搜档网
当前位置:搜档网 › 植物抗旱机理研究进展

植物抗旱机理研究进展

植物抗旱机理研究进展
植物抗旱机理研究进展

植物抗旱机理研究进展

水资源短缺以及土壤盐渍化是目前制约农业生产的一个全球性问题,全球约有20%的耕地受到盐害威胁,43%的耕地为干旱、半干旱地区。干旱与盐害严重影响植物的生长发育,造成作物减产,并使生态环境日益恶化。在我国,仅2001年华北、西北和东北地区的466.7万hm2稻的种植面积就因为缺水而减少了53.3万hm2。在自然条件下,由于环境胁迫而严重影响了作物生长发育,其遗传潜力难以发挥,干旱、盐渍不仅影响了作物的产量,而且限制了植物的广泛分布,因此,提高作物的抗旱、耐盐能力已经成为现代植物研究工作中急需解决的关键问题之一。现将植物特殊生理结构功能综述如下。

1植物形态结构特征对其耐旱机制的影响

1.1根系

植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。对高粱的根系解剖学研究发现,高粱根系吸水每天以3.4 cm的稳定速率下伸,直到开花后约10 d,在有限水分条件下,吸水的多少由根系深度决定,深层吸水差是由于根长不够所致。此外,根水势能也能反映根系的吸收功能。根水势低,吸水能力强。据报道,高粱根水势一般为-1.22~1.52 Mbar,而玉米仅为-1.01~1.11 Mbar,高粱的吸水能力约是玉米的2倍(Cnyxau,1974),对干旱的耐受能力也强于玉米。一般认为抗旱性强的植物,根水势低,利于水分吸收。

1.2叶片

作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的

栅栏组织,分布于叶的背腹两面,可使干旱缺水植物萎蔫时减少机械损伤。而小的表面积/

体积比,可以最大程度减少水分丧失。韦梅琴的4种委陵菜属植物解剖研究,也证实了这一点。

2渗透调节

水分胁迫条件下会积累有机分子相溶性溶质或渗压剂,有效地提高植物的渗透调节能力、增强植物的抗逆性。

2.1脱落酸与植物抗旱性

脱落酸(Abscisicacid,ABA)是植物五大类激素之一,大量的试验表明:当植物处于干旱、低温、盐碱、环境污染等不利环境下,植物体内脱落酸大量增加。脱落酸的增加,使植物对不利环境产生抗性。尤其是脱落酸的增加和气孔的关闭一致,这对植物抗旱是非常有利的。脱落酸除能调节气孔开闭外,还能促进根系对水和离子的吸收。20世纪80年代初人们就广泛承认,缺水时叶片合成的脱落酸通过韧皮部运到根部,促进根对水和离子的透性。番茄变种实验证明,脱落酸含量低于正常番茄的变种的根对水的吸收有较强的阻力,而这种阻力可因外施脱落酸而减少。另外,脱落酸能促进芽的休眠,使生长速度下降,促进同化物质的积累,这些都可以减少蒸腾,提高植物保水能力,对植物抗旱是十分有利的。

2.2脯氨酸与植物抗旱性

脯氨酸积累是植物为了对抗干旱胁迫而采取的一种保护性措施。Irigoyen(1992)发现,

轻度水分胁迫,苜蓿根瘤组织积累较多的脯氨酸,并认为脯氨酸可保护蛋白质在水分胁迫下的不变性.脯氢酸亲水基与蛋白质亲水基相互作用使蛋白质稳定性提高,乃至严重水分胁迫下苜蓿根瘤代谢酶和结构蛋白质可能会受积累的脯氨酸的保护,减轻严重干旱对组织的危害程度。在正常情况下,植物中游离的脯氨酸含量仅为O.2~0.6 mg·g-1干重,占总游离氨基

酸的百分之几,而在干旱条件下,脯氨酸可成10倍地增加,占总游离氨基酸的30%。水分胁迫下脯氨酸的积累一方面增强了植物的渗透调节作用,使组织的抗脱水力加大;另一方面脯氨酸的偶极性保护丁膜蛋白结构的完整性,同时增强了膜的柔韧性。脯氨酸可能是一有用

的干旱伤害传感器(Droughtinjurysensor。同时,脯氨酸还有作为自由基清除剂,调节细胞质PH值,防止酶变性,防止细胞质酸化的作用。

2.3甜菜碱与植物抗旱性

近年研究结果指出,甜菜碱可能是作为植物的主要渗透调节物质之一而对植物的抗旱性起作用。其依据是渗透胁迫条件下,植物体内的甜菜碱醛脱氧酶(BADH)和胆碱单氧化酶(CMO)活性升高,这两种酶在高等植物中,具有将胆碱氧化为甜菜碱的作用,并在细胞质中积累甜菜碱,甜菜碱的积累能够保持细胞与外界环境的渗透平衡和稳定复合蛋白四级结构,从而提高植物对干旱胁迫的适应性。因此,Nomura等(1998)认为:在受到干旱胁迫的细胞中,甜菜碱似乎是起到一种低分子量分子伴侣的作用,稳定RuBP羧化酶的构象并使其处于功能状态,部分抵消了干旱的胁迫。甜菜碱在叶绿体中合成,作为一种渗透调节物质,在植物受到环境胁迫时在细胞内积累降低渗透势,还能作为一种保护物质具有极为重要的“非渗透调节”功能,维持生物大分子的结构和完整性,维持其正常的生理功能,解除高浓度盐对酶活性的毒害和保护呼吸酶及能量代谢过程。还能影响细胞内离子的分布。

2.4水孔蛋白与植物抗旱性

水孔蛋白是植物体中水分跨膜运输的主要途径。是作为跨膜通道的主嵌人蛋白(MIP)家族中有运输水分功能的一类蛋白质。水孔蛋白可分为3类:TIP(Tonoplast Intrinsic Protein,液泡膜水通道蛋白)、MIP(Major Intrinsic Protein,主体水通道蛋白)及NLM(Nodulin-6-like Major Intrinsic Protein与Nodulin-6类主体水通道蛋白)。水孔蛋白、H+/ATPase和Na+/H+

反向运输蛋白在调节细胞水势和胞内盐离子分布中起信号导作用。植物体可以通过调控水孔蛋白等膜蛋白以加强细胞与环境的信息交流和物质交换,改变膜对水分的通透性,实现渗透调节,以增强植物的抗旱、耐盐能力。

3活性氧清除

植物受到水分、盐分胁迫时,产生活性氧,对细胞造成损伤,具体表现在4个方面:①活性氧能与酶的巯基或色氨酸残基反应,导致酶失活;②活性氧会破坏核酸结构,攻击核酸

碱基,使嘌呤碱和嘧啶碱结构变化,导致变异出现或变异的积累;③DNA是蛋白质合成的信息,由于活性氧对DNA复制过程的损伤,从而妨碍蛋白质合成;④启动膜脂过氧化反应,使维持细胞区域化的膜系统受损或瓦解。大量的研究实验表明,植物体内广泛存在的抗氧化酶系统(超氧化物歧化酶SOD)、过氧化氢酶CAT、过氧化物酶POD等)能有效清除活性氧,保证细胞正常的生理功能,维持其对干旱胁迫的抗性。有研究表明,耐旱植物在逆境条件下能使保护酶活力维持在一个较高水平,有利于清除自由基,降低膜脂过氧化水平,从而减轻膜伤害程度。

4LEA蛋白与植物抗旱性

LEA蛋白(Late Embryogenesis Abundant protein)是指胚胎发生后期种子中大量积累的一

系列蛋白质。LEA蛋白广泛存在于高等植物中。在植物个体发育的其他阶段,也能因ABA 或脱水诱导而在其他组织中高水平表达。一般认为,LEA蛋白在植物细胞中具有保护生物

