搜档网
当前位置:搜档网 › 声学的基本性质和室内声场

声学的基本性质和室内声场

声学的基本性质和室内声场
声学的基本性质和室内声场

声学基础

第一章声音的基本性质

1.1 声音的产生与传播

声音是人耳通过听觉神经对空气振动的主观感受。

声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。这些振动的物体称之为声源。声源发声后,必须经过一定的介质才能向外传播。这种介质可以是气体,也可以是液体和固体。在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。

扬声器纸盒就相当于上图中的活塞

在空气中,声音就是振动在空气中的传播,我们称这为声波。声波可以在气体、固体、液体中传播,但不能在真空中传播。

1.2 声波的频率、波长与速度

当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即:

f=1/T

介质质点振动的频率即声源振动的频率。频率决定了声音的音调。高频声音是高音调,低频声音是低音调。人耳能够听到的声波的频率范围约在20—20000 Hz之间。低于20Hz的声波称为次声波,高于20000Hz的称为超声波。次声波与超声波都不能使人产生听感觉。

声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。或者说,波长是声波在每一次完全振动周期中所传播的距离。

声波在弹性介质中传播的速度称为声速,记为v,单位是米/秒(m/s)。声速不是介质质点振动的速度,而是质点振动状态的传播速度。它的大小与质点振动的特性无关,而与介质的弹性、密度以及温度有关。20度的空气中声速为344米/秒。

频率、波长、周期和声速有如下关系:c=fλ或c=λ/T

声学测量中常常在某一频率区间取特定值进行测量。这个频率区间称之为频带(Frequency band)。由上限频率f2 和下限频率f1 规定宽带。f1、f2 间隔可以用频率比或以2为底的对数表示,称为频程。关系式:2=2^n f1 当n=1时,称为1/1倍频程(Octave),即每个频带是上限频率为下限频率两倍的频带宽度,即f2=2f1。

当n=1/3时,称为1/3倍频程,即每个频带是上限频率为下限频率1.26倍的频带宽度,即f2=1.26 f1。

为了某种特殊的需要,更窄的频带有1/10倍频程、1/12倍频程、1/15倍频程、1/30倍频程等等。

1/1倍频程对应于音乐上的一个八度。

在房屋建筑中,频率为100-10000Hz的声音很重要。它们的波长范围相当于3.4-0.034m。这个波长范围与建筑内部的一些部件尺度相近,故在处理一些建筑声学问题时,对这一波段的声波尤其要引起重视。

1.3 声功率级、声强级和声压级

声功率级:

声功率是指声源在单位时间内向外辐射的声能,用W表示,单位为瓦(W)或微瓦(uW)。为了计算方便,通常用一个声功率基准量10-12W作参考量,把声功率与之相比取常用对数,乘以10,称为声功率级,即

Lw=10lg(W/Wo)

这里Lw为声功率级(dB),W为声功率,Wo为基准声功率。

声强级:

单位时间内通过垂直于声传播方向的面积S (m2)的平均声能量称为平均声能量流或平均声能通量。单位面积上的平均声能通量就称为声强,记为I(W/m2)。为了计算方便,通常用一个声强基准量值10-12W/m2作参考量,把声强与之相比取常用对数,乘以20,称为声强级,即

Li=10lg(I/Io)

这里Li为声强级(dB),I为声强(W/m2),Io为基准声强。

声压级(SPL):

声波在媒介中传播时,媒介某点由于受声波扰动后压强超过原先静压力的值,取均方根后的值称为声压。人耳在最低闻阀到痛阀之间相差100万倍,为了计量方便,把声压基准值20×10^-6 (N/m^2)作参考量,把声压与之相比取常用对数,乘以20,称为声压级,即

Lp=20lo(P/Po)

这里Lp为声压级(dB),P为声压(N/m2或Pa),Po为基准声压。

1.4 声波的反射、扩散、衍射与干涉

1.声波的镜像反射

声波在前进过程中,如果遇到尺寸大于波长的界面,则声波将被反射。入射角等于反射角。反射的声能与界面的吸声系数有关。

2.声波的扩散反射

声波在传播的过程中,如果遇到一些凸形的界面,就会被分解成许多较小的反射声波,并且使传播的立体角扩大,这种现象称之为扩散反射。适当的声波扩散反射,可以促进声音分布均匀,并可防止一些声学缺陷的出现。

从上图中可看出,要设计一个好的扩散体必须要考虑它的大小和密度。

3、声波的衍射

当声波波长小于等于障碍物的尺寸时,会绕过去,称为衍射。

4、声波的干涉

频率相同的声波相遇后会产生干涉现象,相位相同的声波叠加后,幅度倍增,相位相反则抵消。声波干涉的结果造成频率响应特性出现峰和谷的波动,其形状象“梳子”,因此又称为梳状滤波器特性(效应)。直达声和反射声来自同一声源,因而频率相同,由于经过的路径长短不同,就会产生相位差,从而会产生干涉现象。

1.5 声波的吸收与透射

当声波从一种介质传递到另一种介质时,声能的一部分被反射;一部分透过物体继续传播,称为透射;另一部分由于物体的振动或声音在物体内部传播时介质的磨擦或热传导而被损耗,称为材料的吸收。

透射声能与入射声能之比称为透射系数τ。

反射声能与入射声能之比称为反射系数γ。

通常将τ值小的材料用作隔声材料,将γ值小的材料用作吸声材料。

定义吸声系数α=1-γ。

α=0,入射声能全部被反射;α=1时,入射声能全部被吸收。敝开的窗户吸声系数为1。

吸声系数的大小与频率相关,通常我们所说的吸声系数是平均吸声系数。第二章室内声场

2.1 自由声场与室外声场

传播声波的空间称为声场,声场分自由声场、扩散声场(混响声场)和半自由声场。

所谓自由声场,即在声波传播的空间中无反射面,声源在该声场中发声,在声场中的任一点只有直达声,无反射声。消声室就是人造的自由声场。电声设备的都要在消声室中进行。

在室外,某点声源发出的球面声波,其波阵面连续向外扩张,随着声波与声源距离的增加,声能迅速衰减。当点声源向没有反射面的自由空间辐射声能时,声波以球面波的形式辐射。这时,任何一点上的声强遵循与距离平方成反比的定律。如果用声压级表示,则距离增加一倍,声压级衰减6dB。

