搜档网
当前位置:搜档网 › 接触电阻标准修订稿

接触电阻标准修订稿

接触电阻标准修订稿
接触电阻标准修订稿

接触电阻标准

WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

连接器接触电阻

连接器接触电阻 不论是高频电连接器,还是低频电连接器,接触电阻、绝缘电阻和介质耐压(又称抗电强度)都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据多年来从事电连接器检验的实践发现;目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素的不同,直接影响到检验结果的准确性和一致性。为此,针对目前这三个常规电性能检验项目在实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 2.1 作用原理 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不是整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。这部分约占实际接触面积的 5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1) 集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2) 膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。 3) 导体电阻

土壤电阻率测量步骤

四极法测量土壤电阻率的步骤 淮安供电公司市郊农电:葛进进 操作过程:20分钟,三个否决项 1、报告老师,询问极距a是多少? 2、在操作纸上写出极距a,并算出接地埋深L=a/20。 3、选择仪器及工具、摇表(四端子)、四捆接线、尺、锤、接地棒、螺丝刀、计算器等。用粉笔在四个接地棒上画出接地埋深的标志(注意:从下向上画,距离为L) 4、检查仪表 ①外观检查,看有无破损、有无裂纹等; ②检查合格证:如没合格证,要报告老师,等允许后,方 可操作;(此处为否决项) ③来回转动各旋钮检查是否灵敏。 5、放线 ①将仪器和工具放在合适的地点,拿起二捆接线、尺、锤、接地棒,螺丝刀(原地只留下摇表和两捆线) ②由摇表向正前方走约16米,然后向正左方走约1.5a米,钉下第一个接地棒(注意,钉到刚才粉笔画到的标志处),并把螺丝刀穿过尺前的小圆环插入地下,然后抱着材料(除一捆接地线)拉开皮尺,向前走,大约走到3a米多,停下。 ③将皮尺拉紧拉直,轻轻放下,在3a米平行与第一接地棒的地方,钉下第二个接地棒,并放下二捆接地线。

④向回走,在皮尺刻度的2a米的平行与第一接地棒的地方,钉下第三个接地棒。 ⑤向回走,在皮尺刻度的a米的平行与第一接地棒的地方,钉下第四个接地棒。 ⑥到第一个接地棒处,将接地线的上小夹子,夹在接地棒上,向摇表方向放开接地线,不要绷紧,以防夹子脱落, ⑦把螺丝刀插在摇表前,从摇表处拿起一捆接地线,将有接线片的一端打活扣在螺丝刀上,向第四根接线棒放线。 ⑧按⑥和⑦的方法,放完其余两捆接地线,并检查四个小夹子是否夹牢。 6、接线 ①先打开短接片(此处为否决项)。方法:松开短接片旋钮,手由下向上一挑,即可打开短接片。 ②接四根连线。注意:不能交叉,接触要紧。 7、调零 将摇表放平,用螺丝刀将调零器调零,调零时,头要位于摇表正上方。 8、测量 ①将摇表倍率(里面的小旋钮)调到10R档,顺时针旋动RS电位器(外面的大旋钮)刻度盘到最大。 ②左手掌按住摇表,左手大姆指和食指捻住外面的大旋钮,右手顺时针方向慢慢摇到摇把,在摇动时,左手要迅速调节RS电位器(禁

接地电阻测量实验报告范文

接地电阻测量实验报告范文 为了了解接地装置的接地电阻值是否合格、保证安全运行,同时根据配电设备维护规程的有关规定,我部于20xx 年3月1日上午8:00 对乐民原料部弓角田煤矿各变配电点的接地及其各变压器对地绝缘情况进行测量试验。试验过程及试验结果分析报告如下: 一、试验前的准备: 1、制订试验方案: 前期,我们组织机电队人员一起到现场查看接地装置,查找接地极的适合试验的位置,制订、讨论、修改试验方案,提出试验中的注意事项。 2、试验方法: 接地电阻表本身备有三根测量用的软导线,可接在E、P、C三个接线端子上。接在E端子上的导线连接到被测的接地体上,P端子为电压极,C端子为电流极(P、C都称为辅助接地极),根据具体情况,我们准备采用两种方式测量:(1)、将辅助接地极用直线式或三角线式,分别插入远离接地体的土壤中;(2)、用大于25cm×25cm的铁板作为辅助电极平铺在水泥地面上,然后在铁板下面倒些水,铁板的布放位置与辅助接地极的要求相同。两种方法我们都采取接地体和连接设备不 断开的方式测量,接地电阻电阻表将倍率开关转换到需要的量程上,用手摇发电机手柄,以每分钟120转/分以上的速度转时,使电阻表上的仪表指针趋于平衡,读取刻盘上

的数值乘以倍率即为实测的接地电阻值。 3、试验工具: 我们准备好ZC29B-2型接地电阻测试仪、ZC110D-10(0~2500MΩ)型摇表、万用表、铜塑软导线(BVR 1.5mm2)、测电笔、接地极棒和接地板等试验用具及棉纱等辅助材料。 二、试验过程: 1、3月1日上午,现场试验人员进行简单碰头,并进行分工:由帅锐进行测量、值班人员蔡富贵和彭余坤配合操作、陈应沫记录、班长方兴华负责监护; 2、8:45试验开始; 3、测量辅助接地极间及与测量接地体间的距离; 4、采取第一种方法,将接地极棒插入到土壤中并按照图纸接好线; 5、将测量接地体连接处与连接端子牢靠连接; 6、将导线与接地电阻表接好; 7、校正接地电阻表; 8、测量并记录数据;(试验数据见附表) 9、采取第二种方法,测量并记录数据; 10、整个试验过程结束。 恒鼎实业弓角田煤矿春季预防性试验设备外壳接地测试记录 恒鼎实业弓角田煤矿春季预防性试验变压器绝缘测试记录 使用仪器: ZC29B-2型接地电阻测试仪