大分子,维持特定细胞结构,缓解干旱、盐、寒等环境胁迫的作用。LEA蛋白大多是高度

亲水的。高度亲水性有利于LEA蛋白在植物受到干旱而失水时,能够部分替代水分子,蛋白质的多羟基能保持细胞液处于溶解状态,从而避免细胞结构的塌陷,稳定细胞结构,尤其是膜结构。在干旱脱水过程中细胞液的离子浓度会迅速升高,高强度的离子浓度会造成细胞的不可逆伤害。在第3组LEA蛋白的基元序列所构成的兼性α-螺旋结构中,亲水和疏水氨基酸分别处于螺旋的特定位置,形成分子内螺旋束,其表面具有束缚阴离子和阳离子的能力,因此,也能控制高盐、缺水伤害。

5植物抗旱相关基因的研究

了解植物适应干旱胁迫的分子机理有利于开展抗旱基因工程研究,对提高植物抗旱能力,促进农业生产的发展具有非常重要的意义。

5.1编码植物抗旱关键基因的克隆

1)与脯氨酸合成酶相关的基因,即脯氨酸合成酶基因族。其中包括了吡咯啉-5-羧酸合成酶基因P5CS及PVAB2,吡咯琳-5-羧酸还原酶基因P5CR及PproC1,榆钱菠菜脯氨酸转运

蛋白基因Ah-ProT1,编码s-腺甘甲硫氨酸合成酶基因SAM1和SAM3硫醇蛋白酶的rd19A、rd21A基因等。将脯氨酸合成途径中的第1个酶——P5CS基因转入烟草和水稻后,转基因

植株中P5CS mRNA的含量明显提高,转化植株的耐旱能力也比对照有所增加。此外,大量研究也表明,在干旱胁迫条件下,P5CS水平提高,胁迫解除,P5CS基因表达水平下降,

乙酰胆碱由胆碱单加氧酶(Choline Monooxygenase,CMO)或胆碱脱氢酶(Betaine Aldehyde Dehydrogenase CDH)、甜菜碱醛脱氢酶(Betain Aldehyde Dehydragenase,BADH)两步催化合成甜菜碱。现已在菠菜、甜菜、山菠菜中成功克隆出CMO基因,从烟草中克隆出CDH基因,从甜菜、菠菜、山菠菜、大麦、水稻及木本植物海榄雌中克隆出BADH基因。此外,

乙酰胆碱氧化酶(Choline Oxidase,COD)因为可以把乙酰胆碱一步合成甜菜碱而日益受到人们的关注。目前,codA基因已从水稻、拟南芥中成功克隆。Sakamoto等(1998)用编码codA 基因转化水稻,获得两种分别在细胞的两个不同部位表达的乙酰胆碱氧化酶转化株,这两种转化株的耐盐、抗旱以及耐低温的能力均有所增强。

2)LEA基因、水孔蛋白基因及脱水素基因。Xu等(1996)用来自大麦的一种LEA蛋白基因HVA1转化水稻,使其在水稻中过量表达,结果发现水稻的耐旱能力明显提高,且提高

幅度与LEA蛋白的表达量一致,为LEA蛋白在植物耐旱、抗盐过程中的作用提供了直接证据。棉花11个LEA相关基因,分别是D19、B19.1、D11、rab、16A-D、HVA1、D113、le2、

D29和D34,以及拟南芥CORl5a、pRABA T1两个基因已经成功分离。拟南芥中有30个基因编码水孔蛋白得到克隆,其中,12种属于TIP,12种属于MIP,6种属于NLM。已经得到克隆的编码Na+/H+反向运输蛋白的基因包括:拟南芥中的AtN HX1、SOS1(Salt Overly Sensitive),小麦的TαN HX1 和水稻的OsN HX1基因。脱水素是一种广泛存在于高等植物中的干旱诱导蛋白,具有很强的亲水性和热稳定性。具有保护植物细胞的大分子在脱水过程中不受伤害的功能。由于脱水素是在种子成熟时发挥作用,因此也把它归于LEA蛋白。脱水素基因是一个大的基因家族,目前已有多个脱水素基因或相关基因被克隆及定位,如大麦中dhn1、dhn11,玉米中的dhn1/rabl7和dhn2以及拟南芥中的dhnX、cor47、rab18 等。

5.2抗逆相关的转录因子及双组分系统基因

抗逆相关的转录因子的研究近来也日益受到重视,它们可以控制一系列的下游胁迫反应,从而启动信号传导中的级联反应,使细胞产生相应的抗逆性。至今,已克隆出了大量的与植

物抗旱相关的转录因子。例如,拟南芥DREB1A~C 和DREB2A~B,CBF1~3、Hs、

At-GluR2、ATHB6、SCOF-1、Atmyb2等。

在拟南芥和烟草中还发现双组分系(Two-tom-ponent System)基因的存在,其基因产物为“感受器”和“反应调节器”合二为一的激酶蛋白。如拟南芥的双组分系统基因ATRR1 和ATRR2 受干旱、高盐及低温的诱导。烟草双组分系统基因NTHK1 和NTHK2 则受高盐胁迫处理的诱导。双组分系统基因被诱导表达后,产生一系列的细胞应激反应,提高植物的干旱胁迫适应能力。

6展望

水分不足是限制农业发展的重要因子,提高植物自身抗旱性和水分利用效率来发展农业存在着较大的潜力,发展前景十分广阔。植物抗旱是一个复杂的问题,研究表明,植物的抗旱性是由多基因控制的,不同作物和品种适应干旱的方式是多种多样的,一些作物具有综合性的、几种机理共同起作用的抗旱特性。

探讨作物的抗旱机理,力求认识作物抗旱的本质,提高水分利用效率,改良作物的抗旱性已成为日前倍受关注的研究内容。目前,培育耐旱抗盐作物品种的主要途径有:①将野生耐旱植物驯化成作物;②建立在形态(如株高、生长以及根系发达程度等),生理(如渗透调节等)、分子标记(RFLP、RAPD等)选择基础之上的传统育种;③利用组织培养和诱变生物技术产生突变表型进行培育;④传统育种方式;⑤基因工程培育等。

毫无疑问,今后工作的重点应从分子水平上阐明怍物抗旱性的物质基础及其生理功能,通过基因工程手段进行抗旱基因重组,应用常规育种与遗传工程相结合的方法培育耐旱与高水分利用效率的抗旱新品系。

植物抗旱机理研究进展

植物抗旱机理研究进展 水资源短缺以及土壤盐渍化是目前制约农业生产的一个全球性问题,全球约有20%的耕地受到盐害威胁,43%的耕地为干旱、半干旱地区。干旱与盐害严重影响植物的生长发育,造成作物减产,并使生态环境日益恶化。在我国,仅2001年华北、西北和东北地区的466.7万hm2稻的种植面积就因为缺水而减少了53.3万hm2。在自然条件下,由于环境胁迫而严重影响了作物生长发育,其遗传潜力难以发挥,干旱、盐渍不仅影响了作物的产量,而且限制了植物的广泛分布,因此,提高作物的抗旱、耐盐能力已经成为现代植物研究工作中急需解决的关键问题之一。现将植物特殊生理结构功能综述如下。 1植物形态结构特征对其耐旱机制的影响 1.1根系 植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。对高粱的根系解剖学研究发现,高粱根系吸水每天以3.4 cm的稳定速率下伸,直到开花后约10 d,在有限水分条件下,吸水的多少由根系深度决定,深层吸水差是由于根长不够所致。此外,根水势能也能反映根系的吸收功能。根水势低,吸水能力强。据报道,高粱根水势一般为-1.22~1.52 Mbar,而玉米仅为-1.01~1.11 Mbar,高粱的吸水能力约是玉米的2倍(Cnyxau,1974),对干旱的耐受能力也强于玉米。一般认为抗旱性强的植物,根水势低,利于水分吸收。 1.2叶片 作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的

