搜档网
当前位置:搜档网 › 第九章 细胞信号转导知识点总结

第九章 细胞信号转导知识点总结

第九章 细胞信号转导知识点总结
第九章 细胞信号转导知识点总结

第九章细胞信号转导

细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。

信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。

信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。

受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。

第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。

分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。

信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。

G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。

cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP 水平的变化而引起细胞反应的信号通路。

(磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。

钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。

Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

受体酪氨酸激酶(RTK):能将自身或者胞质中底物上的酪氨酸残基磷酸化的细胞表面受体,主要参与细胞生长和分化的调控。

细胞膜表面受体主要有三类,即离子通道偶联受体、G蛋白偶联受体和酶联受体。

信号分子也统称为配体,可分为疏水性信号分子、亲水性信号分子和气体性信号分子。

由G蛋白介导的信号通路主要包括cAMP-PKA信号通路和磷脂酰肌醇信号通路。

Ras蛋白在RTK介导的信号通路中起着关键作用,具有GTPase活性,当结合GTP 时为活化状态,当结合GDP时为失活状态。(GTP酶活性)

细胞转导系统的的主要特性:特异性、放大效应、网络化与反馈调节、整合作用。

G蛋白由三个亚基组成,β和γ亚基以异二聚体的形式存在,Gα亚基本身具有GTPase活性,是分子开关蛋白。当配体与受体结合,三聚体G蛋白解离,并发生GDP与GTP交换,游离的G

α-GTP处于活化的开启状态,当Gα-GTP水解形成Gα-GDP时,则处于失活的关闭状态。

1.什么叫G蛋白?简述G蛋白偶联系统中的G蛋白组成及在信号转导过程中活性调节的过程。

答:①与GTP或GDP结合的蛋白质又称为鸟苷酸结合调节蛋白。具有GTP酶的活性,以分子开关的形式通过结合或者水解GTP调节自身活性。有异源三聚体和单体G蛋白两大家族。G蛋白参与细胞的多种生命活动。

②G蛋白由Gα、Gβ、Gγ三个亚基组成,Gβ和Gγ亚基以异二聚体的形式存

在,G

α和Gβγ亚基分别通过共价结合的脂分子锚定在质膜上。Gα亚基本身具有GTPase活性,是分子开关蛋白。当配体与受体结合,三聚体G蛋白解离,并发

生GDP与GTP交换,游离的G

α-GTP处于活化的开启状态,导致结合并激活效应器蛋白,从而传递信号:当G

α-GTP水解形成Gα-GDP时,则处于失活的关闭状态,终止信号传递并导致三聚体G蛋白的重新组装,恢复系统进入静息状态。

2.何谓细胞信号传递中的分子开关?并说明其机制。

答:细胞信号转导过程中,含有正、负两种相辅相成的反馈机制,通过结合GTP 或水解GTP,或者通过蛋白质磷酸化或去磷酸化而开启或关闭蛋白质的活性。分子开关的蛋白质有两类:

①通过磷酸传递信号的开关蛋白,其活性由蛋白激酶使之磷酸化而开启,由蛋白磷酸酯酶使其去磷酸化而关闭;

②由GTP酶分子开关调控蛋白构成的细胞内GTP酶超家族,这类鸟苷酸结合蛋白结合GTP时活化,结合GDP时失活。

3.比较cAMP信号通路与IP3-DAG信号通路在跨膜信号传递作用中的异同。

答:二者都是G蛋白偶联的信号转导通路,但是二者第二信使不同,分别由不同的效应物生成:cAMP由腺苷酸环化酶水解细胞中的ATP生成,cAMP再与蛋白激酶A结合,引发一系列细胞质反应和细胞核中的作用。在另一种信号转导系统中,效应物磷脂酶C将膜上的PIP2分解为两个第二信使:DAG和IP3。IP3动员内质网中的Ca2+释放到细胞质基质中,与钙调蛋白结合引起系列反应;而DAG在Ca2+的协同下激活蛋白激酶C(PKC),再引起级联反应。

4.什么叫第二信使?简述cAMP信号通路。

答:①细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生的非蛋白类小分子,这种细胞内信号分子称为第二信使。

②cAMP信号通路又称PKA系统,是G蛋白偶联系统的一种信号转导途径。其主要效应是激活靶酶和开启基因表达,这是通过蛋白激酶完成的。具体通路为:信号分子作用于膜受体后,激活G蛋白,被激活的G蛋白的α亚基与其他两个亚基分离并激活腺苷酸环化酶,活化的腺苷酸环化酶催化ATP产生第二信使cAMP,cAMP激活蛋白激酶A进行信号的放大。活化的蛋白激酶A既参与细胞质中的生化反应进行快速的细胞应答;也作用于细胞核中的转录因子,参与基因表达的调控。