接触电阻

接触电阻 ----“接触对”导体件呈现的电阻成为接触电阻。 一般要求接触电阻在10-20 mohm以下。有的开关则要求在100-500uohm以下。有些电路对接触电阻的变化很敏感。应该指出,开关的接触电阻是在开关在若干次的接触中的所允许的接触电阻的最大值。 Contact Area 接触电阻 在电路板上是专指金手指与连接器之接触点,当电流通过时所呈现的电阻之谓。为了减少金属表面氧化物的生成,通常阳性的金手指部份,及连接器的阴性卡夹子皆需镀以金属,以抑抵其“接载电阻”的发生。其他电器品的插头挤入插座中,或导针与其接座间也都有接触电阻存在。 作用原理 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到 5-10微米的凸起部分。会看到插合的一对接触件的接触,并不整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。部分约占实际接触面积的5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1) 集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2) 膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。 3) 导体电阻 实际测量电连接器接触件的接触电阻时,都是在接点引出端进行的,故实际测得的接触电阻还包含接触表面以外接触件和引出导线本身的导体电阻。导体电阻主

变电站土壤电阻率报告(20200813205558)

广西金桂二期中配110kV变电站土壤电阻率测量成果说明书 广西基础勘察工程有限责任公司 建设部甲级勘察证:201007-kj号 二0 一一年四月 广西金桂二期中配110kV变电站土壤电阻率测量成果说明书 工程负责:梁宁克 校对:周永炼 审核:沈健 审定:沈雁明 总经理:夏志永 广西基础勘察工程有限责任公司 建设部甲级勘察证:201007-kj号 二0 一一年四月

目录1、工程概况

精心整理 2、地址概况 (1) 3、野外工作方法与技术 (1) 4、土壤电阻率分布特点 (1) 附图: 1、测试点平面位置图(1张) 2、土壤电阻率等值线图(4张)

1、工程概况 广西金桂二期中配110kV变电站施工图设计阶段的任务要求测量土壤电阻率,深度 为5m、10m、20m、30m。野外工作于2011年4月20日进行,共完成测试点15个。勘察期间多为阴天的气候条件。 2、地址概况 本工程新建广西金桂二期中配110kV变电站一座,位于钦州港口区大揽坪,占地面积约为63.36 X 22.00卅,地上4层,主变3个及电缆层、竖井等配套设施,框架结构,基础型式及整平标高等未确定。地貌上属丘陵地貌,地形较平坦,经钻探证实和资料收集,场地内地层主要有第四系素填土①层,粉质粘土②层,强风化砂岩③层,中风化砂岩④层组成。 3、野外工作方法与技术 测试点的布置原则上以勘探剖面为准,按网格进行布置,详细位置见土壤电阻率等 值线图。测量方法采用电阻率法对称四级测试装置,电极距最大取AB/2为65m,最小为AB/2 为1.5 米,MN/1 为1.5 米~12 米。 电阻率测量仪为DWD-2A型微机电侧仪,严格按照SDCJ-81-88《电力工程物探技术规定》执行。 4、土壤电阻率分布特点 不同深度的土壤电阻率值的分布见《深度为5m、10m、20m、30m的土壤电阻率等 值线图》,经过地形改正,侧出的土壤电阻率值特点如下: (1)深度AB/2=5m,场地范围内土壤电阻率最大值为311 Q?m,最小值为98Q?m。 (2)深度AB/2=10m,场地范围内土壤电阻率最大值为421 Q - m,最小值为305 Q - m。 (3)深度AB/2=20m,场地范围内土壤电阻率最大值为496Q - m,最小值为396 Q - m。 (4)深度AB/2=30m,场地范围内土壤电阻率最大值为793Q - m,最小值为589 Q - m。 场地范围内由素填土①层,粉质粘土②层,强风化砂岩③层,中风化砂岩④层组成,地质结构较复杂,同一深度的土壤电阻率值相差较小,同一位置随着深度的增大,土壤