提升植物抗旱性

提高植物抗旱性的有效途径 【摘要】:干旱、盐碱和低温(冷害)是强烈限制作物产量的3大非生物因素,其中干旱造成的损失最大,其损失量超过其他逆境造成损失的总和。干旱对植物生长和繁殖、农业生产和社会生活有着极其重要的影响,其对世界作物产量的影响,在诸多自然逆境中占首位,其危害程度相当于其他自然灾害之和。因此,干旱是制约植物生长发育的主要逆境因素,研究植物的抗旱性对农业生产实践及稳定荒漠生态具有极其重要的作用。另外,抗干旱植物对抵御风沙等自然灾害、稳定干旱区环境,亦起着不容忽视的作用。 【关键词】:植物水分抗旱性干旱诱导蛋白渗透调节物质干旱胁迫水分胁迫 【引言】:作为生态系统的一分子,植物无时尤刻小在同环境进行着物质、信息和能量的交流。环境中与植物相关的因子多种多样,且处于动态变化之中,植物对每一个因子都有一定的耐受限度,一旦环境因子的变化超越r这一耐受限度,就形成了逆境。因此,植 物的生长过程中,逆境足不可避免的。植物在长期的进化过程中,形成了相应的保护机制:从感受环境条件的变化到调整体内代谢,直至发生有遗传性的改变,将抗性传递给后代。研究逆境对植物造成的伤害以及植物对此的反应,是认识植物与环境关系的一条重要途径,也为人类控制植物的生艮条件提供了可能性。 【正文】: 在植物生理学发展史上,植物水分与抗旱性当属最早开展的研究领域之一,一直备受关注。特别是近年来由于世界范围的干旱缺水日趋严重,加之分子生物学思想和方法的不断渗入,致使该领域的研究工作进入一个充满活力的新时期,但从旱区农业发展和改善环境的需求看,植物水分与抗旱的研究前路仍然很广阔。

一.逆境对植物的影响 1.逆境引起的膜伤害 1.1影响膜透性及结构 细胞膜作为联系植物细胞与外界的介质,它的组成、性质与细胞所处的环境息息相关,而外界环境对植物的胁迫危害,首先在膜系中有所表现。干旱、低温、冻害等几种胁迫,无论是直接危害或是间接危害,都首先引起膜透性的改变。至于膜上酶蛋白的变化以及脂类的组成也可随着胁迫的深化而有所改变,目前,这方面研究最深入的是低温引起膜脂相变的假说。1970年,Lyoll8和Raison提出,低温敏感植物的膜脂相变可能由于膜脂肪酸的不饱和程度较低,或饱和膜脂较多,低温下,膜脂以液晶相向凝胶相转变,造成细胞膜膜相分离,从而引起细胞生理活动的紊乱。在此之后,大最试验证明,膜脂的组分和结构与抗冷力密切相关。 1.2 发生膜脂过氧化作用 逆境对膜的伤害,还表现在膜脂过氧化上。20世纪60年代末,Fridovic提 出生物自由基伤害假说,植物在逆境条件下,细胞内产生过量自由基,这些自由基能引发膜脂过氧化作用,造成膜系统的伤害。主要反应是,活性氧促使膜脂中不饱和脂肪酸过氧化产生MDA。后者能与酶蛋自发生链式反应聚合,使膜系统变性晗。有多位研究者报道,当植物受到低温或高温等逆境的胁迫时,其细胞内自由基清除剂含量下降,而MDA含量上升;另一方面,热锻炼、冷锻练或外源激素处理提高植物的抗逆性也表现在彤汀的活性提高,膜稳定性增强。 1.3 影响离子载体功能的实现 在细胞膜上存在着一些离子载体或通道,当外界刺激作用于细胞时,除了膜结构变化影响内部代谢紊乱外,膜上的离子载体首先接受了环境变化的信号,并通过刺激一信

果树抗旱技术措施

果树抗旱技术措施 当果树遇高温和干旱时,叶的光合作用和根对肥料的吸收作用会显著降低,甚至叶片蜷缩,以致落叶落果。甚至造成枝条和根的生长以及果实的增大均被迫停止。持续高温干旱天气易使树势衰弱,既影响秋梢的生长,又影响花芽分化,导致大小年结果。为此,特提出以下抗旱救灾措施: 1、灌水防旱。充分利用山塘、水库、水渠、水井,实行人工或机械提水抗旱。充分发挥抽水机作用,于下午5时后至夜晚通宵抽水灌溉,水量足可以实行漫灌;若水源有限,可行沟灌,再由人工酌情由沟中取水浇灌树盘。 在无机灌条件的果园,应实行人工挑灌,视果树(主要是柑桔和梨)大小,在每株树的两侧树冠下挖水沟灌水一桶或一担;若是一、二年生幼树,每担水可浇灌2~4株。灌水后尽可能用稻草、杂草或废旧薄膜覆盖,或待灌后稍干爽时盖一层细土,有利保墒耐久。 2、覆盖保墒。在果树树冠下离主干1尺许的树盘范围内覆盖2~4寸厚(视材料多少而定)的稻草、山青等覆盖物,其上撒些碎土块,可防止土壤水分继续蒸发。旱期灌水后更应采取此法覆盖,有利保墒增产;若无灌水条件,在遇大雷雨后,就能发挥覆盖的实际效用;尤其是大雷阵雨后或正常大降雨后,应尽快利用农膜、旧编织袋全面覆盖树盘,可有效防止水分蒸发。 3、雨后中耕。若遇大雨,土壤水分充足情况下,应在雨后土爽时尽快全园中耕松土一次,以减少土壤水分自然蒸发散失掉,从而可延缓

旱情的继续发展。 4、刷白防日灼。温度过高,不仅叶片卷曲,而且树干也会受到日灼。为了防日灼,对于树干可刷石灰水,浓度为:5斤石灰+25斤水+0.2斤盐+0.2斤猪油或牛油。 对于阳面的叶片或果可喷石灰水,浓度为1~3%。 5、叶面喷抑蒸保湿剂,以减少蒸腾作用。常用的有旱地龙、乐万家和FA“绿野”又称抗旱剂1号等。 6、土壤施抗旱保水剂。开沟15厘米,在根际施用吸湿剂。常用的有科翰98高吸水树脂等,施后浇足水,然后覆土将沟填平,如遇雨天,效果最好,它会将吸足的水慢慢释放出来。 7、结合施壮果促梢肥,浇施腐熟有机肥。如施用沼液等。另外,用草木灰浸水后进行叶面喷施,效果很好。方法是:草木灰6斤+100斤水浸20~24小时,并经常搅拌,再过滤,用澄清水进行叶面喷施。 8、病虫防治。要结合叶面喷水和喷肥搞好生物农药喷施,减少病虫危害,提高树体抗性。 9、修剪。干旱特别严重的果园,对于常规的夏季修剪促秋梢,要尽量轻剪或不剪,以减少伤口,减少树体蒸腾。 10、苗圃抗旱管理。对于果树苗木,除采用以上措施防旱抗旱外,要采用遮阳网,以降低温度,保证果苗成活和生长。