5.简述PKC系统(双信使系统)

答:又称双信使系统。在这一信号转导途径中,膜受体与其相应的第一信使分子结合后,激活膜上的效应物磷脂酶C,然后由磷脂酶C将膜上的PIP2分解为两个第二信使:DAG和IP3。IP3动员内质网中的Ca2+释放到细胞质基质中,与钙调蛋白结合引起系列反应;而DAG在Ca2+的协同下激活蛋白激酶C(PKC),然后通过蛋白激酶C引起级联反应,进行细胞应答,故将此系统称为PKC系统。

磷脂酰肌醇信号通路的最大特点是胞外信号被膜受体接受后,同时产生两个胞内信使,分别启动两个信号转导通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此又将这种信号通路称为“双信使系统”。

6.试述受体酪氨酸激酶介导的信号通路及主要功能。

答:配体与相应的受体结合导致受体二聚化,并引起保内结构域的酪氨酸自我磷酸化。磷酸酪氨酸的SH2结构域位点同GRB2(生长因子受体结合蛋白)结合。GRB2通过两个SH3结构域与Sos蛋白(Ras-GEF[鸟苷酸交换因子])结合并将Sos 激活。激活的Sos同结合在质膜中的非活性状态的Ras作用,促使Ras蛋白释放GDP,结合GTP。在此过程中,GRB2蛋白起连接蛋白作用,将激活的受体与Ras 连接起来。激活的Ras蛋白激活MAPKKK,(为Raf蛋白,一种丝氨酸/苏氨酸蛋白激酶),MAPKKK激活MAPKK(MEK蛋白激酶),MAPKK再激活MAPK(促分裂

原活化蛋白激酶)。激活后的MAPK进入细胞核内使一些转录因子,如Fos、Jun、Myc等磷酸化。磷酸化的转录因子使相关基因转录。

此通路可简单表示为:配体→RTK→Ras→Raf(MAPKKK)→MAPKK→MAPK→进入细胞核→其他激酶或基因调控蛋白)(转录因子)的磷酸化修饰,对基因表达产生多种效应。

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

奥本海姆 信号与系统 第一章知识点总结

第一章 信号与系统 一.连续时间和离散时间信号 1.两种基本类型的信号: 连续时间信号和离散时间信号。在前一种情况下,自变量是连续可变的,因此信号在自变量的连续值上都有定义;而后者是仅仅定义在离散时刻点上,也就是自变量仅取在一组离散值上。为了区分,我们用t 表示连续时间变量。而用n 表示离散时间变量,连续时间变量用圆括号()?把自变量括在里面,而离散时间信号则用方括号[]?来表示。 2.信号能量与功率 连续时间信号在[]21t t ,区间的能量定义为:E=dt t x t t 2 2 1 )(? 连续时间信号在[]21,t t 区间的平均功率定义为:P=dt t x t t t t 21 221)(1 ?- 离散时间信号在[]21,n n 区间的能量定义为:E=∑=2 1 2 ][n n n n x 离散时间信号在[]21,n n 区间的平均功率定义为:P=∑=+-2 1 2 12)(11n n n t x n n 在无限区间上也可以定义信号的总能量: 连续时间情况下:??+∞ ∞ --∞→? ∞==dt t x E T T T 2 2 x(t)dt )(lim 离散时间情况下:∑ ∑ +∞ -∞ =+-=∞ →? = =n N N n N n x n x E 2 2 ][][lim 在无限区间内的平均功率可定义为: ? -∞→?∞=T T T dt t x T P 2 )(21lim ∑+-=∞→? ∞+=N N n N n x N P 2 ][121lim 二.自变量的变换 1.时移变换 x(t)→x(t-0t ) 当0t >0时,信号向右平移0t ;当0t <0时,信号向左平移0t

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

第九章 细胞信号转导知识点总结

第九章细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP 水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

