搜档网
当前位置:搜档网 › 指数对数函数求导

指数对数函数求导

指数对数函数求导
指数对数函数求导

一、自然常数e

1、求导x

a dx

d

令x a y = 已知导数差商公式定义式:

x x f x x f x f x ?-?+=→?)

()()(lim 0

'

由导数差商定义式得:

x

a a x a a x x f x x f x f x

x x x x x x x ?-?=?-=?-?+=?→??+→?→?1

)()()(lim

lim lim 000'(因子x a 与x ?无关,因此我们可以将它提到极限号前面) 注意到上式中的极限是函数)(x f 的导数在0=x 处的值,即

x

a a f x x ?-?=?→?1)0(lim 00

'

因此,我们已经说明了如果指数函数x a x f =)(在0=x 处是可微的,则该函数是处处可微的,并且

x a f x f ?=)0()('' 上述等式说明了任何指数函数的变化率是和指数函数本身成正比的.

令x

a a f a M x x ?-?==?→?1

)0()(lim 00

'

0,因为x a 已知,要求)('x f 必须

求得)(0a M ,从x a a M x x ?-=?→?1

)(l i m 0

0的定义式可以猜测)(0a M 可能

是一个无线不循环的数值,只能无限取小x ?值求得)(0a M 的估算值,

这种估算的过程相当繁琐且得不到)(0a M 的准确数值.

h

h

h 1

2- h

h 1

3- 0.1 0.7177 1.1612 0.01 0.6956 1.1047 0.001 0.6934 1.0992 0.0001

0.6932

1.0987

在上表中,给出了2=a 和3=a 时的情况,通过数值举例,说明了)0('f 的存在.极限明显存在并且

当2=a ,69.012)0(lim 0

'

≈?-=?→?x f x x

当3=a ,10.11

3)0(lim

0'

≈?-=?→?x

f x x 实际上,我们将在《微积分》5.6节说明它们极限存在并且精确到小数点后六位,如下:

693147.0)2(0≈=x x dx d 098612.1)3(0

≈=x x dx d 因此,由等式①,我们有

x x dx d 2)69.0()2(?≈ x x

dx

d 3)10.1()3(?≈ 在等式①对于底数a 的所有可能的选择中,当1)0('=f 时,微分

公式最为简单,即x e y =,x e y =',并且有11

)(lim

00=?-=?→?x

e e M x

x ,

则有当0→?x 时,x e x ?=-?1,x e x ?+=?1,因此x x e ??+=1,再次说明了存在x x x e ?→??+=1

)1(lim

使得1)(0=e M

,同样e 可能是一

个无限不循环小数.

再来看看上表中估计2=a 和3=a 时,)0('f 的数值,结合定义

式x

a a M x x ?-=?→?1

)(lim 00可以看出)(0a M 大小决定于a 的取值,可以

证明)(0a M 在实数域单调递增,由)3()()2(000M e M M <<,可知

32<

数e 的定义:h h h e 1

)1(lim

+=→

即e 是使11

lim

0=-→h

e h h 成立的数. 这里要注意一点,一个确定的)(00a M 确定一个具体的数0a ,即当)(0a M 值确定时,原函数x a y =也确定了一个具有确切数值的底数

0a ,x y 2=与69.0)2(0≈M 和x y 3=与10.1)3(0≈M 都具有对应关

系,所以e 存在且使1)(0=e M 的意义在于我们可以求得x e y =的导函

数x x x e e M e e dx

d y =?==)('0,当然

e 是一个确定的常数,即我们只

能求唯一的指数函数x e y =的导函数x e y ='.

自然指数求导公式:

x x

e e dx

d = 指数函数x a y =曲线有一个重要特点,当0=x 时,1=y 恒成立,

也就是说所有的指数函数均通过)1,0(点;再来看看1)(0=e M 在

x e y =图像中的几何意义.

0000')()(==?=x y e M e e M ,也就是说)(0e M 表示指数函数在

0=x 处的切线斜率10=m ,也只有x e y =在0=x 处导函数

1)('0==e M y ,注意体会底数a 与0m 的唯一对应关系.