绝缘电阻的正确测量方法及标准

绝缘电阻的正确测量方法 一、测试内容施工现场主要测试电气设备、设施和动力、照明线路的绝缘电阻。 二、测试仪器 测试设备或线路的绝缘电阻必须使用兆欧表(摇表),不能用万用表来测试。兆欧表是一种具有高电压而且使用方便的测试大电阻的指示仪表。它的刻度尺的单位是兆欧,用ΜΩ表示。在实际工作中,需根据被测对象来选择不同电压等级和阻值测量范围的仪表。而兆欧表测量范围的选用原则是:测量范围不能过多超出被测绝缘电阻值,避免产生较大误差。施工现场上一般是测量500V以下的电气设备或线路的绝缘电阻。因此大多选用500V,阻值测量范围0----250ΜΩ的兆欧表。兆欧表有三个接线柱:即L(线路)、E(接地)、G(屏蔽),这三个接线柱按测量对象不同来选用。 三、测试方法 1、照明、动力线路绝缘电阻测试方法线路绝缘电阻在测试中可以得到相对相、相对地六组数据。首先切断电源,分次接好线路,按顺时针方向转动兆欧表的发电机摇把,使发电机转子发出的电压供测量使用。摇把的转速应由慢至快,待调速器发生滑动时,要保证转速均匀稳定,不要时快时慢,以免测量不准确。一般兆欧表转速达每分钟120转左右时,发电机就达到额定输出电压。当发电机转速稳定后,表盘上的指针也稳定下来,这时指针读数即为所测得的绝缘电阻值。测量电缆的绝缘电阻时,为了消除线芯绝缘层表面漏电所引起的测量误差,其接线方法除了使用“L”和“E”接线柱外,还需用屏蔽接线柱“G”。将“G”接线柱接至电缆绝

缘纸上。 2、电气设备、设施绝缘电阻测试方法首先断开电源,对三相异步电动机定子绕组测三相绕组对外壳(即相对地)及三相绕组之间的绝缘电阻。摇测三相异步电动机转子绕组测相对相。测相对地时“E”测试线接电动机外壳,“L”测试线接三相绕组。即三相绕组对外壳一次摇成;若不合格时则拆开单相分别摇测;测相对相时,应将相间联片取下。 四、绝缘电阻值测试标准 绝缘阻值判断 (1)、所测绝缘电阻应等于或大于一般容许的数值,各种电器的具体规定不一样,最低限值: 低压设备0.5MΩ, 3-10KV 300MΩ、 20-35KV为400MΩ、 63-220KV为800MΩ、 500KV为3000MΩ。 1、现场新装的低压线路和大修后的用电设备绝缘电阻应不小于0.5ΜΩ。 2、运行中的线路,要求可降至不小于每伏1000Ω=0.001MΩ,每千伏1 MΩ。 3、三相鼠笼异步电动机绝缘电阻不得小于0.5ΜΩ。 4、三相绕线式异步电动机的定子绝缘电阻值热态应大于0.5ΜΩ、冷态应大于2ΜΩ,转子绝缘电阻值热态应大于0.15ΜΩ、冷态应大于0.8ΜΩ。

接触电阻测试研究

接触电阻测试研究 摘要:本文介绍了接触电阻的定义、测试方法;另列举各类接插件和开关产品的接触电阻测试方法及要求,并对如何降低电气线路的接触电阻进行了阐述。 关键词: 接触电阻接插件开关 Abstract:The definition and methods of contact resistance on electrical contact materials was analysis in this paper. This article introduces the different contact resistance tests about electrical connectors and switches in detail. The methods which can be used to avoid electrical contact materials invalidation were summarized. Key words:Contact resistance Electrical connectors Switches 1 接触电阻定义 人们通常希望电器接点在接触部位对电路的阻碍作用为零, 即接触电阻为零。然而大量实验表明, 电器接触部位的电阻或多或少地存在, 对电路的影响无法忽略。因此,研究电器的接触电阻,以减少对电路的影响变得非常重要。为方便起见, 首先定义触点的一些概念。 1)电器触点:继电器、交流接触器、开关、电机整流子,滑环均为电器接点的范畴。 2)接触电阻:两个接触元件在接触部位产生的电阻,例如接插件。 此两类电阻都可用仪器测得。接触元件的工作可靠与否, 本质上就在于其接触部位的电阻稳定与否。在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。部分约占实际接触面积的5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1) 集中电阻(收缩电阻) 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。收缩电阻:接触元件,无论加工多么精致,从微观上看其表面总是凸凹不平的, 因此, 当两个接触元件彼此接触时, 其表面不可能完整地接触,真正接触的是个别区域, 其他区域并没有直接接触。即实际接触面积要比“视在”的接触面积小。在真正接触的区域中, 一些是金属对金属的接触, 称为“金属接触”; 另一些是靠覆盖在接触处的单分子薄膜通过孔道效应和穿透薄膜的金属桥导电的, 称为“半导体”接触或“膜”接触; 还有一些接触点覆盖着完全不导电的绝缘膜, 如氧化膜和硫化膜,不能导电,可称为“绝缘接触”。剩下的其它点因为表面不平, 完全没有接触, 不导电, 可称为“非接触点”。我们想象电流象磁力线一样也有电流线。当电流流过“金属接触”点时, 由于电流象水一样通过筛孔时受到收缩而产生阻力, 这种阻力称为收缩电阻。

变电站土壤电阻率报告

变电站土壤电阻率报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

广西金桂二期中配110kV 土壤电阻率测量成果说明书广西基础勘察工程有限责任公司 建设部甲级勘察证:201007-kj号 二0一一年四月 广西金桂二期中配110kV变电站土壤电阻率测量成果说明书 工程负责:梁宁克 校对:周永炼 审核:沈健 审定:沈雁明 总经理:夏志永 广西基础勘察工程有限责任公司 建设部甲级勘察证:201007-kj号 二0一一年四月 目录 1、工程概况 (1) 2、地址概况 (1) 3、野外工作方法与技术 (1) 4、土壤电阻率分布特点 (1) 附图: 1、测试点平面位置图(1张)

2、土壤电阻率等值线图(4张)