细胞信号转导

2000上海科技论坛专题讨论会 炎等和由朊病毒(prlon)所引起的疯牛病。另一些病毒可能作为病原或主要病因的非传染病,如人乳头状瘤病毒与宫颈癌、巨细胞病毒与冠状动脉硬化、EB病毒与食道癌等也获得了新的研究进展。细菌性疾病中的大问题是多重耐药结核菌的传播日益扩大,葡萄球菌、肠链球菌及肺炎杆菌、绿脓杆菌的耐药也成为临床治疗中的难题。我国已有因肉类食品被大肠杆菌0157H7污染而引起的食物中毒,此类中毒会造成急性肾功能衰竭,死亡率很高。可见,病原微生物作为一种生物正在随着人体免疫力和生存与活动环境的变化而表现出新的致病作用。 近几年微生物的基因组研究取得了飞速的进展。至21300年8月已有12种,共15株病原菌和70余株病毒的全基因组完成了解码,不少已进入研究各个单独基因或数个基因间相互作用功能的阶段,并正在分析大量未知基因的功能,试图发现新的基因间的相互作用、新的调控因子等。这一研究将使人类从更高层次上掌握病原微生物的致病机制及其规律。面对新现和再现的疾病,我们将通过从基因和基因组水平的研究发展创新性的诊断、预防及治疗微生物感染的制剂、疫苗及药品。此外,新发现的微生物酶及蛋白还可能超越医药学领域,在工农业生产上开发出有应用价值的新产品。 细胞信号转导 裴钢中国.}}学慧上海生命科学研究院 院长中四科学院院士 细胞信号转导一直是生命科学研究的基本问题,对它的研究已经深入到生命科学的各个领域,成勾理解各种错综复杂的生命现象所必不可少的武器和联结生命科学各领域各层汰的桥梁。细胞以及细胞之间的信息交流是山儿百种不同的信号分子所介导的,其中包括蛋白、肽类、氨基酸、核酸、甾体、M靖素类、脂肪酸类、一氧化氮等。携带信息的信号分子可被在靶细胞上或靶细犯Iq的特异性受体所识别并激活受体,由受休通过对下游效应分子的修饰(如磷酸化)将信号进一步传递到细胞内各部位或细胞核内,调控细胞生长、分化、衰老、死亡等重要生命现象和与其有关的细瞧收I土j特异基周的表达。细胞信号转导研究的址水方法手段和研究成果已对现代生命科’半:的各个学科领域的发展都已产生了深划帕影响和巨大的推动作用,成为现代生命科学的重要基础之一。随着人类基因组工作的顺利进展,X,寸‘fltt胞信号转导的研究已成为功能基因组学和基因功能的整体综介们f究中的一个重要方面。此外,对细胞价号转导机理的研究能够使我们在细胞羽1分于水平上阐明许多人类疾病产生的原因Ji:据此研制有效的药物以治疗这些疾病。il}】订,在国际市场上畅销的前100种药,研巾,大约有2/3以上为信号转导分子或』£靶向是信号转导分子。这样,细胞信号转坤研究的成果在现代生命科学中特别在医药、农业和环境中的广 团

参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼 4E-BP eIF4E binding protein Abl Ableson protein tyrosine kinase ACTR A histone acetyltransferase AIF Programmed cell death protein 8 ANT Adenine nucleotide translocation channel Apaf-1 Apoptotic protease activating factor 1 APP beta-Amyloid precursor protein APPs Acute phase proteins ASIP Agouti switch protein ASK Apoptosis signal-regulating kinase (e.g., ASK1) ATF-2 Activating transcription factor 2 ATM Ataxia telangiectasia?mutated protein kinase ATR ATM and Rad3?related protein kinase Bam32 B-cell adaptor molecule 32 kDa BCAP B-cell adaptor for PI3K Bcl-10 B-cell leukemia 10 protein Bfl-1 Bcl-2-related protein A1 Bid A BH3 domain?only death agonist protein Bimp1 B-lymphocyte-induced maturation protein 1 BLNK B-cell linker protein BRCA Breast cancer growth suppressor protein Btk Brutonís tyrosine kinase C3G Guanine nucleotide?releasing factor 2 CAD Caspase-activated deoxyribonuclease Cam Calmodulin CaMK Calcium/calmodulin-dependent kinase CAP c-Cbl-associated protein Cas p130CAS, Crk-associated substrate Caspase Cysteine proteases with aspartate specificity CBL Cellular homologue of the v-Cbl oncogene CBP CREB binding protein CD19 B-lymphocyte antigen CD19 CD22 B-cell receptor CD22 CD40 B-cell surface antigen CD40 CD45 Leukocyte common antigen, a phospho-tyrosine phosphatase CD5 Lymphocyte antigen CD5 cdc2 Cell division cycle protein 2, CDK1 cdc34 Cell division cycle protein 34, a ubiquitin conjugating (E2) enzyme cdc42 Cell division cycle protein 42, a G-protein CDK Cyclin-dependent kinase Chk Checkpoint kinase CHOP C/EBP homologous protein 10