在指数函数x a y =中,a 值的大小直接影响图像的形状. a 值越大,x a y =曲线越陡峭,

即变化率越大,导函数值'y 越大;a 值越小,x a y =曲线越平顺,即变化率越小,导函数'y 越小.

当x 取值相等时,3232<

x x a dx

d e dx d dx d

2. e 的含义 2.1 由定义式h h h e 1

)1(lim

+=→来理解e 的含义,

简单地说e 就是单位时间内,持续翻倍增长所能达到的极限值.

假设你在银行存了1元钱,很不幸同时又发生了严重的通货膨胀,银行存款利率达到了逆天的100%! 银行一般1年才付一次利息,满1年后银行付给你1元利息,存款余额=2元,后来银行发善

心,每半年付利息,半年后本息共计)2

%

1001(+,你可以把利息提前

存入,利息生利息,1年本息共计2

)2

%1001(+

元.假设银行超级实在,每4个月就付利息,4个月后本息共计)3

%

1001(+

,8个月后本息共计2)3%1001(+,年底本息共计3

)3

%1001(+元 .假设银行人品爆发,

时时刻刻都在付利息,则第一期本息共计)%

1001(n

+

元,第二期本息共计2)%1001(n +元........第n 期本息共计n

n

)%1001(+元,这样年

底本息余额7182817813.2≈元

1元存1年,在年利率100%下,无论怎么利滚利,其余额总有一

个无法突破的天花板,这个天花板就是n

n n e )%1001(lim +=∞

→,有兴趣可以用这个 网上计算器算一下.

2.2.1一个有关复利的例子

很久以前,一个名叫伯努力的家伙回答了一个有关复利的问题.下面就是该问题。我们假设,你在一家银行有一个银行账户,该银行付给你一个慷慨的年利率12%,是一年一次的复利的形式.你将一笔初始存款1元存入账户.每一年你的财富增加12%.这意味着n 年后,你的财富将增加到原来的n %)121(+倍.特别地,一年后,你的财富就是%)121(+元.

现在,假设你发现另一家银行.它也提供12%的年利率,但现在

它是一年两次的复利的形式.当然,对于半年,你不会得到12%的利息;你必须用它除以2,这意味着半年你会得到6%的利息.一年后,它会以6%的利息复利两次;结果就是你的财富会增加到2%)61(+,其结果是1.1236元.

第二个账户的收益比第一个账户略好一些.因此在相同的年利率下,复利越频繁结果会越好.我们试着计算一下年利率为12%的每年3次的复利.我们取12%,并将它除以3会得到4%,然后复利3次,我们的财富将会增加到原来的3%)41(+倍,其结果近似为1.1255元...

同样一年时时刻刻都复利时即∞→n ,复利利率为n

%12,复利n 次后,

我们的财富会增长的倍数为

n

n n )%121(lim +∞

→ 我们用r 代替0.12,并关心更一般的极限

n n n

r L )1(lim +=∞

首先,我们设n r h /=,这样n r n /=.那么,当∞→n 时,我们看到+→0h (由于r 是常数)故

h

r h h L /0)1(lim

+=

+

→ 现在我们可以使用指数法则来写出 r h h h L ))1((/10lim

+=+

我们来变个魔术,设

h h h e /10)1(lim

+=+

→ 代入极限中有 r r h h e h L =+=+

→))1((/10lim

所以

r n n e n

r =+∞

→)1(lim

2.2.2 关于e 的更多内容

让我们来更好地看一下这个极限,记得 r n n e n

r =+∞

→)1(lim

这一次,设n h /1=,则h n /1=,当∞→n 时,有+→0h ,得到 r

h h e rh L =+=

+

→/10)1(lim

这是一个右极限.事实上,你可以用0→h 代替+→0h ,对于双侧极限仍成立.我们需要证明左侧极限也是r e ,然后左极限等于右极限,则双极限也等于r e .因此,我们考虑 ?)1(/10lim