1、工程概况 广西金桂二期中配110kV变电站施工图设计阶段的任务要求测量土壤电阻率,深度为5m、10m、20m、30m。野外工作于2011年4月20日进行,共完成测试点15个。勘察期间多为阴天的气候条件。 2、地址概况 本工程新建广西金桂二期中配110kV变电站一座,位于钦州港口区大揽坪,占地面积约为×㎡,地上4层,主变3个及电缆层、竖井等配套设施,框架结构,基础型式及整平标高等未确定。地貌上属丘陵地貌,地形较平坦,经钻探证实和资料收集,场地内地层主要有第四系素填土①层,粉质粘土②层,强风化砂岩③层,中风化砂岩④层组成。 3、野外工作方法与技术 测试点的布置原则上以勘探剖面为准,按网格进行布置,详细位置见土壤电阻率等值线图。测量方法采用电阻率法对称四级测试装置,电极距最大取AB/2为65m,最小为AB/2为1.5米,MN/1为1.5米~12米。 电阻率测量仪为DWD-2A型微机电侧仪,严格按照SDCJ-81-88《电力工程物探技术规定》执行。 4、土壤电阻率分布特点 不同深度的土壤电阻率值的分布见《深度为5m、10m、20m、30m的土壤电阻率等值线图》,经过地形改正,侧出的土壤电阻率值特点如下: (1)深度AB/2=5m,场地范围内土壤电阻率最大值为311Ω·m,最小值为98Ω·m。 (2)深度AB/2=10m,场地范围内土壤电阻率最大值为421Ω·m,最小值为305Ω·m。 (3)深度AB/2=20m,场地范围内土壤电阻率最大值为496Ω·m,最小值为396Ω·m。 (4)深度AB/2=30m,场地范围内土壤电阻率最大值为793Ω·m,最小值为589Ω·m。 场地范围内由素填土①层,粉质粘土②层,强风化砂岩③层,中风化砂岩④层组成,地质结构较复杂,同一深度的土壤电阻率值相差较小,同一位置随着深度的增

保险电阻介绍

保险电阻简介 下面简单介绍一些关于保险电阻的基本常识: 保险电阻在正常情况下具有普通电阻的功能,一旦电路出现故障,超过其额定功率时,它会在规定时间内断开电路,从而达到保护其它元器件的作用.保险电阻分为不可修复型和可修复型两种 1.保险电阻的功能。 保险电阻在电路图中起着保险丝和电阻的双重作用,主要应用在电源电路输出和二次电源的输出电路中。它们一般以低阻值(几欧姆至几十欧姆),小功率(1/8~1W)为多,其功能就是在过流时及时熔断,保护电路中的其它元件免遭损坏。 在电路负载发生短路故障,出现过流时,保险电阻的温度在很短的时间内就会升高到500~600℃,这时电阻层便受热剥落而熔断,起到保险的作用,达到提高整机安全性的目的。 2.保险电阻的判别方法。 尽管保险电阻在电源电路中应用比较广泛,但各国家和厂家在电路图中的标注方法却各不相同。虽然标注符号目前尚未统一,但它们却有共同特点: (1)它们与一般电阻的标注明显不同,这在电路图中很容易判断。 (2)它一般应用于电源电路的电流容量较大或二次电源产生的低压或高压电路中。 (3)保险电阻上面只有一个色环。见附图所示,色环的颜色表示阻值。 (4)在电路中保险电阻是长脚焊接在电路板上(一般电阻紧贴电路板焊接),与电路板距离较远,已便于散热和区分。 3.保险电阻的常用规格标准。 (1)RN1/4W,10Ω保险电阻,色环为黑色,功率为1/4W;当8.5V直流电压加在保

险电阻两端时,60秒以内电阻增大为初始值的50倍以上。 (2)RN1/4W,2.2Ω保险电阻,色环为红色,功率为1/4W;当3.5A电流通过时,2秒之内电阻增大为初始值的50倍以上。 (3)RN1/4W,1Ω保险电阻,色环为白色,功率为1/4W;当2.8A交流电流通过时,10秒内电阻增大为初始值的400倍以上。 4.保险电阻在电路图中的画法。(见下图)