细胞生物学总结(复习重点)——8.细胞信号转导

4、细胞通讯:一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长、分裂、分化和凋亡是必须的。包括分泌化学信号(内、旁、自、化学突触)、细胞间接触、和相邻细胞间间隙连接。 5、细胞识别:细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,进而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。 20、信号分子:生物体内的某些化学分子,如激素、神经递质、生长因子、气体分子等,在细胞间和细胞内传递信息,特称为信号分子。 21、信号通路:细胞接受外界信号,通过一整套的特定机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 22、受体:一种能够识别和选择性地结合某种配体(信号分子)的大分子,当与配体结合后,通过信号转导作用将胞外信号转导为胞内化学或物理的信号,以启动一系列过程,最终表现 偶联型受体和酶偶联的受体。 23、第一信使:一般将胞外信号分子称为第一信使。 24、第二信使:细胞表面受体接受胞外信号后最早在胞内产生的信号分子。细胞内重要的第二信使有:cAMP、cGMP、DAG、IP3等。第二信使在细胞信号转导中起重要作用,能够激活级联系统中酶的活性以及非酶蛋白的活性,也控制着细胞的增殖、分化和生存,并参与基因转录的调节。 10、IP3IP2IP4。DG通过两种途径终止 其信使作用:一是被 水解成单脂酰甘油。 13、分子开关:在细胞内一系列信号传递的级联反应中,必须有正、负两种相辅相成的反馈机制精确调控,也即对每一步反应既要求有激活机制,又必然要求有相应的失活机制,使细胞内一系列信号传递的级联反应能在正、负反馈两个方面得到精确控制的蛋白质分子称为分子开关。 25、G—蛋白:由GTP控制活性的蛋白,当与GTP结合时具有活性,当与GDP结合时没有活性。既有单体形式(ras蛋白),也有三聚体形式(Gs活Gi抑)。在信号转导过程中起着分子开关的作用。 28、蛋白激酶A:称为依赖于cAMP的蛋白激酶A,是由四个亚基组成的复合物,其中两个是调节亚基,两个是催化亚基;PKA的功能是将ATP上的磷酸基团转移到特定蛋白质的丝氨酸或苏氨酸残基上,使蛋白质被磷酸化,被磷酸化的蛋白质可以调节下游靶蛋白的活性。29、双信使系统:胞外信号分子与细胞表面G蛋白偶联的受体结合后,激活质膜上的磷脂酶C(PLC),使质膜上的二磷酸磷脂酰肌醇分解成三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激动两个信号传递途径即IP3—Ca+和DG—PKC途径,实现对胞外信号的应答,因此将这一信号系统称为“双信使系统”。 12、目前已知的这类受体都 个氨基酸残基组成,分布于质膜胞质侧,结合GTP 时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。突变后的Ras蛋白不能水解GTP …………………………………… 1.细胞质基质中Ca2+浓度低的原因是什么?

信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()s i n ()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: s i n ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

细胞生物学知识点总结.doc

细胞生物学目录 第一章绪论 第二章细胞生物的研究方法和技术 第三章质膜的跨膜运输 第四章细胞与环境的相互作用 第五章细胞通讯 第六章核糖体和核酶 第七章线粒体和过氧化物酶体 第八章叶绿体和光合作用 第九章内质网,蛋白质分选,膜运输 第十章细胞骨架,细胞运动 第十一章细胞核和染色体 第十二章细胞周期和细胞分裂 第十三章胚胎发育和细胞分化 第十四章细胞衰老和死亡

第一章绪论 1.原生质体:被质膜包裹在细胞内的所有的生活物质,包括细胞核和细胞质 细胞质:细胞内除核以外的原生质,即细胞中细胞核以外和细胞膜以内的原生质部分 原生质体:除去细胞壁的细胞 2.结构域:生物大分子中具有特异结构和独立功能的区域 3.装配模型:模板组装,酶效应组装,自组装 4.五级装配: 第一级,小分子有机物的形成 第二级,小分子有机物组装成生物大分子 第三级,由生物大分子进一步组装成细胞的高级结构 第四级,由生物大分子组装成具有空间结构和生物功能的细胞器 第五级,由各种细胞器组装成完整细胞 6.支原体:目前已知的最小的细胞 第二章细胞生物的研究方法和技术 1.显微镜技术:光镜标本制备技术、 2.光镜标本制备技术步骤:样品固定、包埋与切片、染色 3.电子显微镜种类:透射电子显微镜,扫描电镜,金属投影,冷冻断裂和冷冻石刻电镜,复染技术,扫描隧道显微镜 4.细胞化学技术:酶细胞化学技术,免疫细胞化学技术,放射自显影 5.细胞分选技术:流式细胞术 6.分离技术:离心技术,层析技术,电泳技术 第三章质膜的跨膜运输 1.细胞功能:外界与通透性障碍,组织和功能定位,运输作用,细胞间通讯,信号检测 2.膜化学组成:膜脂,膜糖,膜蛋白 3.膜脂的三个种类:磷脂,糖脂,胆固醇 4.脂质体用途:用作生物膜的研究模型,作为生物大分子与药物的运载体 5.膜糖功能:细胞与环境的相互作用,接触抑制,信号转导,蛋白质分选,保护作用。 6.膜蛋白类型:整合蛋白,外周蛋白,脂锚定蛋白 7.膜蛋白功能:运输蛋白,酶,连接蛋白,受体(信号接受和传递) 8.不对称性的研究方法:冰冻断裂复型,冰冻蚀刻 9.膜流动性研究方法:质膜融合,淋巴细胞的成斑成帽效应,荧光漂白恢复技术 10.膜流动性的重要性:酶活性,信号转导,物质运输,能量转换,细胞周期 11.影响膜脂流动性的因素:脂肪酸链,胆固醇,卵磷脂/鞘磷脂比值 12.影响膜蛋白流动的因素:整合蛋白,膜骨架,细胞外基因,相邻细胞,细胞外配体、抗体、药物大分子 13.膜骨架的主要蛋白:血影蛋白,肌动蛋白和原肌球蛋白,带4.1蛋白,锚定蛋白 14.转运蛋白质包括:载体蛋白,通道蛋白 15.协同运输的方向:同向协同,反向协同