2.2 室内声场

在室内,声波在封闭空间中的传播及其特性比在露天场合要复杂得多。这时,声波将受到封闭空间各个界面,如顶棚、地面、墙壁等的反射、吸收与透射。室内声场因而存在着许多与自由声场不同的声学问题。研究室内声场,对室内音质设计和噪声控制具有重要的意义。

室内声场的特点

(1)声波在各个界面引起一系列的反射,吸收与透射;

(2)与自由声场有不同的音质;

(3)由于房间的共振可能引起某些频率的声音被加强或减弱;

(4)声能的空间分布发生了变化。

2.3 房间共振(驻波)

当声波在两面平等的墙之间传播时,如果墙面之间的距离等于半波长的整数倍时,就会产生驻波。房间中的低频驻波也称为房间模式(Room Mode)。

在一房间中,空气振动的共振频率主要由房间的大小来决定。而房间内所激发的共振频率的分布则决定于房间的比例。共振频率的计算很复杂,一般都用软件来计算。

消除驻波的最佳方法是

改变房间的形状,使墙面不平行,或将墙成做成弧形。

2.4 混响与回声

混响是室内的声学现象。声音由声源发出后,在空气中传播,传播过程中在房间的界面上产生反射、吸收、扩散、透射、干涉和衍射等波动作用,形成复杂的室内声场,使人产生混响感。声源停止发声后,室内声场会持续一段时间。

混响是室内声反射和声扩散共同作用的结果。同样是源于反射,但由于人耳的听闻特性,混响和回声有明显的不同。

声源的直达声和近次反射声相继到达人耳,延迟时间小于30ms时,一般人耳不能区分出来,仅能觉察到音色和响度的变化,人们感觉到混响。但当两个相继到达的声音时差超过50ms时(相当于直达声与反射声之间的声程差大于17m),人耳能分辩出来自不同方向的两个独立的声音,这时有可能出现回声。回声的感觉会妨碍音乐和语言的清晰度(可懂度),要避免。

2.5 混响时间

当室内声场达到稳态,声源停止发声后,声压级降低60dB所需要的时间称为混响时间,记作T60或RT,单位是秒(s)。

混响时间是目前

音质设计中能定量估算的重要评价指标。它直接影响厅堂音质的效果。房间的混响长短是由它的吸音量和体积大小所决定的,体积大且吸音量小的房间,混响时间长,吸音量大且体积小的房间,混响时间就短。混响时间过短,声音发干,枯燥无味,不亲切自然;混响时间过长,会使声音含混不清;合适时声音圆润动听。

Sabine公式,适用于α小于0.2的较活跃的房间:

式中:V为房间容积,单位为m^3(立方米);S为房间表面积的总和,单位为m^2(平方米);α为房间表面积的平均吸声系数,百分率;Sα的单位为m^ 2 (平方米)。K为与湿度有关的常数,一般取K=0.161s/m。

Eyring公式,适用于α大于0.2的建声条件良好的房间:

式中4mV为空气系数系数值,m为空气吸声系数,(它不但与频率有关,还与温度和温度有关)。其它与上式一样。

混响时间的大小与频率相关,低频、中频、高频的混响时间是不一样的。一般所说的混响时间都是指平均混响时间。

2.6 临界距离(Critical Distance)

就是在声源轴线方向上,直达声与混响声声能相等处的距离。临界距离在全频带内是不同的。回声越强的房间临界距离越近,吸音越强的房间,临界距离越远。(临界距离在全频带内是不同的)。

好的声学设计,临界距离要离声源尽可能远,结果在全频带内混响最小最平坦。直达声从扬声器系统开始递补减,是距离的函数(平方反比定律),但混响恒定地散布房间(新的声音不断从扬声器发出,混响不断建立,直到新的声音与被吸收的声音相等,因此混响保持恒定。)两曲线的交点就是临界距离。

最佳听音区一定位于临界距离内,因为临界距离是以直达声为主,清晰度和声像定位最好。

房间无吸声时的临界距离距声源很近,这种房间只适合近声场听音。

在吸声的房间中,临界距离被推向后墙,使最佳听音区变宽。上图中,附加的好处是漏到室外的声压降低了20dB,降低了对隔音的要求。

当混响声比直达声大12db 以上,声音清晰度将全部失去。

寻找临界距离的最简单方法为:用音响系统播放压缩的流行音乐,开始用一个音箱(左或右),在房间里来回地走,很容易就能找到临界距离。用另一个音箱重复一遍,再同时用两个音箱重复一遍。与声学测量相比较,你会对人耳的精确性感到惊讶。