(完整版)接触电阻

接触电阻 接触电阻产生的原因有两个:第一,由于接触面的凹凸不平,金属的实际接触面减小了,这样,当电流流过导体时,使电流线在接触面附近发生了严重的收缩现象,即在接触面附近导体有效的导电截面大大缩小,因而造成电阻的增加,这个电阻称为收缩电阻。第二,接触面在空气中可能迅速形成一层导电性能很差的氧化膜附着于表面,也使电阻增大了,这部分电阻称为膜电阻。因此,接触电阻是由收缩电阻和膜电阻组成。 导体的接触形式大体分为点接触,线接触和面接触,这几种接触形式对接触电阻的影响是不相同的。点接触时对接触电阻的影响主要是收缩电阻大,而面接触时对接触电阻的影响则是膜电阻,线电阻介于两者之间。因而,接触电阻的大小不仅取决于收缩电阻,还有膜电阻的影响。而接触压力对接触电阻的影响是十分重要的,没有足够的压力,只靠加大接触面,并不能使接触电阻有明显的下降。增加接触压力,可以增加接触点的有效接触面积,同时,当接触点的压强超过一定值时,可以使触点的材料产生塑性变形,表面膜被压碎出现裂缝,增大了金属的接触面,使接触电阻迅速下降,因此,加大接触压力,使收缩电阻和膜电阻都减小,总的接触电阻将减小。 除了以上影响接触电阻的因素以外,还有材料的性质,接触表面的加工情况,触点的密封情况等等都会对接触电阻产生影响。因此,我们在日常维护和排除线路故障的时候,也要充分考虑接触电阻的影响。 我们经常在排除线路故障时会发现由于插头的腐蚀,在插钉表面就会形成一层无机膜或插钉变形,导致插钉的接触电阻增大,发生故障。因此,我们在对插头进行施工或维护时,一定要严格按照维护手册的标准进行。在安装插头时,应该仔细检查插头与插座内的插钉,不能有破损,弯曲,腐蚀等情况,也不要人为的去破坏插头的封严部分,对于特殊区域的插头要采取特殊的防护,比如对插头进行封严等。对于某些工作环境比较恶劣的地方,如发动机本体上的插头,在安装时一定要注意,要对插头进行保险,一些特殊的插头一定要按照标准打好力矩,否则插头在发动机的高频振动下会松脱,有的会使插头内的插钉接触不良,造成跳火,灼伤插钉,使之工作不可靠和缩短使用期限。 接触电阻: 触点有四种工作状态,即:闭合状态、断开过程、断开状态、闭合过程。 在理想情况下,触点闭合时其接触电阻为零;触点断开时接触电阻为无穷大;在闭合过程中接触电阻瞬时由无穷大变为零;在断开过程中接触电阻瞬时由零变为无穷大。但实际上,在闭合状态时耦合触点间有接触电阻存在,若接触电阻太大,就可能导致被控电路压降过大或不通;在断开状态时要求触点间有一定的绝缘电阻,若绝缘电阻不足就可能导致击穿放电,致使被控电路导通;在闭合过程中有触点弹跳现象,可能破坏触点的可靠闭合;在断开过程中可能产生电弧破坏触点可靠断开。 无论使用哪一种接触,导体接触的不连续性会产生一个附加的电阻——称为“接触电阻”。这个电阻比接触器自身的电阻(在没有接触面存在时)要大。这个电阻值将决定连接的质量,因为:接触电阻阻值越高,则接触电阻上的压降越大,因而接触点释放的热量将越多。如果温度上升到一定的极限,接触点就会损坏。温度越高,损坏就越快,这种现象会迅速蔓延。

接触电阻的测量方法

接触电阻的多种测量方法 技术分类:测试与测量 | 2008-10-14 接触电阻就是电流流过闭合的接触点对时的电阻。这类测量是在诸如连接器、继电器和开关等元件上进行的。接触电阻一般非常小其范围在微欧姆到几个欧姆之间。根据器件的类型和应用的情况,测量的方法可能会有所不同。ASTM的方法B539 “测量电气连接的接触电阻”和MIL-STD-1344的方法3002“低信号电平接触电阻”是通常用于测量接触电阻的两种方法。通常,一些基本的原则都采用开尔文四线法进行接触电阻的测量。 测量方法 图4-42 说明用来测试一个接点的接触电阻的基本配置。使用具有四端测量能力的欧姆计,以避免在测量结果中计入引线电阻。将电流源的端子接到该接点对的两端。取样(Sense)端子则要连到距离该接点两端电压降最近的地方。其目的是避免在测量结果中计入测试引线和体积电阻(bulk resistance)产生的电压降。体积电阻就是假定该接点为一块具有相同几何尺寸的金属实体,而使其实际接触区域的电阻为零时,整个接点所具有的电阻,设计成只有两条引线的器件有的时候很难进行四线连接。器件的形式决定如何对其进行连接。一般,应当尽可能按照其正常使用的状态来进行测试。在样品上放置电压探头时不应当使其对样品的机械连接产生影响。例如,焊接探头可能会使接点发生不希望的变化。然而,在某些情况下,焊接可能是不可避免的。被测接点上的每个连接点都可能产生热电动势。然而,这种热电动势可以用电流反向或偏置补偿的方法来补偿。

干电路(Dry Circuit)测试 通常,测试接点电阻的目的是确定接触点氧化或其它表面薄膜积累是否增加了被测器件的电阻。即使在极短的时间内器件两端的电压过高,也会破坏这种氧化层或薄膜,从而破坏测试的有效性。击穿薄膜所需要的电压电平通常在30mV到100mV的范围内。 在测试时流过接点的电流过大也能使接触区域发生细微的物理变化。电流产生的热量能够使接触点及其周围区域变软或熔解。结果,接点面积增大并导致其电阻降低。 为了避免这类问题,通常采用干电路的方法来进行接点电阻测试。干电路就是将其电压和电流限制到不能引起接触结点的物理和电学状态发生变化电平的电路。这就意味着其开路电压为20mV或更低,短路电流为100mA或更低。 由于所使用的测试电流很低,所以就需要非常灵敏的电压表来测量这种通常在微伏范围的电压降。由于其它的测试方法可能会引起接点发生物理或电学的变化,所以对器件的干电路测量应当在进行其它的电学测试之前进行。 使用微欧姆计或数字多用表 图4-42示出使用Keithley 580型微欧姆计、2010型数字多用表或2750型数字多用表数据采集系统进行四线接触电阻测量的基本配置情况。这些仪器能够采用偏置补偿模式自动补偿取样电路中的热电势偏置,并且还具有内置的干电路测量能力。对于大多数的应用来说,微欧姆计或数字多用表足以用来进行接触电阻的测量工作。如果短路电流或者被测电阻值比微欧姆计或数字多用表的技术指标小得很多,则必须使用纳伏表加精密电流源的组合来进行。 使用纳伏表和电流源 图4-43示出使用Keithley 2182A型纳伏表和2400系列数字源表仪器进行接触电阻测量的测试配置情况。

纳米级电接触电阻测量的新技术.