信号与系统知识点整理

第一章 1、什么就是信号? 就是信息得载体,即信息得表现形式。通过信号传递与处理信息,传达某种物理现象(事件)特性得一个函数。 2、什么就是系统? 系统就是由若干相互作用与相互依赖得事物组合而成得具有特定功能得整体。 3、信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出得反应。 4、通常把信号分为五种: ?连续信号与离散信号 ?偶信号与奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5、连续信号:在所有得时刻或位置都有定义得信号。 6、离散信号:只在某些离散得时刻或位置才有定义得信号。 通常考虑自变量取等间隔得离散值得情况。 7、确定信号:任何时候都有确定值得信号 。 8、随机信号:出现之前具有不确定性得信号。 可以瞧作若干信号得集合,信号集中每一个信号 出现得可能性(概率)就是相对确定得,但何时出 现及出现得状态就是不确定得。 9、能量信号得平均功率为零,功率信号得能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10、自变量线性变换得顺序:先时间平移,后时间变换做缩放、 注意:对离散信号做自变量线性变换会产生信息得丢失! 11、系统对阶跃输入信号得响应反映了系统对突然变化得输入信号得快速响应能 力。(开关效应) 12、单位冲激信号得物理图景: 持续时间极短、幅度极大得实际信号得数学近似。 对于储能状态为零得系统,系统在单位冲激信号作 用下产生得零状态响应,可揭示系统得有关特性。 例:测试电路得瞬态响应。 13、冲激偶:即单位冲激信号得一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分得被积函数中一个因子, 其她因子在冲激偶出现处存在时间得连续导数、 14、斜升信号: 单位阶跃信号对时间得积分即为单位斜率得斜升信号。 15、系统具有六个方面得特性: 1、稳定性 2、记忆性

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

细胞生物学学习心得

细胞生物学学习体会 通过网络课程学习,有幸聆听到王金发教授对《细胞生物学》课程的讲授,使我不仅学到了细胞生物学专业新的知识与研究技术、方法,而且在教学方面也受益非浅。下面就我的学习谈一些体会。 一、全面学习了细胞生物学的专业知识 《细胞生物学》是一门包容量大、发展迅速的学科。内容涉及生物膜的结构与功能;内膜系统区室化形成及各种细胞器的结构与功能;细胞信号转导;细胞核、染色体以及基因表达;细胞骨架体系;细胞增殖及其调控;细胞分化、癌变及其调控;细胞的衰老与程序性死亡;细胞的起源与进化;细胞工程技术等多个方面。 (一)对细胞生物学的专业知识有了更深的认识。 1、细胞通讯方面 记得第一次听王老师的课就是讲授细胞的通讯,在多细胞生物中,细胞不是孤立存在的,而是生活在细胞社会中,它们必须协调一致,才能维持机体的正常生理机能,它们的协调是通过细胞通讯来完成的。细胞通讯是通过信号分子与受体的识别,从而在靶细胞内产生一系列反应的过程。信号分子有第一信使和第二信使之分,第二信使位于细胞内,由第一信使与受体识别后最先在胞内产生的,它主要与细胞内受体作用,所以受体也可分为表面受体和胞内受体。信号分子与受体的识别作用具有特异性。细胞信号传递所发生的反应有快速反应和慢速反应。快速反应是信号分子与受体作用后直接引起细胞内的一系列代谢反应;慢速反应则需要引起基因表达,再表现出各种代谢反应。细胞通讯过程是个复杂的过程,一个细胞的周围有上百种不同的信号分子,细胞要对这些信号分子进行分析,做出正确的反应。信号转换的研究在近年很热门,但进展缓慢,主要是因为信号转换的复杂性,不同信号的组合产生的效应是不一样的。 2、蛋白质的合成和分选机理 蛋白质的合成是在核糖体上,有两种合成体系,一种是在细胞质中游离的核糖体上,另一种是在膜旁核糖体上合成,它们合成的蛋白质将分布到不同的部