混响越强的房间临界距离越近。

吸声越强的房间临界距离越远。

近声场或直达声场在临界距离内。

远声场或反射声场(混响)在临界距离外。

计算机辅助建筑声学设计的基本原理与应用

计算机辅助建筑声学设计的基本原理与应用 摘要:建筑声学设计中,越来越多地使用计算机辅助音质设计,市场上也有许多应用软件,如丹麦的ODEON,意大利的RAMSETE,德国的EASE等等。声模拟软件可以预测室内声学参数,评价调整声学方案,计算机辅助音质设计将是未来趋势。由于声学问题本身的复杂性和计算机的局限性,目前的辅助建筑声学设计软件研究只是处于起步阶段,还不能完全代替理论分析和实践经验。因此,深入了解计算机辅助设计的原理,强调其参考价值和局限性并重,注重与建筑声学实践经验相结合,是非常重要的。论文参考了国外有关文献,阐述了计算机辅助声学设计的基本原理,希望研究成果对建筑声学设计工作者有所帮助。 关键词:声线追踪法;虚声源法;声线束追踪法;有限元法 准确地预测房间的音质效果一直是建筑声学研究者追求的理想,谁不想在设计音乐厅图纸时就能听到她的声音效果呢?一百多年来,人们逐渐发现了一些物理指标,并揭示了它们与房间主观音质的关系,包括混响时间RT60、早期衰减时间EDT、脉冲声响应、清晰度指数等等。音质参量预估是室内声学设计的关键。目前,人们采用经典公式、缩尺比例模型、计算机模拟来预测这些参数。 室内声学的复杂性源于声音的波动性,任何一种模拟方法目前都不能获得绝对真实的结果。本文在参考研究国外计算机音质模拟文献的基础上,对室内声学的主要模拟方法进行汇编和总结,以便深入地了解计算机辅助建筑声学设计的基本原理、适用性和局限性。 1、比例缩尺模型模拟和计算机声场模拟 自塞宾时代起,比例缩尺模型就在室内声学中获得应用,但模型比较简单,无法得到定量结果。20世纪60年代,模拟理论、测试技术等逐渐发展完善,进行大量研究和实践后,比例模型在客观指标的测量方面已经基本达到了实用化。现在,声源、麦克风、模拟声学材料已经可以和实物对应,仪器的频带也扩展了,在模拟混响时间、声压级分布、脉冲响应等常用指标已经达到实用的精度。 比例模型的原理是相似性原理,根据库特鲁夫的推导,对于1:10的模型来讲,房间尺度缩 小10倍后,如果波长同样缩短10倍,即频率提高10倍时,若模型界面上的吸声系数与实际相同,那么对应位置的声压级参量不变,时间参量缩短10倍。如10倍频率的混响时间为实际频率混响时间的1/10。然而,很难依靠物理的手段完全满足相似性的要求。空气吸收、表面吸收相似性的处理是保证模拟测量精度的关键。比例模型是现阶段所知唯一能够较好模拟室内声场波动特性的实用方法,可是由于模型制作成本较高、需要利用充氮气或干燥空气法降低高频空气吸收、模拟材料吸声特性难于控制的因素,这种方法存在很大的局限性。 随着软件技术的发展,使用计算机进行声场的模拟研究成为现实。从数学的观点来看,声音的传播由波动方程,即由Helmholtz 方程所描述。理论上,从声源到接收点的声脉冲响应可以通过求解波动方程来获得。但是,当室内几何结构和界面声学属性非常复杂时,人们根本无法获得精确的方程形式和边界条件,也不能得到有价值的解析解。如果对方程进行简化处理,所得到的结果极不精确,不能实用,完全利用波动方程通过计算机求解室内声场是不可行的。实用角度讲,

应用数字波导网格法模拟室内声场及其MATLAB实现

应用数字波导网格法模拟室内声场及其 MATLAB实现 团匝 应用数字波导网格法模拟室内声场 及其MATLAB实现慢 彭健新 (华南理工大学应用物理系,广东广州510640) I摘要】在介绍数字波导网格法基本原理的基础上,采用MATIAB语言对一刚性矩形房间和一矩形教 室的声场进行模拟计算.最后对应用数字波导网格法进行了一些讨论. 【荚t词】数字波导网格法;室内声场模拟;波祜声学 【Almract】Based.nthebasicprincipleofdigitalwaveguidemeshmethod,thesound丘eld8ina drectangleFoolnandarectangleclassroomaresimulatedwitllMATLAB.Discussionaboutthe methodisgiven. 【Keywords】digitalwaveguidemeshmethod;loomacottstic8simulation:waveacoustics l引言 近年来,室内声场模拟技术得到迅速发展.并已开 发出许多应用软件,如瑞典哥德堡的CA’IT,丹麦技术 大学的ODEON,德国ADA声学l晰公司的EASE,比 利时声学设计公司的RAYNOISE等.室内声场模拟的 基本方法有:基于几何声学的虚声源法,声线跟踪法; 基于波动声学的有限元法,边界元法,时域有限差分法 等.虚声源法,声线跟踪法及两者结合的混合法适应于 对室内声场中高频部分的模拟.对低频部分和小室内 空间,声波的波动效应如声波的衍射和干涉现象,房间 模态或共振效应更显着,须采用波动声学方法来模拟. 随着计算机技术的发展,波动声学方法得到广泛的应 用.文中介绍一种基于渡动声学,由时域有限差分法演 变而来的数字波导网格法,具有算法简单,各参数物理 意义直观,清晰的优点,已成功应用于声音合成和一 维,二维音乐仪器的仿真.笔者首先介绍数字波导网格 法的原理,应用MATLAB语言编程计算一刚性矩形房 间声场,并对编程算法进行优化,最后对数字波导阿格 法进行了进一步讨论. 2数字波导网格法原理 一 维数字波导是一种离散的数字方法,广泛应用

音乐厅室内音质设计声环境理论

声环境理论及其分析 学院:土木工程与建筑学院 姓名:胡根根 班级: 12建筑学(2)班 学号: 1210641224 指导老师:张辉

目录 摘要、前言 (2) 1、前言 (3) 2、体型设计 (3) 3、声扩散处理 (4) 4、演奏台设计 (4) 5、音乐厅声环境主观要求和客观评价量建筑 (5) 5.1 影响厅堂声环境的因素归纳 (5) 5.2研究因素总结归纳表 (5) 6、音质设计要求准则 (6) 7、国家大剧院音乐厅 (7) 7.1 声学材料分析 (8) 8、德国柏林爱乐音乐厅 (8) 9、结语 (9) 参考文献 (10)

音乐厅的室内音质设计分析 ___以国家大剧院和柏林爱乐音乐厅为案例 摘要: 音乐厅音质设计除了和其他有音质要求的建筑一样满足一些共同要求外,它在建筑上与其他的剧场的主要不同之处在于没有单独的舞台空间,不设乐池, 演奏席与观众席在同一空间之间,演出大都靠自然声。本文就其音质设计在对听众的一种欣赏音乐的感受,和设计的要求、方法和措施,最后结合具体案列再具体分析。 关键词:音乐厅;音质;体型;声扩散;演奏台;国家大剧院;柏林爱乐音乐厅 Indoor concert hall sound design analysis _____To the National Theatre and the Berlin Philharmonic Hall case Abstrac:In addition to the concert hall sound design and other quality requirements as to satisfy some common architectural requirements, it is the main difference with the other theater in the building at no separate stage space, with no orchestra pit, I played with the same space between the auditorium, performing mostly by natural sound. In this paper, its sound design experience to the audience an appreciation of music, and requirements, methods, and measures designed to last, then the specific case out specific analysis.