=+=

-

→h h rh L 用t -替换h ;那么,当-→0h 时,+→0t (当h 是一个很小的负数时,h t -=就是一个很小的正数)故 t

t h h rt rh L /10/10)1()1(lim

lim -→→-=+=+

-

由于对于任意的0≠A ,有A A /11=-,我们可以将极限重新写成 []

t

t t r /10)(11

lim

-++

分母就是带有利率)(r -而不是r 的经典极限.这意味着,当+→0t 时,在极限中,分母趋于r e ,因此综合起来有

[]r

r

t

t t

t h

h e e t r rt rh L -→-→→==

-+=-=+=

+

+

-

1)(11

)

1()

1(/10

/10

/10

lim

lim lim 该极限在0=x 处可微且连续,所以有 r h h e rh =+→/10

)1(lim

二、自然对数求导 1.导数差商定义法

由x x f x x f x f x ?-?+=→?)

()()(lim 0

',令x y ln =,求'y 由定义式写出

x x x x x x

x x x x

x x x

x x x x x x x dx d ?→?→?→?→??+=?+?=

?+?=?-?+=1

000)

ln()1ln(1)ln(1ln )ln(ln lim lim lim lim

令x x h /?=,则有hx x =?,当0→?x 时,0→h ,上式可写成

x

e x h x h x dx d

h

x xh

x 1ln 1)1ln(1

)1ln(ln 1

1

lim lim ==+=+=→?→?

(通过换元巧妙地将x 从对数中提到极限号外面)

2.隐函数微分法

对自然对数求导,也可以用隐函数微分法,这是求导逆函数的一般办法;记住,这就是知道某函数的导数,求其逆函数导数的方法.

原理如下:

令x y ln = 左右同时取指数

x e e x y ==ln

x e y = 左右同时微分

所以有 dx

dy

e dy d e dx d y y ?= ②

1=x dx

d

③ 联立②③等式得:x

e y y e y

y 11'1'==

?=? 代入x e y =是因为'y 最终要表达成关于x 的因式. 3.隐函数微分法求导指数函数

原理如下:

令x e y = 左右同时取对数 x e x e y x ===ln ln ln 则有 x y =ln 左右同时微分 所以

y

y dx dy y dy d y dx d '

ln ln =?= ④

1=x dx

d

⑤ 联立④⑤等式得:

1'=y

y

所以x e y y =='

代入x e y =是因为'y 最终要变达成关于x 的因式.

三、换底公式 1.指数换底公式

a e a ln = ⑥

对等式⑥左右同时取对数得:

e a e a a ln ln ln ln ln ?==

2.对数换底公式

证:)

(log )

(log )(log a b b c c a =

令x b a =)(log

则有 b a x = 左右同时取以c 为底的对数 a x b a c c x c log )(log )(log ==

则有 )

(log )

(log a b x c c = 其中底数c 任意取值且0>c 且1≠c

又)(log b x a = 所以 )

(log )

(log )(log a b b c c a =

如何对)(log x a 进行换底求导呢?

a x x a ln ln )(log =

所以 a

x x a x dx d a a x dx d x dx d a ln 1

1ln 1)(ln ln 1)ln ln ()(log =

?=?==

四、求导任意指数函数 1. e 底法

令x a y =,求导

x a dx

d 办法就是用

e 做底数,也就是把底数a 转化为e ,把x a 变成e 的某次幂,应用指数函数的求导办法.

a e e M e e dx

d e dx d a dx d a x a x a x x a x ln )()(ln 0ln ln ln ?=?=== 又因为x a x a e =ln

联立两式得: a a a dx

d x x ln ?= a a M ln )(0=

2. 对数微分法

求x

a dx

d

有时对原函数求导时会遇到问题,但求其对数导数会相对容易 因为

u

u u u dx du du u d u dx d ''1ln ln =?=?=(应用了链式法则及对数求导公式)

因此,令x a u = 直接求导较麻烦 a x lina u x ln ln == 求导较容易

所以 a u ln )'(ln = 又由u

u u dx d '

ln =可知:

a a a u u a u

u x ln ln 'ln '

?==?= 所以有 a a u x ln '?=

:example 1.求导x x u =

:example 2.求证1-?=r r

x r x dx

d r 为实数

1. e 底法

因为()x r r

x r

e e

x ln ln == 所以()1ln ln '-?=?=?==r r x r x r r x r x

r x e x r e x dx d

指数函数的定义域为什么是R (实数).