第八章 细胞信号转导

第八章细胞信号转导 名词解释 1、蛋白激酶protein kinase 将磷酸基团转移到其他蛋白质上的酶,通常对其他蛋白质的活性具有调节作用。 2、蛋白激酶C protein kinase C 一类多功能的丝氨酸/苏氨酸蛋白激酶家族,可磷酸化多种不同的蛋白质底物。 3、第二信使second messenger 第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如cAMP,IP3,钙离子等,有助于信号向胞内进行传递。 4、分子开关molecular switch 细胞信号转导过程中,通过结合GTP与水解GTP,或者通过蛋白质磷酸化与去磷酸化而开启或关闭蛋白质的活性。 5、磷脂酶C phospholipid C 催化PIP2分解产生1,4,5-肌醇三磷酸(IP3)和二酰甘油(DAG)两个第二信使分子。 6、门控通道gated channel 一种离子通道,通过构象改变使溶液中的离子通过或阻止通过。依据引发构象改变的机制的不同,门控通道包括电位门通道和配体门通道两类。 7、神经递质neurotransmitter 突触前端释放的一种化学物质,与突触后靶细胞结合,并改变靶细胞的膜电位。 8、神经生长因子nerves growth factor,NGF 神经元存活所必需的细胞因子 9、受体receptor 任何能与特定信号分子结合的膜蛋白分子,通常导致细胞摄取反应或细胞信号转导。10、受体介导的胞吞作用receptor mediated endocytosis 通过网格蛋白有被小泡从胞外基质摄取特定大分子的途径。被转运的大分子物质与细胞表面互补性的受体结合,形成受体-配体复合物并引发细胞质膜局部内化作用,然后小窝脱离质膜形成有被小泡而将物质吞入细胞内。 11、受体酪氨酸激酶receptor tyrosine kinase,RTK 能将自身或胞质中底物上的酪氨酸残基磷酸化的细胞表面受体。主要参与细胞生长和分化的调控。 12、调节型分泌regulated secretion 细胞中已合成的分泌物质先储存在细胞质周边的分泌泡中,在受到适宜的信号刺激后,才与质膜融合将内容物分泌到细胞表面。 13、细胞通讯cell communication 信号细胞发出的信息传递到靶细胞并与受体相互作用,引起靶细胞产生特异性生物学效应的过程。 14、细胞信号传递cell signaling 通过信号分子与受体的相互作用,将外界信号经细胞质膜传递到细胞内部,通常传递至细胞核,并引发特异性生物学效应的过程。 15、信号转导signal transduction 细胞将外部信号转变为自身应答反应的过程。 16、组成型分泌constitutivesecretion

细胞信号传导通路

细胞信号传导通路 1. 信息传导通路的基本组成 人体细胞之间的信息转导可通过相邻细胞的直接接触来实现,但更重要的也是更为普遍的则是通过细胞分泌各种化学物质来调节自身和其他细胞的代谢和功能,因此在人体中,信息传导通路通常是由分泌释放信息物质的特定细胞、信息物质(包含细胞间与细胞内的信息物质和运载体、运输路径等)以及靶细胞 (包含特异受体等)等构成。 信号转导通常包括以下步骤: 释放信息物质→信息物质经扩散或血循 环到达靶细胞→与靶细胞的受体特异性 结合→受体对信号进行转换并启动细胞 内信使系统→靶细胞产生生物学效应 【1】。通过这一系列的过程,生物体对外界刺激作出反应。 3. 信息物质及其分类 信息物质可分为细胞间信息物质与细胞内信息分子。 凡由细胞分泌的调节靶细胞生命活动的化学物质统称为细胞间信息物质,即第一信使,按照细胞分泌信息物质的方式又可将细胞间信息物质分为神经递质、内分泌激素、局部化学介质和气体信号分子。在细胞内传递细胞调控信号的化学物质称为细胞内信息物质,其组成多样化。通常将Ca2+、cAMP、cGMP、DAG、IP3、Cer、花生四烯酸及其代谢物等这类在细胞内传递信息的小分子化合物称为第二信使。责细胞核内外信息传递的物质称为第三信使,能与靶基因特异序列结合,发挥着转录因子或转录调节因子的作用。 研究发现一些信息物质能与位于分泌细胞自身的受体结合而起调节作用,称为自分泌信号。如肝癌细胞能分泌多种血管生成因子,其中VEGF是目前发现的刺激肿瘤血管形成最重要的促进因子,研究表示,肿瘤细胞分泌的VEGF除选择性作用于肿瘤血管内皮细胞上的特异性VEGF受体(Flt-1和KDR),通过酪氨酸激酶介导的信号转导,调控内皮细胞分化和血管形成外,肿瘤细胞自身也有VEGF受体的表达,而且针对VEGF及其受体的干预措施可以改变这些肿瘤细胞的体外增殖活性和其他生物学特征,这些研究表示肿瘤中存在VEGF的自分泌机制【2】。自分泌所产生的信息物质也具有其独特而重要的生理功能。4. 受体分类及与受体相关的信息转导途径 受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,他能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。存在于细胞质膜上的受体称为膜受体,化学本质绝大部分是糖镶嵌蛋白;位于胞液和细胞核中的受体称为胞内受体,它们