六种植物抗旱性的研究

六种植物抗旱性的研究 王超 (山东农业大学园艺科学与工程学院泰安271018) 摘要:黄刺玫、牡丹、芍药、马兰、沙拐枣、蜀葵都是抗旱性比较强的植物,本文主要从六种植物的形态特征、根冠比、叶片解剖构造、叶片保水能力、水分饱和亏五个方面研究了其抗旱机理,其结论是叶片的形态特征和构造减少了叶片水分散失、提高了水分利用效率,叶片保水能力强,根冠比比值较大,当受到干旱胁迫时,6种苗木水分饱和亏缺大至都呈上升趋势。 关键词:抗旱性;黄刺玫;牡丹;芍药;马兰;沙拐枣;蜀葵 Reach about drought resisting of Six kinds plant Wang-chao (College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018) Abstract:Rosa xanthina , peony , peony , Ma Lan , sand honey raisin tree , hollyhock all are the comparatively strong nature plant fighting a drought, the main body of a book the aspect dissecting structure , the blade mainly from form characteristic , root cap of six kinds plant ratio, the blade guaranteeing five water abilities , saturated get a beating of moisture content has studied it's the mechanism fighting a drought , whose conclusion has been that blade's form characteristic and structure have decreased by blade moisture content dissipating , have improved the moisture content utilization ratio , the blade guarantor water ability has been strong , root cap ratio has been bigger, Should arid coerce time, moisture content saturation is 6 kinds nursery stock short assuming an uptrend greatly extremely。 Key word: Drought resistance; Rosa xanthina; Peony ; Ma Lan; Calligonum mongolicum; Hollyhock 1 引言 植物的地理分布,生长发育以及产量形成等均受到环境的制约。干旱是对植物生长影响最大的环境因素之一。世界上干旱半干旱区遍及50多个国家和地区,其总面积约占陆地总面积的三分之一,且有逐年增加的趋势。在我国华北、西北、内蒙古和青藏高原绝大部分地区属于干旱半干旱地区,约占全国土地总面积的45﹪。由于全球荒漠化

最新植物抗旱性生理生化机制的研究进展

植物抗旱性生理生化机制的研究进展 李宏富 (宁夏大学生命科学学院,宁夏银川,750021) 摘要:本文通过对植物的干旱类型、旱害机理、抗旱类型和特征以及在干旱逆境条件下的生理、生化上的变化进行总结,并对其研究前景进行了展望,以期为选育植物抗逆品种的研究提供参考,旨在促进植物抗旱机理方面的研究工作。 关键词:抗旱生理生化机制研究进展 Research Progress on Physiological and Biochemical Mechanism of Plant Drought Resistance LI Hong-fu (College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021) Abstract: The type and mechanism of plant drought, the type and characteristics drought resistance and the changes of stress conditions on plant physiological and biochemical function were summarized. The research prospect was prospected, in order to provide some reference for breeding anti-adversity varieties, and advance the research on mechanism of plant drought resistance. Key Words: Drought resistance; Physiological and biochemical mechanism; Research progress 干旱、低温、高温、盐渍等不良环境是影响植物生长的重要因子,其作用于植物会引起植物体内一系列生理、生化和分子生物学上的变化,主要包括生物膜结构与组成的改变,许多特异性蛋白、糖、渗透调节物质(甜菜碱和脯氨酸等)的

水稻抗旱基因调控机制及其分子育种利用_王莉

分子植物育种,2014年,第12卷,第5期,第1027-1033页 Molecular Plant Breeding,2014,Vol.12,No.5,1027-1033 评述与展望 Review and Progress 水稻抗旱基因调控机制及其分子育种利用 王莉1,2钱前1*张光恒1* 1中国水稻研究所水稻生物学国家重点实验室,杭州,310006;2中国农科院研究生院,北京,100081 *通讯作者,qianqian188@https://www.sodocs.net/doc/3217824093.html,;zhangguangheng@https://www.sodocs.net/doc/3217824093.html, 摘要稻米是中国最主要的粮食作物之一,多途径提高水稻单产和稻米总量,对解决我国粮食安全上具有十分重要的意义。而如何解决日益增长的水稻总产需求和干旱缺水环境之间的矛盾是中国21世纪将面临的最严重的粮食问题之一。本文从水稻抗旱种质资源及耐旱基因的功能角度出发,对抗旱育种的种质资源,耐(抗)旱基因调控机理及其分子育种应用等研究进展进行综述。综合分析认为,水稻抗旱特性调控基因主要包括功能基因和调节基因两大类:功能基因的调控作用主要表现在蛋白酶的调节、糖类物质积累、渗透调节、有毒物质降解和水稻细胞机构调节等五个方面;而调节基因则主要参与编码信号转导相关的信号因子和响应胁迫的转录因子家族。这些基因的克隆为水稻抗旱性研究和抗旱育种奠定了理论基础。此外,中国抗旱分子育种还处于起始阶段,受种植区域、生产成本、稻米品质及病虫害抗性等方面影响,旱稻推广面积偏小。在中国转基因水稻尚未全面放开背景下,目前转基因旱稻品种选育和技术研究还处于技术储备层面。在现阶段抗旱育种实践重点是提高旱稻育种效率和选育技术创新,同时兼顾高产、抗病虫害农艺特性,结合分子技术聚合或导入外源抗旱基因,选育高产、耐旱、优质旱稻品种,充分挖掘旱稻增产潜力。这将为我国缓和粮食生产与淡水资源缺乏之间的矛盾提供新思路,为确保我国粮食安全、调整优化农业结构、促进节水农业持续发展开辟一条新途径。 关键词水稻,抗旱基因,调控机理,分子育种 Regulation Mechanism of Drought-resistance Genes and its Molecular Breeding Utilization in Rice(Oryza sativa L.) Wang Li1,2Qian Qian1*Zhang Guangheng1* 1State Key Laboratory of Rice Biology,China National Rice Research Institute,Hangzhou,310006;2Graduate School of Chinese Academy of Agri-cultural Sciences,Beijing,100081 *Corresponding authors,qianqian188@https://www.sodocs.net/doc/3217824093.html,;zhangguangheng@https://www.sodocs.net/doc/3217824093.html, DOI:10.13271/j.mpb.012.001027 Abstract Rice is one of the main food crops in our country,and it is very important to improve rice yield and total rice product by multiple pathways for food security.But how to solve the contradiction between the require-ment of increasing total amount of rice and the environment of water shortage is the most serious problem we will face in the21st century.The paper expounds the advance in germplasm resources in drought-resistance breeding, regulation mechanism of drought-resistance genes and its molecular breeding application from the point of the drought-resistance germplasm resources and the functions of drought-tolerance genes in rice.The comprehensive analysis comes to the conclusion that drought resistance regulation mechanism mainly consist of functional genes and regulatory genes.The regulating effects of functional genes mainly reflect in protease adjustment, carbohydrate accumulation,osmotic adjustment,toxic material degradation and rice cell machinery regulation; regulatory genes are primarily participate in coding signal factors related to transduction and transcription factors 收稿日期:2014-01-07接受日期:2013-03-27网络出版日期:2014-07-15 URL:https://www.sodocs.net/doc/3217824093.html,/index.php/mpbopa/article/view/1983 基金项目:本研究由国家自然科学基金重大研究计划培育项目(91335105)和国家自然科学基金面上项目(31171531)共同资助

