转坐标系中的物体会受到科里奥利力的原理,当旋转器件时会改变振动频率从而反映出物体旋转的角速度。 2.3 电机驱动电路设计 由于两轮自平衡车在平衡过程中需要不断前后运动调整车身姿态,因此需要电机能够实现双向转动。为此,系统采用两片专用半桥驱动芯片BTS7960构成全桥式驱动电路。由单片机的PWM模块产生驱动波形,通过改变PWM占空比实现直流电机的调速功能。驱动芯片BTS7960在工作时,阻抗典型值为16 mΩ(IOUT=9 A,Ti=25℃),最大驱动电流为43 A。由于内部集成控制电路具有逻辑电平输入功能,因此方便与单片机的接口电路连接,该集成驱动电路还具有转换率调整、电流检测能力的状态标志诊断、还具有锁定行为的过热关断、欠压锁定、过压锁定、过流以及短路保护等功能,驱动电路图如图2所示。

两轮自平衡车系统的设计

两轮自平衡车系统的设计 【摘要】两轮自平衡小车是一个集传感器系统、控制系统和推进系统于一体的机器人,通过多种传感器进行加速度、角度等数据采集、读取、处理后,将数据发送给控制器,由控制器控制电机的输出速度和转矩,让车体保持平衡,并能够按照操作者的意图前进、后退或转弯。 【关键词】自平衡车;传感器;控制器 0.引言 两轮自平衡小车是一个高度不稳定两轮机器人,是一种多变量、非线性、强耦合的系统,是检验各种控制方法的典型装置。同时由于它体积小、运动灵活、零转弯半径等特点,将会在军用和民用领域有着广泛的应用前景。 1.系统功能设计 维持车体直立行驶可以设计出很多的方案,本方案假设维持车体直立,运行的动力都来自于车体的两个轮子,图(1)所示为自平衡小车系统框图。两个车轮由大功率直流电机驱动。因此从控制角度来看,车体作为一个控制对象,它的控制输入量是两个电极的转动速度。车体运动控制任务可以分解成以下三个基本控制任务: (1)控制车体平衡:通过控制两个电机正反向运动保持车体直立平衡状态。 (2)控制车体速度:通过调节车体的倾角来实现车体速度控制,实际上最后还是演变成通过控制电机的转速来实现车轮速度的控制。 (3)控制车体方向:通过控制两个电机之间的转动差速来实现车模转向控制。 三个分解任务各自独立进行控制。由于最终都是对同一个控制对象进行控制,所以他们之间存在耦合。最终三个控制参量累加到一起作用到电机上。 2.系统机械设计 平衡车的整体结构主要包括车身、左右车轮、左右悬架和操纵杆。悬架和车轮之间6颗螺丝相连且可以相互转动;操纵杆则是靠2只较大的螺丝和车架固定。 3.系统硬件电路设计 3.1陀螺仪与加速计的数据采集与处理

相关主题