纳米级电接触电阻测量的新技术 摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte 能够同时测量纳米材料与器件的机械特性和电气特性的测试系统框图 该系统还包括一个完整集成的数据采集系统,支持压力-位移和电流-电压测量之间的实时关联。用户可以在这一采集系统上连接辅助测试仪,进行实时测量并提取其他所需的参数。通过其用户界面可以在很宽的负载和位移控制条件下方便地配置所有的测试变量。这一特点得益于数字源表的板载测试脚本处理器,它能够自动运行测试序列,为其他硬件元件提供同步,尽可能地减少系统各个部分之间的时序/控制问题。 系统操作 在测试过程中,探针被推进到样本表面,同时连续监测位移。根据压力和位移数据可以直接计算出样本的硬度和弹性模量。对于电气参数,吉时利数字源表向导电台加载一个偏压,待测器件(DUT)与导电台实现电气耦合。当导电硬度探针刺入材料,系统就可以连续测量电流、电压、压力和位移。 压力驱动/位移检测功能通过静电驱动的转换器实现,具有极低的测量噪声和极高的灵敏度。转换器/探针组合安装在压电定位系统上,实现了样本拓扑结构的扫描探针显微(SPM)成像和非常精确的测试定位。 在典型测量过程中,数字源表的一个通道用于实现源和测量操作,另一个通道用作电流到电压放大器,将电流数据传输到控制计算机。控制软件极其灵活,允许用户指定并测量源电流和电压的幅值,对预定义的压力或位移点进行I-V 扫描。用户通过nanoECR软件界面控制所有的数字源表功能,无需手动修改仪表本身上的参数。凭借该软件的灵活性和自动化的测试例程,用户无需手动操作,能够测试最具挑战性的样本。测试时间高度取决于用户定义的变量,但是普通的测试序列耗时只有大约1分钟。 Hysitron nanoECR系统分辨率、精度和噪声指标为: ·压力分辨率:1nN ·压力白噪声:100nN ·位移分辨率:0.04nm ·位移白噪声:0.2nm ·电流分辨率:5pA ·电流白噪声:12pA

连接器检验规范

连接器检验 不论是高频电连接器,还是低频电连接器,绝缘电阻、介质耐压(又称抗电强度)和接触电阻都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据笔者多年来从事电连接器检验的实践发现,目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素不同,直接影响到检验准确和一致。我们认为,针对目前这三个常规电性能检验项目和实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 1 绝缘电阻检验 1.1 作用原理 绝缘电阻是指在连接器的绝缘部分施加电压,从而使绝缘部分的表面或内部产生漏电流而呈现出的电阻值。即绝缘电阻 (MΩ)= 加在绝缘体上的电压(V)/泄漏电流(μA)。通过绝缘电阻检验,

确定连接器的绝缘性能能否符合电路设计的要求,或在经受高温、潮湿等环境应力时,其绝缘电阻是否符合有关技术条件的规定。 绝缘电阻是设计高阻抗电路的限制因素。绝缘电阻低,意味着漏电流大,这将破坏电路和正常工作。如形成反馈回路,过大的漏电流所产生的热和直流电解,将使绝缘破坏或使连接器的电性能变劣。 1.2影响因素 主要受绝缘材料、温度、湿度、污损、试验电压及连续施加测试电压的持续时间等因素影响。 1.2.1绝缘材料 设计电连接器时选用何种绝缘材料非常重要,它往往影响产品的绝缘电阻能否稳定合格。如某厂原使用酚醛玻纤塑料和增强尼龙等材料制作绝缘体,这些材料内含极性基因,吸湿性大,在常温下绝缘性能可满足产品要求,而在高温潮湿下则绝缘性能不合格。后采用特种工程塑料 PES (聚苯醚砜)材料,产品经200℃、1000h和240h 潮湿试验,绝缘电阻变化较小,仍在10[sup]5[/sup] MΩ以上,无异常变化。 1.2.2温度 高温会破坏绝缘材料,引起绝缘电阻和耐压性能降低。对金属壳体,高温可使接触件失去弹性、加速氧化和发生镀层变质。如按GJB598 生产的耐环境快速分离电连接器系列 II 产品,绝缘电