解:什么是实数,即一切可以测量长度的数,也即可以用直角坐标系

x 轴表示的数.

看看指数函数的图像x a y =(1,0≠>a a )在x 轴可以无限延伸,也就是x 取值任何实数值,指数函数都成立.

2. 对数微分法

令r x u =则有x r x u r ln ln ln == 对u ln 求导有()()x

r

x r u u u ==='ln 'ln '

所以 1'-=?=?=r r rx x

r

x x r u u

五、求导任意对数函数 1.自然对数化简法

令()x y a log = 求

()x dx

d

a log 将()x a log 化简成两个自然对数的形式,其中一个自然对数含有x .

()a

x

x y a ln ln log =

= 则有 ()()a x x a x a

a x x dx d a ln 11ln 1'ln ln 1ln ln log '

=?=?=?

??

??= 所以 ()a

x x dx d a ln 1

log =

2.指数微分法

令()x y a log = 求

()x dx

d

a log 对()x y a log = 左右同时取指数

则有 ()x a a x y a ==log 左右同时求导

则有 ()()''ln '

x y a a a

y y =??=

所以有a

x a

a y y ln 1

ln 1'=

?=

3.现在来看看:如果原函数x a y =,那么我们知道()y x a log =,现在对()y x a log =关于y 求导,使用上述结论公式,我们得到

a

y dy dx ln 1=

a a a y dx

dy a y dy dx x ln ln ln 1?==?= 也可以用结论公式a

x dx

dy ln 1=

(对换→y x ,x 换成y ,y 换成x ),

则有a y dy dx ln 1

=

,变换写成a a a y dx

dy x ln ln ?==

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

复合函数求导方法和技巧

复合函数求导方法和技巧 毛涛 (理工学院数计学院数学与应用数学专业2011级1班, 723000) 指导老师:延军 [摘要]复合函数求导是数学分析中的一个难点,也是微积分中的一个重点和难点,因此本文先从复合函数的 定义以及性质入手,在全面了解复合函数后再探讨复合函数的求导方法,分析复合函数求导过程中容易出现 的问题,然后寻求能快速准确的对复合函数进行求导的方法,并进行归纳总结,最终进行推广,帮助学生的 有效学习。 [关键词] 复合函数,定义,分解,方法和技巧,数学应用 1引言 复合函数求导是数学分析中的一个难点,也是高等数学三大基本运算中的关键,是学生深入学习高等数学知识,提高基本运算技能的基础,对学生后继课程的学习和思维素质的培养起着至关重要的作用,在各学科和现实生活中也发挥着越来越重要的作用,从而必须解决复合函数的求导问题。同时,在教学过程中,许多学生在进行求导时也犯各种各样的错误,有的甚至在学习复合函数求导之后做题时仍然不会进行求导,或者只能求导对一部分,而对另外一部分比较复杂的复合函数则还停留在一知半解的程度上,不知该求导哪一部分,也不知要对哪一部分得进行分解求导。复合函数求导方法是求导的重中之重,而且也是函数求导、求积分时不可缺少的工具,这个问题解决的好坏直接影响到换元积分法甚至以后的数学学习是否能够顺利进行。求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,然后由外层向层逐层求导(或者也可以由层向外层逐层求导),直到关于自变量求导,同时还要注意不能漏掉求导环节并及时化简计算结果。因此本文先给出了复合函数的定义和性质,在充分了解并且掌握复合函数的概念之后,根据其定义和性质对各种复合函数进行求导,通过对链式求导法、对数求导法、反序求导法、多元复合函数的一元求导法以及反函数求导法的分析,加以对各种对应例题的详细分解,分析每一步的步骤,比较各种求导方法,明确并且能够掌握各种题型的最佳解决方法,最终寻求一种能够既简便又准确的解决复合函数求导问题的方法,并总结技巧,方便在以后学习生活中的使用。 2复合函数的定义 如果y 是a 的函数,a 又是x 的函数,即()y f a =,()a g x =,那么y 关于x 的函数[]()y f g x =叫做函数()y f x =和()a g x =的复合函数,其中a 是中间变量,自变量为x ,函数值为y 。 3导数的四则运算