01.声学简介

声学简介 声学是研究媒质中机械波的产生、传播、接收和效应的物理学分支学科. 媒质包 括各种状态的物质,可以是弹性媒质也可以是非弹性媒质;机械波是指质点运动变化的传播 现象. 声学发展简史 声音是人类最早研究的物理现象之一,声学是经典物理学中历史最悠久,并且当前 仍处在前沿地位的物理学分支学科. 从上古起直到19世纪,人们都是把声音理解为可听声的同 义语. 中国先秦时就说“情发于声,声成文谓之音”,“音和乃成乐”. 声、音、乐三者不同,但都指可以听到的现象. 同时又说“凡响曰声”, 声引起的感觉(声觉)是响,但也称为声,这与现代对声的定义相同. 西方国家也是如此,英文的词源来源于希腊文,意思就是“听觉”. 世界上最早的声学研究工作主要在音乐方面. 《吕氏春秋》记载,黄帝令伶伦取竹 作律,增损长短成十二律;伏羲作琴,三分损益成十三音. 三分损益法就是把管(笛、箫) 加长三分之一或减短三分之一,这样听起来都很和谐,这是最早的声学定律. 传说在古希腊 时代,毕达哥拉斯也提出了相似的自然律,只不过是用弦做基础. 1957年在中国河南信阳出土了蟠螭文编钟,它是为纪念晋国于公元前525年与楚 作战而铸的. 其音阶完全符合自然律,音色清纯,可以用来演奏现代音乐. 1584年,明朝 朱载堉提出了平均律,与当代乐器制造中使用的乐律完全相同,但比西方早提出300年. 古代除了对声传播方式的认识外,对声本质的认识也与今天的完全相同. 在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉. 这种 认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起. 例如,很长时期内,古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿 的时代,人们对光的认识还有粒子说和波动说的争执,且粒子说占有优势. 至于热学,“热质”说的影响时间则更长,直到19世纪后期,恩格斯还对它进行过批判. 对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的. 从那时 起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体的振动和声的产生原理作 过贡献,而声的传播问题则更早就受到了注意,几乎2000年前,中国和西方就都有人把声 的传播与水面波纹相类比. 1635年有人用远地枪声测声速,以后方法又不断改进,到1738年巴黎科学院利用 炮声进行测量,测得结果折合为0℃时声速为332米/秒,与目前最准确的数值331.45米/ 秒只差0.15%,这在当时“声学仪器”只有停表和人耳的情况下,的确是了不起的成绩. 牛顿在1687年出版的《自然哲学的数学原理》中推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质等等,经过复杂而难懂的推导,求得声速应等于大气压与密度之比

噪声污染控制工程习题题目练习

噪声复习题及参考答案 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(第三册噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 5、国标(GB-9660-88)《机场周围飞机噪声环境标准》和国标(GB-9661-88)《机场周 围飞机噪声测量方法》 6、环境监测技术基本理论(参考)试题集,中国环境科学出版社 7、环境噪声电磁辐射法规和标准汇编(上册),北京市环境辐射管理中心 一、填空题 1.测量噪声时,要求气象条件为:无、无、风力 (或)。 答:雨雪小于5.5米/秒(或小于四级) 2.从物理学观点噪声是指;从环境保护的观点,噪声是指。 答:频率上和统计上完全无规则的声音人们所不需要的声音 3.噪声污染属于污染,污染特点是其具 有、、。 答:能量可感受性瞬时性局部性 4.环境噪声是指,城市环境噪声按来源可分为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声其它噪声 5.声压级常用公式L P= 表示,单位。 答:L P=20 lgP/P°dB(分贝) 6.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计为;Ⅱ型声级计为;Ⅲ型声级计 为,一般用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得

7.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在Hz 范围内必定有峰值。 答:低频高频2000-5000 8.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比为;工程频谱测量常用的八个倍频程段是Hz。 答:2 21/363,125,250,500,1k,2k,4k,8k 9.由于噪声的存在,通常会降低人耳对其它声音的,并使听 阈,这种现象称为掩蔽。 答:听觉灵敏度推移 10.声级计校准方式分为校准和校准两种;当两种校准方式校准结果不吻合时,以校准结果为准。 答:电声声 11.我国规定的环境噪声常规监测项目为、 和;选测项目有、 和。 答:昼间区域环境噪声昼间道路交通噪声功能区噪声夜间区域环境噪声夜间道路交通噪声高空噪声 12.扰民噪声监测点应设在。 答:受影响的居民户外1米处 13.建筑施工场界噪声测量应在、、、四个施工阶段进行。 答:土石方打桩结构装修 14.在常温空气中,频率为500Hz的声音其波长为。 答:0.68米(波长=声速/频率) 15、声压级的定义公式为。其中P0代表声压,它的值是。如有一个噪声的声压是20帕,声压级是分贝,给人的感觉是。2×10-2帕的声压其声压级是分贝。 答:L P=20 lgP/P°基准2×10-5120 疼痛60 16、可听声的频率范围是HZ至HZ次声的频率小于H

声学的基本性质和室内声场

声学基础 第一章声音的基本性质 1.1 声音的产生与传播 声音是人耳通过听觉神经对空气振动的主观感受。 声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。这些振动的物体称之为声源。声源发声后,必须经过一定的介质才能向外传播。这种介质可以是气体,也可以是液体和固体。在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。 扬声器纸盒就相当于上图中的活塞 在空气中,声音就是振动在空气中的传播,我们称这为声波。声波可以在气体、固体、液体中传播,但不能在真空中传播。 1.2 声波的频率、波长与速度 当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即: f=1/T 介质质点振动的频率即声源振动的频率。频率决定了声音的音调。高频声音是高音调,低频声音是低音调。人耳能够听到的声波的频率范围约在20—20000 Hz之间。低于20Hz的声波称为次声波,高于20000Hz的称为超声波。次声波与超声波都不能使人产生听感觉。 声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。或者说,波长是声波在每一次完全振动周期中所传播的距离。