电网中高压隔离开关触头接触温升试验测试分析

电网中高压隔离开关触头接触温升试验测试分析 发表时间:2019-08-28T17:19:07.250Z 来源:《防护工程》2019年11期作者:王鹏[导读] 本文就电网中高压隔离开关触头接触温升试验测试展开探讨。 国网晋城供电公司山西晋城 048000摘要:隔离开关触头接触电阻值的增大,会对电力系统的安全运行造成影响。隔离开关作为隔离与操作电器,在电力系统中扮演着重要的角色。对于敞开式结构的隔离开关,由于其触头长期暴露在空气中,运行条件恶劣,因此常发生因触头氧化导致接触电阻增大而造成发热及操作中弧光异常的故障。本文就电网中高压隔离开关触头接触温升试验测试展开探讨。 关键词:UW16-220型隔离开关;触头温升;接触电阻;接触状态引言 对高压隔离开关而言,触头的温升状况对其工作可靠吐具有重要影响,当触头快速温升后会缩短触头的使用寿命并降低工作的安全性。所以,必须对隔离开关的触头温度采取实时监测措施,以此确保高压隔离开关能够长期处于安全运行状态,不断提升设备的安全性能,在第一时间察觉事故隐患,有效避免事故发生。 1隔离开关触头常见发热缺陷原因隔离开关运行触头过热可能有以下原因:(1)合闸不到位,电流通过的截面大大缩小,导致接触电阻增大,产生很大的斥力,弹簧压力减小,使压缩弹簧或螺丝松弛,接触电阻增大而过热。(2)触头紧固件松动,刀片或刀嘴的弹簧锈蚀或过热,使弹簧压力降低;或操作时用力不当,使接触位置不正,导致触头压力降低,触头接触电阻增大而过热。(3)刀口合得不严,使触头表面氧化、脏污;拉合过程中触头被电弧烧伤,各连动部件磨损或变形等,均会使触头接触不良,接触电阻增大而过热。(4)隔离开关过负荷,引起触头过热,在电网运行过程中,以上机械振动、触头烧蚀等原因都可能使接触条件恶化,接触电阻增加,引起接触点温度升高,加剧接触表面氧化,导致局部熔焊或接触松动处产生电弧放电,最终造成电气设备的损坏甚至停电等重大事故。 2触头接触温升试验 为研究不同温升与触头接触电阻对隔离开关触头状态的影响,本文全面分析了隔离开关的各项过热缺陷,同时构建了隔离开关温升测试平台分析GW16-220隔离开关的温升过程,并比较了接触电阻与触头接触状态的关系以及各种电流状态下的触头温升特点。本实验选择大电流测试设备为GW16-220隔离开关提供大电流,同时分析了接触电阻和触头的温升情况。利用回路电阻测试仪检测了隔离开关的触头接触电阻,同时选择隔离开关触指压力智能检测仪测试了隔离开关的触头压力,之后利用热电偶测温仪测试了隔离开关的触头温度,测试之前需先校验测温仪的温度,同时确认隔离开关是否完全合闸;要求间隔10min测试并记录一次温度,确保0.5h时间中温升低于。.5℃再结束测试过程;应对测试前与测试后的隔离开关接触电阻都进行记录。对温升进行测试应根据GW16-220隔离开关在运行期间产生的各类故障再实施模拟分析。其中,触指镀层材料是用于模拟隔离开关经过多次闭合而引起镀层脱落的情况;动静触头的污秽状态是模拟触头在运行过程中产生的表面污秽现象;采用蚀点来模拟母线隔离开关发生开合闸时引起的放电,产生电弧蚀点。 3隔离开关触头接触状态对接触电阻的影响经过接触电阻测量发现隔离开关接触电阻随接触压力、触头材质、触头表面质量和触头表面污秽程度的变化数值可知,表面污秽对隔离开关触头接触电阻影响最大,其次是触头接触压力,触头材质对接触电阻也有一定影响,隔离开关触头蚀点对隔离开关触头接触电阻影响最小。 4参数对触头温升影响结果分析 4.1接触压力 当夹紧力介于450-600N时,接触电阻并未发生显著变化,同时热点稳态温升情况也保持相对稳定,由25.5℃升高至26.5℃。当夹紧力到达200N左右时,温升出现了升高的现象,到达28.80C0根据接触电阻可以发现,在45-600N的夹紧力范围内,GW16-220隔离开关处于一个状态良好的夹紧力区间中,在这一区间中接触电阻与温升都没有发生显著的改变。随着夹紧力降低到200N左右时,因为动静触头的接触面积受到夹紧力的较大影响,由于接触面积较小,因此接触电阻快速上升,使温度发生快速上升的现象。 4.2接触压力与污秽程度对触头温升影响 向隔离开关动静触头处撒干粉尘,使动触头污秽最大厚度介于0.05~0.1mm,即轻度污秽状态。向动静触头连接处播撒湿粉尘,污秽最大厚度介于0.15~0.2mm,即重度污秽状态。经前期试验测得,在轻度污秽的状态下,夹紧力为205N,440N,610N时,隔离开关的接触电阻分别为82μΩ,64μΩ,42μΩ,在这3组夹紧力的情况下进行温升试验,得到了稳态情况下热点的温升以及隔离开关的温度分布情况。在重度污秽的状态下,夹紧力为203N,438N,617N时,隔离开关的接触电阻分别为317μΩ,292μΩ,276μΩ,在这3组夹紧力的情况下进行温升试验,得到了在稳态情况下热点温升以及隔离开关温度分布情况。存在污秽缺陷时,热点温升有显著提高。相较于前文中所述的表面状态正常情况下接触压力对温升的影响,可看出,存在污秽缺陷时,接触压力对热点的温升影响更加剧烈。不存在污秽状态时,接触压力400~450N,温升基本保持不变。但是表面存在污秽时,200~600N区间,热点温度有显著的变化。而且可以明显看出,同一个接触压力情况下,不同的污秽状态对热点的温升也有着显著的影响。接触状态最差的情况(接触压力203N,污秽状态为重度污秽)热点的温升到达了73.7℃,相较于正常情况的温升26℃提高了47.7℃。由此可见,触头表面污秽对隔离开关稳态的温升有着显著的影响,且有污秽存在时,接触压力对GW6B-252型隔离开关触头温升的影响幅度也会增大。 4.3触头材质 为进一步探讨触头温升与GW16-220隔离开关触头的压力与材质间的关系,对比分析了动触头单侧与双侧镀银两种情况下的温升情况,同时对各个接触压力下的单侧镀银模型温升结果进行了测试比较。各个位置点的稳态温升状态。可以发现,动静触头点表现为相近的温升状态,都是随热点温度的升高,得到的最高温度和最低温度差值也会增加。同时还可以看到,同组测试中的静触头上下两侧具有相近的温升规律,并且下方略微低于上方温升,这是因为触头边缘的热空气上升时导致上方温度比下方温度更高。 5隔离开关触头运行发热处理措施