指数对数函数求导

一、自然常数e 1、求导x a dx d 令x a y = 已知导数差商公式定义式: x x f x x f x f x ?-?+=→?) ()()(lim 0 ' 由导数差商定义式得: x a a x a a x x f x x f x f x x x x x x x x ?-?=?-=?-?+=?→??+→?→?1 )()()(lim lim lim 000'(因子x a 与x ?无关,因此我们可以将它提到极限号前面) 注意到上式中的极限是函数)(x f 的导数在0=x 处的值,即 x a a f x x ?-?=?→?1)0(lim 00 ' 因此,我们已经说明了如果指数函数x a x f =)(在0=x 处是可微的,则该函数是处处可微的,并且 x a f x f ?=)0()('' 上述等式说明了任何指数函数的变化率是和指数函数本身成正比的. 令x a a f a M x x ?-?==?→?1 )0()(lim 00 ' 0,因为x a 已知,要求)('x f 必须 求得)(0a M ,从x a a M x x ?-=?→?1 )(l i m 0 0的定义式可以猜测)(0a M 可能 是一个无线不循环的数值,只能无限取小x ?值求得)(0a M 的估算值,

这种估算的过程相当繁琐且得不到)(0a M 的准确数值. h h h 1 2- h h 1 3- 0.1 0.7177 1.1612 0.01 0.6956 1.1047 0.001 0.6934 1.0992 0.0001 0.6932 1.0987 在上表中,给出了2=a 和3=a 时的情况,通过数值举例,说明了)0('f 的存在.极限明显存在并且 当2=a ,69.012)0(lim 0 ' ≈?-=?→?x f x x 当3=a ,10.11 3)0(lim 0' ≈?-=?→?x f x x 实际上,我们将在《微积分》5.6节说明它们极限存在并且精确到小数点后六位,如下: 693147.0)2(0≈=x x dx d 098612.1)3(0 ≈=x x dx d 因此,由等式①,我们有 x x dx d 2)69.0()2(?≈ x x dx d 3)10.1()3(?≈ 在等式①对于底数a 的所有可能的选择中,当1)0('=f 时,微分 公式最为简单,即x e y =,x e y =',并且有11 )(lim 00=?-=?→?x e e M x x ,

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

指数函数及其性质

2.1.2 指数函数及其性质(一) 一、学习目标:了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数 的图象和性质;本节课的重点是在理解指数函数定义的基础上掌握指数函数的图象和性质, 本节课的难点是弄清楚底数a对于指数函数图象和性质的影响。 二、问题引领: 1、指数函数的概念、图象和性质

2、指数函数图象分布图: 如图,,,,A B C D 分别为指数函数 ,,,x x x x y a y b y c y d ====的图象,则,,,a b c d 与 0、1的大小关系为01a b c d <<<<<。 三、典例剖析: 例题1:已知指数函数()(0>=a a x f x 且)1≠a 的图象经过点()2,π,求()()()012f f f -、、的值。 分析:要求()()()012f f f -、、的值,我们需要先求出指数函数()x a x f =的解析式,也就是要先求a 的值。根据函数图象过点()2,π这一条件,可以求得底数a 的值。 解: ()x a x f =的图象经过点()2,π, ()2f π∴= 即2 a π=,解得1 2 a π= ()2x f x π∴=,即:()( )()10 12 1 01,12f f f ππππ -====-== 。 点评:求函数解析式的典型方法是待定系数法,求指数函数需要待定的系数只有一个a ,只需要一个已知条件,就可以确定一个指数函数。 例题2:1、设1111333b a ???? <<< ? ????? ,求,,a b a a a b 的大小关系。 2、 比较235 4 0.5,1.2,1的大小。 分析:利用指数函数的单调性和特殊点比较大小。 解:1、因为函数13x y ?? = ??? 在R 上为减函数,又由1111333b a ????<<< ? ?????, 所以得:01a b <<<, 因为当01a <<时,函数x y a =为减函数,又a b <, 所以a b a a >,因为函数x y a =与x y b =在R 上同为减函数且当0x >时, 随着x 的增大,函数x y a =比函数x y b =减小的快,所以a a a b <, 即b a a a a b <<。