细胞信号转导练习题 四套题

细胞信号转导 第一套 一、选择题(共10题,每题1分) 1、Ca2+在细胞信号通路中是() A. 胞外信号分子 C. 第二信使 B. 第一信使 D. 第三信使 2、动员细胞内源性Ca2+释放的第二信使分子是()。 A. cAMP C. IP3 B. DAG D. cGMP 3、细胞通讯是通过()进行的。 A. 分泌化学信号分子 C. 间隙连接或胞间连丝 B. 与质膜相结合的信号分子 D. 三种都包括在内 4、Ras蛋白由活化态转变为失活态需要( )的帮助。 A. GTP酶活化蛋白(GAP) C. 生长因子受体结合蛋白2(GRB2) B. 鸟苷酸交换因子(GEF) D. 磷脂酶C-γ(PLCγ) 5、PKC在没有被激活时,游离于细胞质中,一旦被激活就成为膜结合蛋白,这种变化依赖于()。 A. 磷脂和Ca2+ C. DAG和 Ca2+ B. IP3和 Ca2+ D. DAG和磷脂 6、鸟苷酸交换因子(GEF)的作用是()。 A. 抑制Ras蛋白 C. 抑制G蛋白 B. 激活Ras蛋白 D. 激活G蛋白 7、cAMP依赖的蛋白激酶是()。 A. 蛋白激酶G(PKG) C. 蛋白激酶C(PKC) B. 蛋白激酶A(PKA) D. MAPK 8、NO信号分子进行的信号转导通路中的第二信使分子是()。 A. cAMP C. IP3 B. DAG D. cGMP 9、在下列蛋白激酶中,受第二信使DAG激活的是()。 A. PKA C. MAPK B. PKC D. 受体酪氨酸激酶 10、在RTK-Ras蛋白信号通路中,磷酸化的()残基可被细胞内的含有SH2结构域的信号蛋 白所识别并与之结合。 A. Tyr C. Ser B. Thr D. Pro 二、判断题(共10题,每题1分) 11、生成NO的细胞是血管平滑肌细胞。() 12、上皮生长因子(EGF)受体分子具酪氨酸激酶活性位点。() 13、Ras蛋白在cAMP信号通路中起着分子开关的作用。()

信号与系统知识点总结(非官方版)上篇

信号与系统知识点总结(非官方版) 上篇 其实,俺也不知道信号与系统的知识点具体都有啥…咦?哪里飞来的板砖……不过即便如此,俺也无节操的写了这篇总结,为的是让(man)大(zu)家(mou)更(mei)有(zi)条(de)理(qiang)的(xing)复(yao)习(qiu),喂喂喂,那边的,悲伤的表情是要闹哪样啊!好吧,接下来就请和我签订契约,成为爱♂的♂战♂士吧……哎!别都走了啊!我说正题还不行么…… 第一章信号与系统 这一章说的东西都很简单,基本属于干活之前的调情部分,但是对于理解以后的事情很有帮助。 根据胖哥梁老师的意思,第一章要注意的问题不是很多(好像吧),主要问题有三个: 1、函数信号的周期问题,如何判断信号是否是周期的,计算信号的周期是多少(典型题型哦……) 2、将某个信号拆成一个奇函数和一个偶函数相加的形式 3、自变量变换的顺序问题(也很典型,而且后面要用的……)关于周期信号,首先要看的是书上例1.6(英文书P29)离散时间信号的周期只可能是整数,如果算出的周期不是整数,那这货肯定不是周期,需要再乘上一个整数,使它变成整数,这才是周期。就像题中,第二个信号的周期算出来是8/3,但周期必须是整