果树抗旱技术措施

果树抗旱技术措施 一、全园灌溉 有灌溉条件的果园应千方百计统筹安排,排好轮茬,昼夜轮流浇灌,灌溉前施一次追肥,以氮钾肥为主,施肥方法穴施为主,每株施肥0.6~1㎏左右,及时中耕除地,有条件的覆盖保墒。 二、穴灌 在果树树冠三分之一处,开挖30×30×30㎝的相对称的孔穴2个,依次灌满约30L水以上,随即盖草覆盖减轻蒸发损耗,利用根系的趋水性和强大的吸水性功能,可以保证果树10天以上的需水要求。如果能够结合抗旱剂的使用,效果更佳。 三、果园覆盖 在灌溉的基础上,用树盘覆盖技术,可以有效减轻土壤水分的蒸发损耗。具体做法是:在树冠内离树干10㎝覆盖玉米、麦草、杂草(10~20㎝厚)、地膜,减少水分蒸发,同时可以减少和避免杂草与果树争夺肥水,增强果树的抗旱能力。 四、使用"抗旱剂"

(一)随水灌溉最佳用量为每亩500~1000g(或每株施20~80g);采用机械抽水灌溉的,在进水口处均匀滴灌使药液均匀溶于灌溉水中,最好旱地龙滴完时,田块正好浇完;挑水、拉水灌溉的直接按比例溶解水桶中,每株树采用穴灌方式,灌施旱地龙的水液5L以上。 (二)叶面喷抑蒸保湿剂,以减少蒸腾作用。常用的有旱地龙、乐万家和FA"绿野"又称抗旱剂1号等。 五、做树盘培土蓄水 针对坡地、沙地、无灌溉条件,沿果树树冠做一个直径1~2m 的树盘,待下雨后蓄水,再覆盖3~5㎝土,减少蒸发量。 六、果园生草 果园生草可以保墒、蓄水、降低蒸发,调节果园小气候,提高土壤肥力,增强果树抗旱能力,白三叶、红三叶是目前果园生草推广的较好草种,亩播2~3㎏。春秋季播种最佳。 七、根外追肥、补肥提树势

及时采取根外追肥的办法,结合病虫害防治,施用以氮钾为主的肥料,增强树势,提高抗旱能力,具体做法:施肥保持氮钾1:1~1.3,盛果树结合农家肥亩施复合肥50~100㎏,幼树亩施6~15㎏,采用穴施或槽施的办法。 八、雨后中耕 若遇大雨,土壤水分充足情况下,应在雨后土爽时尽快全园中耕松土一次,以减少土壤水分自然蒸发散失掉,从而可延缓旱情的继续发展。 九、刷白防日灼 温度过高,不仅叶片卷曲,而且树干也会受到日灼。为了防日灼,对于树干可刷石灰水,浓度为:2.5㎏石灰+12.5㎏水+0.1㎏盐+0.1㎏猪油或牛油。 十、病虫害综合防治 及时清除果园病叶、病枝、集中进行烧毁深埋,深翻土壤,刷除树体上虫卵,喷施3~5波美度石硫合剂溶液,既防菌又杀虫。

植物抗旱研究进展

植物抗旱性研究进展 摘要:本文主要总结了一些与植物抗旱相关的因素,比如叶片结构、小分子代谢物、激素以及抗旱相关的基因等,探讨植物抗旱研究的进展、存在问题及发展趋势。 关键词:抗旱叶片小分子代谢物植物激素抗旱基因 Abstract:This article mainly talks about the factors of drought-resistant, such as leaf structure, small molecule metabolites, phytohormone, and other drought-related genes and exploring the progress of the study, existing problems and developing trends. Key words: drought-resistant leaf small molecule metabolites phytohormone drought-related genes 干旱是一个长期存在的世界性难题,全球干旱半干旱地区约占陆地面积的35%,遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52. 5%,其中干旱地区占30.8%,半干旱地区占21.7%。而干旱胁迫造成农作物减产,给农业生产带来极大的经济损失。因而对植物抗旱性的研究就显得尤为重要。 1. 植物叶片与抗旱性 植物吸收的水分主要是通过叶片蒸腾作用散失到体外,因此叶片的结构以及生理特征对植物的抗旱有着重要的作用。不同的植物筛选出的抗旱性评价指标不尽相同,通常认为,叶片的角质层越厚,表皮层越发达,栅栏组织越厚且排列紧密,气孔密度大,栅栏组织/海绵组织厚度比值较大,叶片组织结构紧密,上表皮细胞较小者抗旱性较强[1][2]。肖冰雪等[3]对牧草叶片解剖结构与抗旱性关系研究中表明,“阿坝”硬秆仲彬草、“阿坝”垂穗披碱草旱生结构特点明显:角质层厚、气孔下陷、维管束导管发达,具有较强的抗旱能力。刘红茹等[4]对延安城区10种阔叶园林植物叶片结构及其抗旱性研究中表明10种植物叶片均具备抵抗干旱环境的解剖结构,表皮、角质层、栅栏组织、叶脉、维管束等较为发达,气孔主要分布在下表皮。另外,叶片的一些其它结构也与抗旱相关,比如泡状细胞在植物缺水时,发生萎蔫,叶片内卷成筒状以减少水分蒸腾作用[5],发达的叶脉促进植物吸水率从而有利于植物贮藏水分[6]。

植物抗旱性处理方式

植物抗旱性干早处理方法 干旱是世界范围内普遍存在的问题,全球约三分之一的土地面积处于干早和半干旱地区,因此,国内外学者在植物对干早胁迫响应方面进行了大量的研究。根据试验内容和对试验进度控制的需求,干旱处理方法大致分为以下几种:(l)‘盆栽法通过人为控制盆栽植物的土壤含水量,以达到模拟植物所处的干旱环境。草坪护栏根据控制水分的方式的不同,又分为控水法和缓慢干旱法。①控水法,即控制土壤含水量,使植物处于几种水分胁迫梯度下,以监测、对比不同水分胁迫梯度植物的生长和生理活动情况,从而分析植物对不同水分梯度的响应情况;②缓慢干旱法,根据植物的生长发育阶段,人为控制土壤含水量每日的脱水量和速率,经一定时间达到干旱程度,从而根据时段进行观测植物对干旱环境的响应。目前盆栽方法的优点是试验进程较容易控制,结果可靠,但由于室内外环境差异,势必与田间植物生长存在差异.东莞护栏。 (2)大气干早处理法研究外界干旱气候环境对植物产生的影响中,空气湿度是造成干早环境的主要因子,此方法主要通过使植物生长在能控制空气湿度的干旱室中,或给作物叶面喷施化学干燥剂等方法模拟干早环境,经过设置不同时间的处理,形成不同程度的干旱环境,从而分析植物对外界空气湿度变化的响应情况。此方法的优点是制造干旱环境较为精确,但需要的资金也相对较多,难以大面积、大批量进行试验,同时依旧存在与田间自然环境条件存在差异的问题.(3)高渗溶液处理法使用不同浓度的高渗溶液如聚乙二醇、甘露醇、蔗糖、生理盐水等,对植株进行处理,形成植物生理干早,从而进行测定相应的生理指标。目前此方法存在争议较大。 (4)田间试验鉴定法此方法是指在田间进行栽植和测定指标试验,根据控水方式的不同分为两类,一类是将供试种在不同地区的试验地上栽种,以自然降水造成干旱胁迫,直接按照植物产量或生长状况来评价植物种的抗旱性;另一类是将供试种直接种于一个地区的田间试验地,以人工灌水来控制土壤含水量,形成有差异的水分环境,使植物生长受到影响,以此来评价植物种的抗旱性。这种方法主要以产量指标来评价植物的抗旱性。 此方法较简便易行,即能反映出植物在真实地田间干旱环境下的生长情况,又有产量指标,结果较有说服力,但受环境的影响较大,尤其是降水,年际间变幅较大,使每年鉴定的结果难以重复。 (5)分子生物学方法分子生物学法是近年来主要研究的方法,结果精确,其主要特点是不需要经过干早胁迫,直接找出标记指示植物抗旱的基因,或与抗旱性状相近的基因,用基因追踪技术(如限制性片段长度多态性盯LP),对抗旱基因进行定位和标记,通过基因鉴别来反映植物抗旱性。但此方法目前尚处于研究阶段,成本较高