电阻率测量报告

. . . . 莆田南日岛风电场三期工程施工图阶段土壤电阻率测量报告 福建永福工程顾问有限公司 发证机关:福建省建设厅 证书等级:乙级证书编号:130903-ky 二00九年一月·

批准:审核:校核:编写:

目录 1、前言 2、仪器接线示意图 3、原理及操作 4、测量结果分析 5、结论

1、前言 根据公司勘察任务安排及工程勘察联系书的要求,莆田南日岛风电厂三期工程施工图阶段土壤电阻率测量工作于2008年10月2日至2008年10月24日期间进行。 南日岛风电厂前两期共投产19台风机,本期计划建设57台风机,总装机容量48.45MW,110kV升压站一座。 本次测量工作采用DZD-6A多功能直流电法仪测量,测量原理采用等极距四极对称法,极距分别为a=5、10、20、60、100m,大部分风机为测量至100m极距,局部因测量场地限制仅测量至40m 或60m极距。 本次测量工作布线按每风机一条测线,升压站按常规220kV变电站布线方式,四周四条线,对角两条线,共六条测线。本期总共完成测线63条。 本次测量遵循《电力工程物探技术规定》(DL/T5159-2002)。 2、仪器接线示意图 仪器接线示意图

3、原理及操作 等极距四极对称法,又称温纳装置,其做法是沿测线上的测点,分别打入电极,并用导线连接供电回路AB 和测量回路MN ,通过对AB 电极供电,使位于其中间的大地产生电场,测量MN 处产生的电位差及电流,通过以下公式计算出其电阻率。 测量原理示意图 I U K MN a ?=ρ ① a ρ——MN 间的等效土壤电阻率; MN U ?——MN 间的电位差; I ——MN 间的电流; K ——装置系数,对称四极法中a 2MN AN AM K ππ=?= DZD-6A 直流电法仪存在内在计算系统,测量前仅需输入极距a 后,则可直接测出结果。

雷电灾害土壤电阻率四级法测试方法、层次分析法、雷电灾害风险普查报告式样表

附 录 C (资料性附录) 土壤电阻率四级法测试方法 C.1 四级等距法 四极等距法或称为温纳(Wenner)四级法,布线如图C.1所示,4个测试电极位于同一深度的一条直线上,测得的土壤视在电阻率按公式B.1计算: aR I aU ππρ2/2==..........................(B.1) 式中: ɑ-两电极之间的距离,不应小于电极埋深的20倍,单位m; U -电流电压表所测的电压值,单位V; I -电流电压表所测的电流值,单位A; R -接地绝缘电阻法所测得电阻值,单位Ω。 a) 电流-电压表法 (b) 接地绝缘电阻法 图C.1 四极等距法电位极布置示意图 C.2 四极非等距法 四极非等距法或称Schlumberger-Palme r法。当电极间距相当大时,四极等距法内侧两个电极的电位差迅速下降,通常仪器测不出或测不准如此低的电位差。电位极的布置如图C.2所示,电位极布置在相应的电流极附近,可升高所测的电位差值。如果电极的埋深h与其距离ɑ和b相比较很小,土壤电阻率按公式B.2计算: b R b a a /)(2+=πρ......................(B.2) 式中: ɑ-电流极与电位极间距,单位m; b -电位极间距,单位m。

图C.2 四极非等距法电位极布置示意图 C.3 测试要求与结果处理 测试电极宜用直径不小于1.5 cm的圆钢或∠25 mm×∠25 mm×∠4 mm的角钢,其长度均不小于40cm. 被测场地土壤中的电流场的深度及被测土壤的深度,与极间距离ɑ有密切关系。当被测场地的面积较大时,极间距离ɑ也相应地增大。 在各电极间距时得出的一组数据即为各视在土壤电阻率,以该数据与间距的关系绘成曲线,即可判断该地区是否存在多种土壤层或是否有岩石层,还可判断其各自的电阻率和深度。 为了得到较合理的土壤电阻率的数据,宜改变极间距离ɑ,求得视在土壤电阻率ρ与极间距离ɑ之间的关系曲线ρ=?(ɑ),极间距离的取值可为5 m、10 m、15 m、20 m、30 m、40 m等,最大的极间距离ɑmax 一般不宜小于拟建接地装置最大对角线。当布线空间路径有限时,可酌情减少,但至少达到最大对角线 的2/3。

相关主题