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

导数--对数函数与指数函数的导数练习题

高三第三章导数--对数函数与指数函数的导数练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列求导数运算正确的是 A.(x +x 1)′=1+21x B.(log 2x )′=2ln 1x C.(3x )′=3x log 3e D.(x 2cos x )′=-2x sin x 2.函数y =ln(3-2x -x 2)的导数为 A.32+x B.2231x x -- C.32222-++x x x D.3 2222-+-x x x 3.函数y =lncos2x 的导数为 A.-tan2x B.-2tan2x C.2tan x D.2tan2x 4.函数y =x x a 22-(a >0且a ≠1),那么y ′为 A.x x a 22-ln a B.2(ln a ) x x a 22- C.2(x -1) x x a 22-·ln a D.(x -1) x x a 22-ln a 5.函数y =x ln 的导数为 A.2x x ln B.x x ln 2 C.x x ln 1 D.x x ln 21 6.函数y =sin32x 的导数为 A.2(cos32x )·32x ·ln3 B.(ln3)·32x ·cos32x C.cos32x D.32x ·cos32x 二、填空题(本大题共5小题,每小题3分,共15分) 7.设y =x x e e 2 )12(+,则y ′=___________. 8.在曲线y =5 9++x x 的切线中,经过原点的切线为 9.函数y =x 22的导数为y ′=___________. 10.函数y =log 3cos x 的导数为___________. 11.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________. 三、解答题(本大题共3小题,每小题9分,共27分) 12.求函数y =ln(21x +-x )的导数.

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

对数函数与指数函数的导数(1)

课 题: 3.5对数函数与指数函数的导数(1) 教学目的: 1.理解掌握对数函数的导数的两个求导公式. 2.在学习了函数四则运算的求导法则与复合函数求导法则的基础上,应用对数函数的求导公式,能求简单的初等函数的导数 教学重点:应用对数函数的求导公式求简单的初等函数的导数. 教学难点:对数函数的导数的记忆,对数函数求导公式的灵活运用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= 2.法则1 )()()]()([' ''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'(Cu x Cu x '= 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u ) 在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解——求导——相乘——回代. 二、讲解新课: ⒈对数函数的导数(1): x x )'(ln = 证明:∵ x x f y ln )(==

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2 .∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

指数函数对数函数计算题30-1

指数函数对数函数计算题30-1 1、计算:lg 5·lg 8000+06.0lg 6 1lg )2 (lg 23++. 2、解方程:lg 2(x +10)-lg(x +10)3=4. 3、解方程:23log 1log 66-=x . 4、解方程:9-x -2×31-x =27. 5、解方程:x )8 1(=128. 6、解方程:5x+1=12 3-x . 7、计算:10log 5log )5(lg )2(lg 2233+ +·.10 log 18 8、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求函数121log 8.0--= x x y 的定义域. 10、已知log 1227=a,求log 616.