干旱胁迫及植物抗旱性的研究进展

新疆农业大学 专业文献综述 题目: 干旱胁迫及植物抗旱性的研究进展 姓名: 库热·巴吐尔 学院: 林学与园艺学院 专业: 园艺(特色经济林) 班级: 041班 学号: 043231142 指导教师: 海利力·库尔班职称: 教授 2008年12月19日

干旱胁迫及植物抗旱性的研究进展 摘要:干旱(水分亏缺)是我国北方沙漠化地区植物生长季的主要环境胁迫因子。本文从植物干旱的种类,植物对水分胁迫的生理反应,抗旱机理,植物水分胁迫的研究方法等几个方面,探讨植物抗旱研究的进展,存在问题及发展趋势,和干旱和高温在生理水平对植物光合作用影响机制的最新研究进展进行了综述,并对以后的相关研究进行了一些分析。 关键词:干旱胁迫;植物抗旱性,干旱机制 干早(Drought)是限制植物生长发育,基因表达和产量的重要因子[1-4],是气象与环境质量的指标,是指在无灌溉条件下,长期无雨或少雨,气温高,湿度小,土壤水分不能满足农作物的需要,使作物的正常生长受到抑制,甚至枯死,造成减产或无收的一种自然现象,一般分为大气干旱和土壤干早[5-6]。全球干旱半干旱地区约占陆地面积的35%遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52.5%,其中干旱地区占30.8%,半干旱地区占21.7%[7]。植物的抗旱性是指植物在大气或土壤干旱条件下生存和形成产量的能力,抗旱性鉴定就是按植物抗旱能力大小进行鉴定,评价的过程[8-10]。前人对于植物抗旱性的研究作了大量的工作,并在许多方面取得了突破性进展,为干旱半干旱地区的农林业生产提供了理论基础。但这些研究都具有一定的局限性,主要表现为现有研究结果多数是针对植物某个或几个方面进行研究,如某些生理或生化指标,而这些研究指标只在某一时间范围内起有限的作用,用这些具有时间限制的少数几个指标来阐明植物抗旱的途径,方式和机理,或进行耐旱性评价都难以反映植物的真实情况,甚至会使某些最关键的问题被忽略。因此,本文对植物干旱胁迫及抗旱性方面的一些研究成果及存在的问题进行了探讨。 1 干旱胁迫 干旱是一个长期存在的世界性难题,中国水的问题始终是个大问题,水的安全供给问题引起了世界各国的关注。中国的干旱缺水问题目前已引起党中央,国务院和全社会的关注,中国的水危机不是危言耸听,而是既成事实。干旱缺水将成为我国农业和经济社会可持续发展的首要制约因素。 1.1 干旱胁迫的类型及特点 干旱形成有两种主要原因,并形成两类干旱。一是土壤干旱。由于连年干旱,雨量过少,每年降雨量约在200~300mm,地下水位又较低,土壤中水分根本不能满足植物生长,如无灌溉,作物将受干旱之害。二是大气干旱。植物的水分亏缺是由于蒸腾失水超过吸水而产生的,即使在土壤水分充足的情况下,晴天的中午也常常产生干旱。气温高,强烈的太阳辐射显著促进蒸腾;由于土壤干燥,地温低,根的机能低下,使吸水受到抑制。都能使植物产生水分亏缺,特别是二者同时产

主要经济作物抗旱救灾技术措施

主要经济作物抗旱救灾技术措施 一、果树抗旱救灾技术措施 当果树遇高温和干旱时,叶的光合作用和根对肥料的吸收作用会显著降低,甚至叶片蜷缩,以致落叶落果。甚至造成枝条和根的生长以及果实的增大均被迫停止。所以,持续高温干旱天气易使树势衰弱,既影响秋梢的生长,又影响花芽分化,导致大小年结果。为此,特提出以下抗旱救灾措施: 1、灌水抗旱。充分利用山塘、水库、水渠、水井,实行人工或机械提水抗旱。应尽快发挥抽水机作用,于下午5时后至夜晚通宵抽水灌溉,水量足可以实行漫灌;若水源有限,可实行沟灌,再人工酌情由沟中取水浇灌树盘。 在无机灌条件的果园,应实行人工挑灌,视果树(主要是柑桔和梨)大小,在每株树的两侧树冠下挖水沟灌水一桶或一担;若是一、二年生幼树,每担水可浇灌2-4株。灌水后尽可能用稻草、杂草或废旧薄膜覆盖,或待灌后稍干爽时盖一层细土,有利保墒耐久。 2、覆盖保墒。果园覆盖简单易行效果好,通常应在旱季到来前进行;现虽已进入旱季,仍可奏效。办法是在柑桔(其他果树不必用之)树冠下离主干1尺许的树盘范围内覆盖2-4寸厚(视材料多少而定)的稻草、山青等覆盖物,其上撒些碎土块,可防止土壤水分继续蒸发。旱期灌水后更应采取此法覆盖,有利保墒增产;若无灌水条件,在遇大雷雨后,就能发挥覆盖的实际效用;尤其是大雷阵雨后或正常大降雨后,应尽快利用农膜、旧编织袋全面覆盖树盘,可有效防止水分蒸发。 3、雨后中耕。若遇大雨,土壤水分充足情况下,应在雨后土爽时尽快全园中耕松土一次,以减少土壤水分自然蒸发散失掉,从而可延缓旱情的继续发展。 4、刷白防日灼。温度过高,不仅叶片卷曲,而且树干也会受到日灼。为了防日灼,对于树干可刷石灰水,浓度为:5斤石灰+25斤水+0.2斤盐+0.2斤猪油或牛油;对于阳面的叶片或果可喷石灰水,浓度为1-3%。 5、叶面喷抑蒸保湿剂,以减少蒸腾作用。常用的有旱地龙、乐万家和FA“绿野”又称抗旱剂1号等。 6、土壤施抗旱保水剂。开沟15厘米,在根际施用吸湿剂。常用的有科翰98高吸水树脂等,施后浇足水,然后覆土将沟填平,如遇雨天,效果最好,它会将吸足的水慢慢释放出来。 7、结合施壮果促梢肥,浇施腐熟有机肥。如桔饼水、沼液等。另外,用草木灰浸水后进行叶面喷施,效果很好。方法是:草木灰6斤+100斤水浸20-24小时,并经常搅拌,再过滤,用澄清水进行叶面喷施。 8、病虫防治。要结合叶面喷水和喷肥搞好生物农药喷施,减少病虫危害,提高树体抗性。 9、修剪。干旱特别严重的果园,对于常规的夏季修剪促秋梢,要尽量轻剪或不剪,以减