ODEON原理---建筑声学

ODEON原理 摘要:建筑声学设计中,越来越多地使用计算机辅助音质设计,如ODEON。声模拟软件可以预测室内声学参数,评价调整声学方案,计算机辅助音质设计将是未来趋势。由于声学问题本身的复杂性和计算机的局限性,目前的辅助建筑声学设计软件研究只是处于起步阶段,还不能完全代替理论分析和实践经验。因此,深入了解计算机辅助设计的原理,强调其参考价值和局限性并重,注重与建筑声学实践经验相结合,是非常重要的。论文参考了国外有关文献,阐述了计算机辅助声学设计的基本原理,希望研究成果对建筑声学设计工作者有所帮助。 关键词:声线追踪法;虚声源法;声线束追踪法;有限元法 准确地预测房间的音质效果一直是建筑声学研究者追求的理想,谁不想在设计音乐厅图纸时就能听到她的声音效果呢?一百多年来,人们逐渐发现了一些物理指标,并揭示了它们与房间主观音质的关系,包括混响时间RT60、早期衰减时间EDT、脉冲声响应、清晰度指数等等。音质参量预估是室内声学设计的关键。目前,人们采用经典公式、缩尺比例模型、计算机模拟来预测这些参数。 室内声学的复杂性源于声音的波动性,任何一种模拟方法目前都不能获得绝对真实的结果。本文在参考研究国外计算机音质模拟文献的基础上,对室内声学的主要模拟方法进行汇编和总结,以便深入地了解计算机辅助建筑声学设计的基本原理、适用性和局限性。 1 比例缩尺模型模拟和计算机声场模拟 自塞宾时代起,比例缩尺模型就在室内声学中获得应用,但模型比较简单,无法得到定量结果。20世纪60年代,模拟理论、测试技术等逐渐发展完善,进行大量研究和实践后,比例模型在客观指标的测量方面已经基本达到了实用化。现在,声源、麦克风、模拟声学材料已经可以和实物对应,仪器的频带也扩展了,在模拟混响时间、声压级分布、脉冲响应等常用指标已经达到实用的精度。 比例模型的原理是相似性原理,根据库特鲁夫的推导,对于1:10的模型来讲,房间尺度缩小10倍后,如果波长同样缩短10倍,即频率提高10倍时,若模型界面上的吸声系数与实际相同,那么对应位置的声压级参量不变,时间参量缩短10倍。如10倍频率的混响时间为实际频率混响时间的1/10。然而,很难依靠物理的手段完全满足相似性的要求。空气吸收、表面吸收相似性的处理是保证模拟测量精度的关键。比例模型是现阶段所知唯一能够较好模拟室内声场波动特性的实用方法,可是由于模型制作成本较高、需要利用充氮气或干燥空气法降低高频空气吸收、模拟材料吸声特性难于控制的因素,这种方法存在很大的局限性。 随着软件技术的发展,使用计算机进行声场的模拟研究成为现实。从数学的观点来看,声音的传播由波动方程,即由Helmholtz 方程所描述。理论上,从声源到接收点的声脉冲

音响的基础知识之声学基础

音响的基础知识之声学基础 音响的基础知识:名词解释 (1)波长——声波在一个周期内的行程。它在数值上等于声速(344米/秒)乘以周期,即λ=CT (2)频率——每秒钟振动的次数,以赫兹为单位 (3)周期——完成一次振动所需要的时间 (4)声压——表示声音强弱的物理量,通常以Pa为单位 (5)声压级——声功率或声强与声压的平方成正比,以分贝为单位 (6)灵敏度——给音箱施加IW的噪声信号,在距声轴1米处测得的声压 (7)阻抗特性曲线——扬声器音圈的电阻抗值随频率而变化的曲线 (8)额定阻抗——在阻抗曲线上最大值后最初出现的极小值,单位欧姆 (9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功 (10)音乐功率——以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO) (11)音染——声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份 (12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围

音响的基础知识:问答 (1)声音是如何产生的? 答:世界上的一切声音都是由物体在媒质中振动而产生的。扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这 种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑, 于是便听到了声音。 (2)什么叫共振?共振声对扬魂器音质有影响吗? 答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振当物体产生共振时,不需要很大的外加振动能量就能是使 用权物体产生大幅度的振动,甚至产生破坏性的振动。当扬声器振 膜振动时,由于单元是固定在箱体上的,振动通过盆架传递到箱体上。部分被吸收,转化成热能散发掉;部分惟波的形式再辐射,由于 共振声不是声源所发出的声音,将会影响扬声器的重放,使音质变坏,尤其是低频部分 (3)什么是吸声系数与吸声量?它们之间的关系是什么? 答:吸声性能拭目以待好坏通常用吸声系级“α”表示,即 α=1-K;吸声量是用吸声系数与材料的面积大小来表示。两者之间的 关系α=A/S(A是吸声量),不同的材料有不同的吸声系数,想要达 到相同的吸声量,就是改变其吸声面积 (4)混响有何特点?混响时间与延迟时间有和不同? 答:任何人在任何地方听到的声音都是由直达声与反射声混合而成。混呼有如下特点:A直达声与反射声之间存在时间差,反射声 与反射声之间也存在时间差B直达声和反射声的强度,反射声和反 射声的强度各不相同C当声源消失时,直达声音先消失,反射声在 室内继续来回传播,并不立即消失。混响时间与延迟时间是两个不 同的概念:混响时间是指当声源停止振动后,室内混响声能密度衰 减到它最初数值的百万之一(60分贝)所需的时间,延迟时间是指声 音信号的时间延迟量,声波在室内的反射延时形成混响声

声学基础及其原理

2 声学基础及其原理[13] 在我们的生活环境中会遇到声强从弱到强范围很宽的各种声音[5]。如此广阔范围的能量变化直接使用声功率和声压的数值很不方便,而用对数标度以突出其数量级的变化则相对明了些;另一方面人耳对声音的接收,并不是正比与强度的变化值,而更近于正比与其对数值,由于这两个原因,在声学中普遍使用对数标度来度量声压、声强、声功率,分别称为声压级、声强级和声功率级,单位用分贝(dB )来表示[1]。 2.1声压级 将待测声压的有效值P e 与参考声压P o 的比值取以10为底数的常用对数,再乘以20。即: L p =20lg o e P P (dB ) (2.1) 在空气中,参考声压P 0规定为2?10-5帕,这个数值是正常人耳对1000Hz 声音刚能够觉察到的最低声压值。式(2.1)也可以写为: L p =20lgp+94 (dB ) (2.2) 式中p 是指声压的有效值P e ,由于声学中所指的声压一般都是指其有效值,所以都用p 来表示声压有效值P e 。 人耳的感觉特性,从可听域的2?10-5帕的声压到痛域的20帕,两者相差100万倍,而用声压级表示则变化为0-120分贝的范围,使声音的量度大为简明。 2.2 声强级: 为待测声强I 与参考声强I 0的比值取以常用对数再乘以10,即: L I =10lg 0 I I (dB ) (2.3) 在空气中,参考声强I 0取以10-12W/m 2这样公式可以写为:

L I =10lg I+120 (dB ) (2.4) 2.3声功率 可以用“级”来表示,即声功率L W ,为: L W =10lg 0 W W (dB ) (2.5) 这里W 是指声功率的平均值W ,对于空气媒质参考声功率W 0=10-12W ,这样式子可以写为: L W =10lg W +120 (dB ) (2.6) 由声强与声功率的关系I=W/S ,S 为垂直声传播方向的面积,以及空气中 声强级近似的等于声压级,可得: L p =L I =10lg ???????01I S W =10lg ?? ??????S I W W W 1000 (2.7) 将W 0=10-12W ,I 0=10-12W/m 2代入,可得: S L L L W I p lg 10-== (dB ) (2.8) 这就是空气中声强级、声压级与声功率级之间的关系,但应用条件必须是自由声场,即除了有源发声外,其它声源的声音和反射声的影响均可以忽略。在自由场和半自由场测量机器噪声声功率的方法的原理就是如此。 声压级、声强级、声功率级的定义中,在后两者对数前面都好似乘以常数10,而声压级对数前面乘以常数为20,这是因为声能量正比于声强和声功率的一次方,而对声压是平方的关系。如声压增加一倍,声压级和声强级增加6分贝,而声强增加一倍,声压级和声强级增加3分贝[5]。 对于一定的声源,其声功率级是不变的,而声压级和声强级都是随着测点的不同而变化的。 专门的研究表明,人耳对于不同频率的声音的主观感觉是不一样的,人耳对于声的响应不单纯是物理上的问题了。为了使人耳对频率的响应与客观声压级联系起来,采用响度级来定量的描述这种关系,它是以1000Hz 纯音作为基准,对听觉正常的人进行大量比较试听的方法来定出声音的响度级的,

室内声学基础

室内声学基础 第一章声音的基本性质 一、声音的产生与传播 声音是人耳通过听觉神经对空气振动的主观感受。 声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。这些振动的物体称之为声源。声源发声后,必须经过一定的介质才能向外传播。这种介质可以是气体,也可以是液体和固体。在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。 扬声器纸盒就相当于上图中的活塞。 在空气中,声音就是振动在空气中的传播,我们称这为声波。声波可以在气体、固体、液体中传播,但不能在真空中传播。 二、声波的频率、波长与速度 当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即: f=1/T 介质质点振动的频率即声源振动的频率。频率决定了声音的音调。高频声音是高音调,低频声音是低音调。人耳能够听到的声波的频率范围约在20—20000Hz之间。低于20Hz的声波称为次声波,高于20000Hz的称为超声波。次声波与超声波都不能使人产生听感觉。 声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。或者说,波长是声波在每一次完全振动周期中所传播的距离。

声学计算公式大全

当声波碰到室内某一界面后(如天花、墙),一部分声能被反射, 一部分被吸收(主要是转化成热能),一部分穿透到另一空间。 透射系数: 反射系数: 吸声系数: 声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。 声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:

听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 1、声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 2、声功率级Lw 取Wo为10-12W,基准声功率级 任一声功率W的声功率级Lw为: 3、声强级: 3、声压级的叠加 10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.

几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。因此其声压是各声源贡献的声压平方和的开根号。 即: 声压级为: 声压级的叠加 ?两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。这个结论对于声强级和声功率级同样适用。 ?此外,两个声压级分别为不同的值时,其总的声压级为

两个声强级获声功率级的叠加公式与上式相同 在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。 声波在室内的反射与几何声学 3.2.1 反射界面的平均吸声系数 (1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式: 材料和结构的吸声特性和声波入射角度有关。

声学原理

声学原理 声波是由物体振动产生的,当振动在一定的频率和强度范围内时,人耳就可听到。振动发声的物体称为声源。 声源发声后要经过一定的介质才能向外传播,而声波是依靠介质的质点振动而向外传播声能,介质的质点只是振动而不移动,所以声音是一种波动。波是振动的传播是振动状态的传播,即振动方向、振动位相或振动能量的传播。波的传播并不是介质或物理量本身的向前运动。即声源的质点并不随声波前进,他只在原地运动,传递出的只是质点的运动状态。 由上所述,声音为一串串稀疏稠密交替变化的波,而疏和密就是空气压强的变化,再通过人的耳膜对空气压力的反映传入大脑,从而听到声音。声波是描述声音的物理现象,常用波形表示。声波具有一 切“波”的性质。所以产生声音的必要条件有两个:1、必须要有振动体或振动源。2、声波的传递必须依靠传播媒介。声波传播的空间称为声场。气体中的声波属于纵波,即波的前进方向与媒质质点的振动方向在一条直线上。同一时刻,同位相的振动传播到达点的集合叫做波阵面。波阵面是平面的波叫平面波,波阵面是球面的波叫球面波。 一般情况下,平面振动发出的波是平面波,点源振动发出的波是球面波。 人耳的听音范围是20Hz~20KHz。低于20Hz叫次声波,高于20KHz的叫超声波。 声波在振动一个周期内传播的距离叫做波长。用λ表示 声波一秒钟传播的距离叫“波速”用c表示 声波一秒钟振动的次数叫“频率”用 f表示 它们之间的关系:λ=c/f 相位:说明其声波在周期运动中所达到的精确位置,通常用圆周的度数来表示。 振动频率、振幅和传播速度相同而传播方向相反的两列波叠加合时,就产生驻波。驻波形成时,空间各处的介质或物理量只在原位置附近作振动,波停驻不前,而没有行波的感觉,所以称为驻波。 声波在传输过程中具有相互干涉作用。两个频率相同、振动方向相同且步调一致的声源发出的声波相互叠加时就会出现干涉现象。如果它们的相位相同,两波叠加后幅度增加声压加强;反之,它们的相位相反,两波叠加后幅度减小声压减弱,如果两波幅度一样,将完全抵消。由于声波的干涉作用,常使空间的声场出现固定的分布,形成波峰和波谷(从频响曲线上看似梳状滤波器的效果)。对于一般的节目素材,只要几个