数,所以还要乘以3才是真正的周期。所以本题最终答案是3*8=24 这里尤其要注意的是,上一段中的两个“整数”,第一个指的是 信号本身的周期,第二个指的是需要乘的数,也就是说,对于连续时间信号,第一个红字处的“整数”可以不满足,但第二个 一定要满足,举个栗子,一个周期为3的连续信号和一个周期为3π的连续信号相加,结果的周期不是3π,因为,周期为3 的信号,它的周期乘以π才会变成3π,但是π不是整数。 第二个问题,也就是奇部和偶部,这个参照书上P14的公式就行了,没啥说的…… 第三个…自变量变换,初中的知识嘛,小case,f(x)=c(bx+a)+d,按照abcd的顺序变换就好了…… 其他的知识点……单位冲激和单位阶跃……这个可以去看例1.7(P37)。至于,那些什么采样啦,取值啦,我也不是很清楚……总 之就记到:单位冲激就是个在0处的凸起,有时候会被拽到别的地方 去,这货是人畜无害的,无论跟谁搞上,都不会对那一点的值造成什 么影响…当然,那一点之外就都是0了。 单位阶跃就是单位冲激求积分,图像就是小于0的部分都是0, 大于等于0的部分都是1。这个函数通常是用来限定取值范围的,如: x(t)u(t)=x(t) t≥0 …啥?求图?懒得画,自己翻书去…… 接下来就是那些乱七八糟的性质了,什么记忆性、可逆性、因果性、稳定性、时不变性、线性,第一章还不用太纠结这些,把这

第八章细胞信号转导教案上课讲义

名师精编优秀教案 朝阳师范高等专科学校教案 课程名称:细胞生物学 任课教师:聂颖 开课系部:生化工程系 开课学年:2013~2014学年度 开课学期:第一学期

朝阳师范高等专科学校教案 年月日课题名称第八章细胞信号转导 课次第(1)次课课时 2 课型理论(√);实验();实习();、实务();习题课();讨论();其他() 教学目标掌握细胞通讯与细胞识别的概念和方式 教学重点与难点重点:细胞通讯与细胞识别的概念和方式。难点:细胞通讯的概念。 教学主要内容与教 学设计 一、概述 (一)细胞通讯 分别介绍细胞通讯概念、方式及信号分子和受体。 (二)信号转导系统及其特性 信号转导系统的基本组成与信号蛋白、细胞内信号蛋白的相互作用和信号转导系统的主要特性。 二、细胞内受体介导的信号转导 (一)细胞内核受体及其对基因表达的调节 (二)NO作为气体信号分子进入靶细胞直接与酶结合 三、G蛋白耦联受体介导的信号转导 (一)G蛋白耦联受体的结构与激活 (二)G蛋白耦联受体所介导的细胞信号通路 教学方法讲授法 教学手段讲演结合,启发式 课外学习安排比较G蛋白耦联受体介导的信号通路有何异同 参考资料 《细胞生物学》翟中和高等教育出版社《分子细胞生物学》韩贻仁高等教育出版社 学习效果评测通过练习检测教学目标实现程度 课外学习 指导安排 了解各种细胞通讯方式之间有何不同 (续)教学基本内容及进程(注:本部分是重点,要详细,对教学内容与教学方法要根据教学 大纲、教学对象进行设计,确定教学重点、难点、知识点的布控、教学方法的选择、教学 时间的分配等。 备注

一、概述 (一)细胞通讯 细胞通讯(cell communication)是指一个细胞发出的信息通过介质传递到另一个细胞并与靶细胞相应的受体相互作用,然后通过细胞信号转导产生胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。 1.细胞通讯的方式 (1)通过分泌化学信号的通讯(化学通讯) 化学通讯是间接的细胞通讯,指细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能。 ①内分泌(endocrine):内分泌细胞分泌的激素随血液循环输至全身,作 用于靶细胞。特点:低浓度;全身性;长时效。 ②旁分泌(paracrine):细胞分泌的信号分子通过扩散作用于邻近的细胞。包括:各类细胞因子;气体信号分子(如:NO)。 ③自分泌(autocrine):信号发放细胞和靶细胞为同类或同一细胞,常见 于病理状态下,如肿瘤细胞。 ④通过化学突触传递神经信号(neuronal signaling):神经递质(如乙酰胆碱)由突触前膜释放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。 (2)细胞间接触依赖性通讯 细胞间直接接触,通过与质膜结合的信号分子影响其他细胞。包括细胞-细胞黏着、细胞-基质黏着。 细胞识别(cell recognition):是指细胞通过其表面信号分子(受体)与 另一细胞表面的信号分子(配体)选择性地相互作用,最终产生细胞应答的过 程,也称膜表面分子接触通讯 (3)细胞间隙连接(gap junction) 动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互 沟通,通过交换小分子来实现代谢耦联或电耦联。 2.信号分子与受体 信号分子是细胞信息的载体,种类繁多。 受体是一种能够识别和选择性结合某种配体(信号分子)的大分子。受体 多为糖蛋白,少数是糖脂、糖蛋白和糖脂复合物。根据靶细胞上受体存在的部 位,分为:离子通道耦联受体、G蛋白耦联受体、酶连受体。细胞通讯概念及方式 与图片结合进行讲解

相关主题