最新六种植物抗旱性的研究

六种植物抗旱性的研 究

六种植物抗旱性的研究 王超 (山东农业大学园艺科学与工程学院泰安 271018) 摘要:黄刺玫、牡丹、芍药、马兰、沙拐枣、蜀葵都是抗旱性比较强的植物,本文主要从六种 植物的形态特征、根冠比、叶片解剖构造、叶片保水能力、水分饱和亏五个方面研究了其抗旱机 理,其结论是叶片的形态特征和构造减少了叶片水分散失、提高了水分利用效率,叶片保水能力 强,根冠比比值较大,当受到干旱胁迫时,6种苗木水分饱和亏缺大至都呈上升趋势。 关键词:抗旱性;黄刺玫;牡丹;芍药;马兰;沙拐枣;蜀葵 Reach about drought resisting of Six kinds plant Wang-chao (College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018) Abstract: Rosa xanthina , peony , peony , Ma Lan , sand honey raisin tree , hollyhock all are the comparatively strong nature plant fighting a drought, the main body of a book the aspect dissecting structure , the blade mainly from form characteristic , root cap of six kinds plant ratio, the blade guaranteeing five water abilities , saturated get a beating of moisture content has studied it's the mechanism fighting a drought , whose conclusion has been that blade's form characteristic and structure have decreased by blade moisture content dissipating , have improved the moisture content utilization ratio , the blade guarantor water ability has been strong , root cap ratio has been bigger, Should arid coerce time, moisture content saturation is 6 kinds nursery stock short assuming an uptrend greatly extremely。 Key word: Drought resistance; Rosa xanthina; Peony ; Ma Lan; Calligonum mongolicum; Hollyhock 1 引言 仅供学习与交流,如有侵权请联系网站删除谢谢13

抗旱综合技术

果树抗旱综合技术措施 针对重庆市特大的干旱情况,果树的正常生长发育已经受到了影响,为了减少损失,特提出果树生产中的几种抗旱栽培技术措施: 1、穴施肥水 由于果树根系分布较深,表层土灌溉,有限的水分难以渗透到根系分布的集中层,灌溉效果往往不理想或难以见效。即使每天灌水,仍然出现大面积萎焉甚至干死树的情况,其原因是树盘表土漫灌,水分下渗速度慢、浅,同样灌溉量,一般只有能下渗2-3厘米,难以达到根系活动层,而且表面蒸发消耗大,灌溉效果很差。为保证灌水深度达到40厘米以上,应进行穴施肥水,具体做法是:在果树滴水线处,开挖30- 40×30-40×30-40厘米的相对灌水孔穴两个,分别灌水或清粪水30-50公斤(有条件的也可加入0.2%-0.3%磷酸二氢钾),待水分下渗后立即回填土壤,并用秸秆或杂草进行土生物覆盖,覆盖厚度为20厘米,以减轻土壤蒸发损耗,利用根系的趋水性和强大的吸水功能,可以保证果树3-5天的需水要求。 2、施用吸湿剂 吸湿剂是一种聚丙烯类,吸水保水性极强,其吸水性能超过自重的800~1000倍,且具有保水性能,在干燥的环境下表面能形成阻力膜,阻止膜内水分外溢和蒸发。具体做法是:结合穴施肥水技术,在灌水穴中放入吸湿剂20克后再灌入肥水,可有效减少土壤水分蒸发。在一次浇水或雨后便可把水分长期保留下来,供果树吸收。由于它遇水膨胀与失水干缩的循环还可以增加土壤孔隙度,防止土壤板结,有利于根系呼吸生长发育。 3、施用抗旱剂 植物抗旱剂是一项非工程性抗旱技术,它能够使土壤水分聚合在根系周围,增强根系对深层土壤的吸水能力,提高果树的抗旱性和耐旱性,尤其适合在抗旱水源缺乏地区应用。一般采用随水灌溉和叶面喷施。具体

干旱对水稻生长发育的影响及其抗旱研究进展

干旱对水稻生长发育的影响及其抗旱研究进展 全瑞兰 王青林 马汉云 扶 定 霍二伟 沈光辉 郭桂英 (河南省信阳市农业科学院水稻研究所,信阳464000) 摘要:水稻(Orazy sativa L.)是主要的粮食作物之一,又是耗水量最多的农作物,水资源短缺严重制约着水稻生产。本文综述了干旱对水稻生长发育的影响,以及水稻抗旱品种鉴定、抗旱育种和节水栽培等抗旱减灾措施的研究进展,以期为今后水稻抗旱性的深入研究提供参考。 关键词:干旱;水稻;生长发育;抗旱;研究进展 水稻作为我国一种主要的粮食作物,约占我国粮食作物播种面积的1/3以及粮食总产量的40%[1]。水 稻是作物中耗水量最大的,每hm 2水稻平均要耗水 4062m 3,我国水资源缺乏,年均降水量比全球平均水平 低20%,人均水资源占有量远远低于世界平均水平,仅为其的1/4,而且水资源的时空分布极其不平衡,南北稻区季节性的干旱频发,严重影响了水稻的正常生长,这也制约着我国水稻生产的可持续发展[2]。为了解决 干旱给水稻生产带来的问题,建立起水稻抗旱的生产技术体系,农业研究人员对水稻抗旱进行了一系列的研究,并取得了一些进展。本文对水稻抗旱品种鉴定、抗旱育种以及节水栽培综合技术等方面简做综述,为水稻抗旱的进一步研究提供参考。 1 干旱对水稻生长发育的影响 1.1 对水稻生理生化的影响 在作物的生命活动中水分起着重大的作用,干旱会影响到作物的各种生理代谢过程。质膜是细胞最外的一层薄膜,它能有效抵御逆境对细胞的伤害,使细胞结构维持稳定,保证生理生化活动能够正常进行。水稻原生质膜的组成和结构在干旱胁迫下发生明显变化,从而破坏了细胞膜的透性。研究发现,随着干旱胁迫强度的增加和时间的延长,超氧化物阴离子自由基(O -2) 、过氧化氢(H 2O 2)和羟基自由基(-OH )大量产生,膜脂过氧化加剧,水稻叶片质膜透性增加,丙二醛(MDA )含量显著提升,造成膜系基金项目: 国家现代农业产业技术体系建设专项资金(CARS-01-61);国 家农业科技成果转化资金项目(2013GB2D000291);河南省现代农业产业技术体系建设专项资金(Z2012-04-01);河南省重点科技攻关项目(142102110029);河南省科技成果转化项目(132201110017) 统和多种酶遭受严重损伤[3]。植物体内有着能够清除活性氧伤害的抗氧化酶,如超氧化物歧化酶(SOD )和过氧化氢酶(CAT )等。研究发现,水稻叶片的SOD 和 CAT 活性在干旱胁迫下升高与其抗旱性强弱呈正相关,对耐旱性强的水稻品种的分析显示多有较强的抗 氧化胁迫的能力[4]。 水稻在遭受干旱逆境时,细胞分裂和细胞扩张减 少,新叶生长和叶片扩增受到抑制,叶片加速衰老,叶面积系数减少,同时叶表面气孔关闭,CO 2导度降低。随着干旱胁迫程度的加深,水稻叶片中叶绿素的分解加快,叶绿体的超微结构受到不可逆的破坏,光合量子效率、光合电子传递速率、羧化效率及光合磷酸化活力下降,导致叶肉细胞光合能力下降,引发光合作用降低,减少有机物合成,使生长受到抑制。光合作用对干旱的敏感性相比之下要大于呼吸作用。干旱胁迫初期,水稻叶、茎及植株呼吸速率明显提升,随着胁迫时间的延长又明显下降。干旱胁迫还导致氮代谢受到破坏,使硝酸还原酶活性降低,引起植物体内硝酸累积而引发毒害,同时增强水解酶活性,引起蛋白质的降解,降低蛋白质含量,增加了可溶性氮含量,不利于水稻的生长和代谢。1.2 对水稻生长及产量的影响 水稻在水分胁迫下生长状况和形态特征发生变化,主要是由于其体内细胞在胁迫下脱水,造成在结构、生理生化等方面产生系列反应。水稻在生长中对水分胁迫极为敏感。土壤不同时期的干旱都将抑制水稻新叶出生、叶片扩展、分蘖能力、株高生长、穗长、地上干物质积累等生理特性[5]。叶的生长对缺水最为敏感,水分缺失使叶片加速衰老,叶面积系数减少。干旱胁迫引起根系生长速率降低,根长、根数和重量明显减少,同时在土壤干旱时水稻根尖木栓化加速,使其吸收机能降低。在不同生育时期水稻遭受水分胁迫,各器官的干物重、总干重显著降低,最终引起产量下降。 在不同的生育期,水稻对干旱的反应程度各异,插秧至返青期由于水稻根系受到破坏,对干旱的反应较敏感,对水、肥吸收能力较差,长期干旱影响其存活率;分蘖至开花期缺水,植株反应极其敏感,分蘖及有效穗