声学基础

波长 声波振动一次所传播的距离,用声波的速度除以声波的频率就可以计算出该频率声波的波长,声波的波长范围为17米至1.7厘米,在室内声学中,波长的计算对于声场的分析有着十分重要的意义,要充分重视波长的作用。例如只有障碍物在尺寸大于一个声波波长的情况下,声波才会正常反射,否则绕射、散射等现象加重,声影区域变小,声学特性截然不同;再比如大于2倍波长的声场称为远场,小于2倍波长的声场称为近场,远场和近场的声场分布和声音传播规律存在很大的差异;此外在较小尺寸的房间内(与波长相比),低音无法良好再现,这是因为低音的波长较长的缘故,故在一般家庭中,如果听音室容积不足够大,低音效果很难达到理想状态。 很多现场调音师都没有理会到音频与波长的关系,其实这是很重要的:音频及波长与声音的速度是有直接的关系。在海拔空气压力下,21摄氏温度时,声音速度为344m/s,而我接触国内的调音师,他们常用的声音速度是34Om/s,这个是在15摄氏度的温度时声音的速度,但大家最主要记得就是声音的速度会随着空气温度及空气压力而改变的,温度越低,空气里的分子密度就会增高,所以声音的速度就会下降,而如果在高海拔的地方做现场音响,因为空气压力减少,空气内的分子变得稀少,声音速度就会增加。音频及波长与声音的关系是:波长=声音速度/频率;λ=v/f,如果假定音速是344 m/s时,100Hz 的音频的波长就是3.44 m,1000hz(即lkHz)的波长就是34.4 cm,而一个20kHz的音频波长为1.7cm。 动态范围 音响设备的最大声压级与可辨最小声压级之差。设备的最大声压级受信号失真、过热或损坏等因素限制,故为系统所能发出的最大不失真声音。声压级的下限取决于环境噪声、热噪声、电噪声等背景条件,故为可以听到的最小声音。动态范围越大,强声音信号就越不会发生过荷失真,就可以保证强声音有足够的震撼力,表现雷电交加等大幅度强烈变化的声音效果时能益发逼真,与此同时,弱信号声音也不会被各种噪声淹没,使纤弱的细节表现得淋漓尽致。一般来说,高保真音响系统的动态范围应该大于90分贝,太小时还原的音乐力度效果不良,感染力不足。在专业音响系统的调整过程中,音响师在调音时要主意以下两方面问题:一是调音台的的输入增益量不要调的过小,否则微弱的声音会被调音台的设备噪声所淹没。二是压限器的阈值和压缩比的调整要格外慎重,阈值过小和压缩比过大,都会使声音动态压缩严重,故应该在保证效果的前提下,尽量减少对声音的动态损失。另外,在放大电路

手机声学原理介绍

Learning report on principles of acoustics of the cellphone ZHOU Yang-fang Once in the Sunlite Electronic (Shen Zhen ) co.,ltd, Shen Zhen 518000, China Abstract: These days , through the chect of kinds of material ,I have a general idea of the mobile phone acoustics and make a relavant arrangement ,making mainly a summary report in here . The sound system of the phone have the three basic function devices that include the speaker ,the receiver ,and the microphone .The speaker is to realize the hand-free cellphone conversation and the speech broadcasting ,the receiver’s purpose is that the voice messenger is received by the phone ,and the microphone’s function is that the acoustic information is passed from people to phone .They realize the fundamental function of the phone and perfectly deduce the phone’s roles in the daily life so that we cannot do without it . Keywords: Acoustics of the cellphone ,acoustics devices ,sound wave , the working principle ,short circuiting effect Content: 1.The basic knowledge of the electroacoustics 1.1Sound propagation mode 1.2Speed of sound 1.3Frequency domain 1.4Sound pressure level 1.5V oice three elements 2.Acoustics devices of the phone’s structure 3.Working principle of SPK.&RCV. 3.1The basic principle of application 3.2Workong principle 3.3Difference of SPK.&RCV. 3.4The basic parameters of SPK.&RCV. 4.The acoustic short circuiting effect

形容音色的声学原理

形容音色的声学原理 声音是物体振动在介质中传播形成的物理现象,研究这种物理现象的学科叫做声学。声音所产生的振动属于机械振动,这种振动在空气中传播的过程在声学的眼中属于绝热运动(adiabatic)。况且不能产生热,又怎么能产生光呢?所以,所谓明亮与暗淡等这种形容“视觉感受”的词所指代的特性,和声音没有任何关系,与声学也扯不上亲戚。同样地,所谓干和湿,这些属于触觉感受,与声学也没有关系。 这个再明显不过了——声音不产生光,所以我们不可能从声音中直接接收到光学信号;声音虽然是一种振动,但我们浑身上下除了耳膜之外就没有任何一个其他地方可以有效地接受声音信号。所以声音并不能产生触觉感受,更别说干湿了。 那么,声音为什么能给人类似视觉和触觉的感受? 上面说了,声音是空气的振动。这种振动在经过耳道整理后,成为一个一维的振动,因为我们的耳膜只有一个自由度。耳膜的往复振动被三根小听骨的杠杆作用放大之后传递到耳蜗,耳蜗将这种脉冲转化为电信号,电信号被传递到听觉系统后,神经元网络将其解读为有用的信息,而忽略无用的信息。 而关于神经元网络如何解读这些时间域上海量的一维脉冲信号,人和人之间是有横向差异的。我们把这个过程称为听觉认知,听觉认知大体上可以分为三个层面: 底层low-level:这是基础的层面。从耳朵到听觉中枢,声音信号的基本的物理特性——振幅和频率被首先感知。这里的振幅不仅仅是声音的