11、已知f(x)=1322+-x x a ,g(x)=522 -+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、解对数方程:log 2(x -1)+log 2x=1 17、解指数方程:4x +4-x -2x+2-2-x+2+6=0 18、解指数方程:24x+1-17×4x +8=0 19、解指数方程:22)223()223( =-++-x x ±2 20、解指数方程:014332 14111=+?------x x 21、解指数方程:042342222=-?--+-+x x x x

指数函数及其性质教案

指数函数及其性质教案 课题:指数函数及其性质(第1课时) 教材:普通高中课程标准试验教科书人教社A版,数学必修1 教学内容:第二章,基本初等函数(I),指数函数及其性质 教学目标 知识目标:理解指数函数的概念,初步掌握指数函数的图像和性质 能力目标:通过定义的引入,图像特征的观察,培养学生的探索发现能力,在学习过程中体会从具体到一般及数形结合的方法 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 | 教学重点﹑难点 重点:指数函数的概念和图像 难点:用数形结合的方法从具体到一般地探索﹑概括指数函数的性质 教学流程设计 (一)指数函数概念的构建 1.探究:本节问题2中函数的解析式与问题1中函数的解析式有什么共同特征 师生活动:教师提出问题引导学生把对应关系概括到的形式,学生思考归纳概括共同特征 2.给出指数函数的概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域是 & 3.剖析概念 (1)规定底数大于零且不等于1的理由: 如果=0, 如果等等时,在实数范围内实数值不存在 如果是一个常量,对它就没有研究的必要 (2)形式上的严格性 指数函数是形式定义的函数,就像初中所学的一次函数﹑反比例函数都是形式定义的概念,因此把握指数函数的形式非常重要。在指数函数的定义表达式中,前的系数必须是1,自变量在指数的位置上,否则,不是指数函数,比如等,都不是指数函数 (二)指数函数的图像及性质 ) 1.提出问题:同学们能类比前面讨论函数性质时的思路,提出研究指数函数性质的方法吗 师生活动:教师引导学生回顾需要研究函数的那些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图像在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透概括能力的培养,学生独立思考,提出研究指数函数性质的基本思路 2.画出函数的图像 师生活动:学生用描点法独立画图,教师课堂巡视,个别辅导,展示画的较好的学生的图像

指数函数和对数函数复习有详细知识点和习题详解

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: 43 421Λa n n a a a a 个???= )(*∈N n ()0 10a a =≠ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2) ()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100Θ 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8 - (2)() 2 10- (3)()44 3π- (4) ()() b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++=

指数对数的导数

求指数、对数函数的导数 例 求下列函数的导数: 1.1ln 2+=x y ;2.)132(log 22++=x x y ; 3.)sin(b ax e y +=; 4.).12cos(3+=x a y x 分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数. 解:1.解法一:可看成1,,ln 2+===x v v u u y 复合而成. .1 11 2)1(2 111 )2(2 11222212221 +=+?+=?+?+=??='?'?'='--x x x x x x x x x v u v u y y x v u x 解法二:[])1(11 1ln 222'++='+='x x x y .121121 11)1()1(2111 22222122+=?+? +='+?+?+= -x x x x x x x x 解法三:)1ln(2 11ln 22+=+=x x y , [] .1122)1(1121)1ln(2122222+=+='+?+?='+='x x x x x x x y 2.解法一:设132,log 2 2++==x x u u y ,则 )34(log 12+??='?'='x e u u y y x u x .1 32log )34()34(132log 2222++?+=+++?=x x e x x x x e 解法二:[] )132(1 32log )132(log 22222'++?++='++='x x x x e x x y .132log )34()34(132log 2222+++=+?++=x x e x x x x e 3.解法一:设b ax v v u e y u +===,sin ,,则

对数与对数函数知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27

注意: 知识点一对数及对数的运算性质 1.对数的概念 一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a>0且a≠1,M>0,N>0,那么 ①log a(MN)=log a M+log a N; ②log a M N=log a M-log a N; ③log a M n=nlog a M(n∈R); ④log a m M n=n m log a M. (2)对数的性质

①a logaN =N ;②log a a N =N (a>0,且a≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b·log b c·log c d =log a d. 注意:(补充)特殊结论:log 10, log 1a a a == 知识点二 对数函数的图象与性质 1.对数函数的图象与性质(注意定义域!) 指数函数y =a x 与对数函数y =log a x 互为反函数, 它们的图象关于直线y =x 对称. (补充) 设y =f(x)存在反函数,并记作y =f -1(x), 1) 函数y =f(x)与其反函数y =f -1(x)的图象 关于直线y x =对称.