植物抗旱性研究进展

zhi wu bao hu 随着我国城镇化进程的不断加快, 城市水资源日益紧缺,这是一个全球性问题,节水理念受到世界各地、 社会各界的广泛关注。植物的抗旱性研究进展直接关系到水资源的利用与植物栽培方式,是农业生产的重要依据之一。 1植物抗旱的概念和类型 植物体内水分的匮乏,造成植物体内细胞活性和组织结构的损坏而出现水分亏缺的现象,而水分过度亏缺的现象称为干旱(Drought )。植物对干旱环境的适应和抗御能力叫抗旱性(Drought Resistance ),Levitt 是最早对植物耐旱机制进行研 究的学者,他将植物分为避旱型、 御旱型和耐旱型[1]。避旱性植物主要通过缩短生活史来躲避重度干旱[2];御旱性植物利 用自身的形态结构和代谢功能来维持良好的水分内环境, 或用庞大的根系来维持正常吸水;耐旱性植物在干旱时可以通 过休眠使自身处于风干状态,但原生质未凝固, 且具有很强的吸水能力,此类植物在干旱胁迫得到缓解时能够恢复正常生 长。在对植物抗旱性的研究过程中, 有学者根据相对含水量比适量供水时饱和含水量低的程度,将干旱胁迫程度分为轻度胁迫、中度胁迫以及重度胁迫[3]。 2干旱对植物的影响 2.1干旱对植物形态的影响 植物在遭受干旱胁迫时,宏观变化主要体现在植物的叶片及根的生长上,干旱程度严重时植株会被迫停止生长。叶片作为植物进行光合作用的主要器官,对外界环境变化较为敏感,在干旱胁迫下,植物叶片的形态和生理方面主要表现为减少水分的 损失和提高水分利用效率[4]。抗旱能力强的植物, 其叶片中栅栏组织占比偏高,海绵组织占比偏低。因为这样的形态指标对干旱环 境的适应性较强[5]。严美玲[6]等在研究花生受到干旱胁迫时, 发现花生茎叶在干旱胁迫过程中生长严重受抑,另有研究表明,植物 对水分最敏感的部分是叶片和茎[7]。冯黎[8] 在对北京部分景天的 抗旱研究中植株叶片失绿、变软、枯黄、萎蔫,株高、 冠幅的生长都受到了抑制。赵慧[9] 在研究小麦的抗旱性时发现抗旱性 强的小麦随着干旱胁迫的加剧根茎变大,皮层增厚, 有很强的贮水能力。郭晋梅[10]在研究羊草的抗旱性时发现在轻度胁迫时植物的根冠比呈上升趋势,表明羊草为了抵御外界的干旱而增加了根部的比重。 2.2干旱对植物生理指标的影响 2.2.1干旱对光合生理的影响叶绿素是植物进行光合作用的细胞器,具有吸收、传递和转化光能的功能。叶绿素的含量影响着植物进行光合作用[11]。李博[12]认为5种玉簪的叶绿素含量都随着干旱胁迫的加重而下降。在干旱胁迫时不同植物叶绿素含量下降的幅度不同,抗旱性强的植物降低幅度小,而叶 绿素含量降低幅度较大的植物抗旱性较弱[13~15]。植物获取有 机物的途径是进行光合作用,所以光合能力的强弱对植物光合作用具有重要的意义。植物进行光合作用过程中吸取光能,将CO 2和H 2O 合成有机物并释放出O 2[16]。事实上植物在进行光合作时会受到很多内外因素影响[17],其中水分对光合作用的影响是间接的。在植物受到干旱胁迫时,叶片上气孔关闭,植物吸收CO 2含量减少,导致光合作用缓慢[18]。任迎虹[19]对不同品种的桑树进行干旱胁迫,结果表明桑树在干旱胁迫过程中叶片的净光合速率会下降。 2.2.2干旱对植物细胞膜系统与膜脂过氧化的影响细胞膜对维持细胞的微环境和正常代谢起着重要作用。在干旱胁迫下植物细胞膜透性的损伤程度可以通过电导率值来体现[20]。芦建国[21]等在对17种地被植物进行抗旱性研究中表明,干旱胁 迫造成植物材料的相对电导率升高,膜透性升高,叶片相对电 导率与植物的抗旱性呈负相关,植物相对电导率上升幅度越 小,植物的抗旱性越强。丙二醛(MDA )是植物体内膜脂过氧 化反应的最终分解产物,当植物在衰老或者逆境胁迫时,可诱 发植物组织或器官膜脂质发生过氧化反应,使植物体内丙二醛含量发生变化。周伟伟等[22]在研究干旱胁迫对景天属植物 生理生化特性的影响中发现,在干旱胁迫下,除垂盆草以外其 他植物的丙二醛含量均大幅度增加, 而垂盆草增加幅度较小,因此抵抗力较强。 2.2.3干旱对植物抗氧化酶活性的影响植物体内的自由基可以正常代谢,保证体内良好的代谢平衡[23]。而在干旱胁迫下, 这种代谢平衡被打破,在植物组织中积累了大量活性氧,导致 细胞膜结构和功能受到一定损伤,而增加了细胞膜透性,电解质外渗,而细胞中有抗氧化酶,以超氧化物歧化酶(SOD )、 过氧化物酶(POD )、过氧化氢酶(CAT )和抗坏血酸过氧化物酶 (APX )为代表的酶类在活性氧的清除过程中起重要作用, 植物在干旱胁迫过程中通过积累抗氧化酶来抵制活性氧带来的伤害[24]。 2.2.4干旱对植物渗透调节物质的影响植物通过可溶性糖、脯氨酸等渗透调节物质从外界吸水来抵御干旱胁迫。陈敏[25] 在对胡杨、柽柳和芦苇3种植物在进行干旱胁迫时, 可溶性糖积累增加提高了植物的抗旱性。吉增宝[26] 等认为刺槐幼苗的 可溶性糖累积与干旱程度、时间有关,也与刺槐的生长季节有 关,植物体内可溶性糖含量的增加是受到干旱胁迫加剧的影响,可溶性糖含量与抗旱性呈正相关,即增加幅度越大抗旱性 越强。J.Ibarra Caballero [27] 等认为脯氨酸含量的增加是逆境胁迫造成的伤害,并不属于植物对逆环境的适应机制。2.3植物的水分利用效率 摘要:本文针对植物抗旱的概念、类型及干旱对植物生理指标的影响等进行了概述,初步分析了植物的水分利用效率,为今后的抗旱植物筛选、应用及生产管理等相关研究提供参考。 关键词:植物;抗旱性;干旱胁迫; 研究进展项目基金:吉林省大学生创新训练项目(No.2017505);吉林省教育厅“十三五”科学技术项目(No.JJKH20180668KJ )中图分类号:S688 文献标识码:A DOI 编号:10.14025/https://www.sodocs.net/doc/3217824093.html,ki.jlny.2019.02.034 陈丽飞*,刘越,李雪萌,李雪滢,赵文斌,徐志瑞,巫宏伟,吴彦霏 (吉林农业大学, 吉林长春130118)植物抗旱性研究进展

相关主题