大小,同时还有对“波形”的感知;而这里的频率也不仅仅是音高,更有音色的感知。关于较底层的认知,人和人之间的差异相对比较小。 中层mid-level:有了底层认知收集的基本的材料,我们可以对声音进行进一步的解读和理解。在中层认知的范围里,我们可以将不同的振幅和频率解读为语音、乐器、节奏等符号化的内容。我们常说的“视唱练耳”,练的其实就是中层认知能力。所以,在中层的认知,人和人之间的差异就大起来了,因为这通常和训练以及经验有关。 高层high-level:中层认知提供了声音内容的解读。那么接下来这些内容就要触发一些应激反应了。典型的应激反应就是情绪。比如听到了舒缓的音乐,你也会感觉到血压降低;听到了领导的夸奖,你会开心得热泪盈眶。关于高层的认知,人和人之间的差异进一步拉大。 声音让一个人听起来感觉到明亮,或者感觉到干或湿,可以这样解释:明亮还是暗淡:显然,这种感受发生在中高层认知范围内。一方面,虽然某些不同和弦之间在声学上确实存在能量大小的区别(比如通常所说的大三和弦比小三和弦要响一些);但是用力弹的小三和弦和轻轻弹的大三和弦听起来依然是后者明亮一些。所以这并不是一个底层感知能解释的现象。对于和弦的听感,很大程度上由经验所决定。你的音乐老师每次给你弹这两个和弦的时候就用明亮暗淡这种词;每次你看电影或者电视的时候,明亮的画面往往搭配“明亮”的和弦,等等……这些生活经验教会了你如何判别明亮的和暗淡的和弦(或者音色),在你头脑中形成了刻板印象stereotype。

音乐厅中运用了什么声学原理

音乐厅中运用了什么声学原理主要是混响和回声音乐厅是乐队演出的主要场所,除了专门为乐队服务的音乐厅外,歌剧院、大会堂、大教堂、演播大厅、电影院等都可以作为音乐厅使用。反映音乐厅质量的主要因素是混响。乐器停止发音后,声音并不马上消失,而是伴有余音的,即分贝数渐渐下降,这种现象称为混响,声学上把声音衰减 60dB 的时间称为混响时间。混响是由于声音在室内反射造成的,室外是没有混响的。混响时间和以下因素有关: (1) 房间的体积:通常体积越大,混响时间越长; (2) 房间内壁的材质:如果内壁是粗糙柔软的吸声材质,那么混响时间会短些,如果内壁是坚硬光滑的反射材质,那么混响时间会长些,房间的内壁指的是墙壁、天花板、地板,以及音乐厅内一切影响声音传播的障碍物,特别是坐椅,增加有软垫的坐椅数量会缩短混响时间; (3) 声音的频率:由于高频声音的反射和衍射能力比低频声音差,所以高频声音的混响时间比低频声音短。 混响时间太短会使声音变得干涩,太长则会使音乐失去清晰的线条,两者都不利于音乐的欣赏。实践表明,适合乐队演奏的音乐厅,混响时间应在 1.5 到 2 秒之间,当然,最佳的混响时间并不是唯一的,它取决于听众的爱好、音乐的类型、乐队的规模等诸多因素。例如,重视音响效果的听众希望混 响时间长些,重视音乐细节(旋律、节奏等)的欣赏者希望混响

时间短些;演奏交响乐时可以采用混响时间较长的音乐厅,而歌剧院的混响时间必须控制在 2 秒以内,否则歌手就无法听清自己的声音;小规模的乐队希望在混响时间长的音乐厅中演出,以增加音响,而过长的混响时间对于大规模的乐队(四管制,由两个交响乐团组合而成的乐队)有时反而不利。和混响类似的一种现象称为回声,语言和音乐都会在回声的作用下变得模糊不清,因此回声是音乐厅中必须避免的。产生回声的主要原因在于声音的反射体,如果很平滑,那么声音会作镜面反射,同一束声线(几何光学中“光线”的概念沿用在声学中)很有可能同时到达某个地方,由此产生回声,如果凹凸不平,那么声音会作漫反射,同一束声线被反射到不同的方向,然后以不同的时间到达某个地方,形成混响。音乐厅的天花板通常有避免回声的装饰,例如很多形状不规则的吊顶。此外,管弦乐和合唱表演必须使用乐队罩,也就是乐队背后的音板,这样,向上和向后传播的声音就会尽可能多地被音板反射回来,使得乐队罩起到聚光灯后凹面镜的作用,反之,把音板换成绒布,那么音量将减轻很多。

声学基础

主观音质评价 与客观测量的相关性

一.什么叫音质评价?assessment of sound quality 二.为什么要进行音质评价? 三、实施手段: 四、主观音质评价的特点: 五、谁能作出正确评价? 六、如何去评价,评价哪些方面? 七、常用音质测试设备和A/B比较听音方法 八、音质评价术语的含义及与客观物理参数之间的关系 主观音质评价与客观测量的相关性

◆什么叫音质评价? assessment of sound quality 通过听觉判断声音(原声或重放声)的质量水平。目前,对于语言主要从语言清晰度,而对音乐则从与作品类型和风格相吻合的音乐的可听性和欣赏价值来判断其声音质量水平的高低。

◆为什么要进行音质评价? 因为现有的客观测试还不能完全揭示音质的所有特性的本质,音质评价术语还没有一一对应的物理指标。甚至有时客观指标与主观感受有许多不一致的地方,有待人们进一步去研究、揭示,所以,客观测试不能代替主观评价。我们制作音响产品的最终目标是满足人们听觉享受,因此,有必要对我们开发的音响产品进行主观评定。

◆实施手段: 1、听音测试listening test 让一定数量的、经过训练的听音员,在规定声学特性的房间(也有人叫试听室、听音室或审听室等)内,按照共同规定的听音试验方法,对音响设备、节目源、乐音或乐器音等的音质进行主观感觉的评定,最后用数理统计或其他方法对评定数据进行计算,评定出结果的试验。有人也叫试听试验。

◆主观音质评价的特点: 1.声音质量评价的模糊性blur of sound quality assessment 2、评价尺度---多维尺度法multi-dimensional scaling 3. 哪些因素导致主观音质评价的差异 4、室内声学---为什么需要试音室? 5、国内关于听音室的标准

相关主题