搜档网
当前位置:搜档网 › 芳构化反应机理

芳构化反应机理

芳构化反应机理
芳构化反应机理

芳构化反应机理

芳构化活性越低;在同碳数下,烯烃比烷烃更容易生成正碳离子,因而其活性较高;另外,异构烷烃因可以生成相对稳定的叔碳正碳离子,因此其芳构化活性高于正构烷烃。当用烯烃含量较低的FCC装置产的C4液化气制芳烃时,由于原料中烷烃含量高,活化时需要发生更多的裂解或脱氢反应,因此,虽然此后的烯烃低聚、环化反应为强放热,但整个芳构化反应会表现为净吸热。另一方面,当用烯烃含量较高的原料,如裂解抽余碳四或裂解碳五为原料生产芳烃时,由于这些烯烃可以直接通过吸附变成正碳离子,进而发生低聚、环化反应生成芳烃前体,减少了裂解或脱氢反应生成正碳离子环节,所以整个芳构化反应会表现为净放热反应。

同催化重整反应相比,芳构化反应相对节能,而重整反应耗能较大。这主要是因为:重整反应采用C6-C8烷烃为原料,主要发生脱氢反应,因此只有吸热过程;虽然芳构化技术中的芳烃前体也必须通过脱氢反应才能生成芳烃(吸热),但是芳构化技术中采用的轻烃原料一般含有相当一部分烯烃,因此总体上脱氢反应比重整工艺减少。其次,由于轻烃分子在生成芳烃时必须经过低聚和环化反应,而这些反应是强放热反应。因此,同重整反应相比,芳构化反应吸热程度低,而且其中一些放热反应所放出的热量可抵消另外一些吸热反应所吸收的热量(吸热和放热的平衡点根据原料性质不同而不同)。

值得注意的是,虽然烯烃和二烯烃容易芳构化,但对于进入反应器的芳构化原料中的烯烃和二烯烃含量还是要做适当限制。这是因为,烯烃浓度过高时容易在设备及催化剂表面发生聚合,缩短催化剂单程操作周期。二烯烃的危害甚于单烯烃。在实际生产中,一方面要通过原料控制二烯烃的含量,同时要注意保持足够的芳构化干气循环。另外,轻烃中的水分、含氧化合物和氮也是催化剂的毒物,应该加以严格控制。水分和含氧化合物反应生成的水分能够钝化催化剂上的酸性活性中心,缩短催化剂的寿命;而碱性氮则能中和破坏酸性中心,缩短催化剂单程操作周期及催化剂寿命。

不同烃分子生成正碳离子的途径及其相对难易

不同烃分子在DLP催化剂上芳构化的反应过程图解

(1)原料活化为正碳离子及乙烯、丙烯、丁烯和戊烯等低碳烯烃中间体生成

轻烃芳构化生产芳烃技术进展_廖宝星

轻烃芳构化生产芳烃技术进展 廖宝星 (中国石油化工股份有限公司广州分公司,广东广州510726) 摘 要:综述了国内外典型的轻烃芳构化工艺技术,介绍了不同分子筛催化剂的金属改性和反应条件对催化剂芳构化性能的影响,着重阐述了轻烃芳构化的反应机理,并提出了沸石分子筛芳构化催化剂进一步的优化方向。 关键词:轻烃;芳烃:芳构化 中图分类号:TQ 203;TQ 241 文献标志码:A 文章编号:0367-6358(2009)06-0373-04 Prog ress of Light H ydrocarbons A romatization T echnology LIAO Bao -xing (D ivision o f Guang z hou B ranch Compan y ,S INOP EC ,Guangd on g Guan gz hou 510725,China ) A bstract :Ty pical processing technologies fo r the arom atization of lig ht hy drocarbo ns are summarized .The effect on aromatizatio n perfo rmance of metal modification on different zeo lite catalysts and reaction conditions is introduced .Reactio n mechanism o f light hydrocarbons aroma tizatio n is discussed .consequently ,the furthen optim izatio n in zeo lite cataly sts is pro po sed .Key words :light hy drocarbo ns ;a ro matics ;arom atizatio n 收稿日期:2009-01-10;修回日期:2009-03-17 作者简介:廖宝星(1962~),男,高级工程师,主要从事乙烯、汽油加氢、芳烃抽提、丁二烯的生产、技术管理工作。E -mail :liaobx @g ncmail .cn 芳烃是产量和规模仅次于乙烯和丙烯的重要有机化工原料。其衍生物广泛用于生产化纤、塑料和橡胶等化工产品和精细化学品。最初芳烃生产以煤焦化得到的焦油为原料。随着炼油工业和石化工业的发展,芳烃生产已转向以催化重整油和裂解汽油为主要原料,以石油为原料的芳烃国外约占98%以上,国内约占85%以上。目前,石油芳烃大规模的工业生产通过现代化的芳烃联合装置来实现。通常芳烃联合装置包括催化重整、裂解汽油加氢、芳烃转换、芳烃分离等装置。 轻烃主要是指以C 5为主的烷烃或单烯烃化合物,是石油开采和炼制过程中的副产品。它与天然气、液化气、汽油、柴油一样,同属石油大家庭,常温常压下是液态。轻烃的来源主要有:(1)各油田、采油厂提取的C 4~C 8的混合物-轻质油(各油田叫法 不一)。(2)石化生产的副产品-塔顶油。(3)天然气田,油田开采中的凝析油,主要成分是链烷烃(占3%),不含烯烃。(4)炼油厂轻烃:原油常压蒸馏的 轻石脑油,石油二次加工如催化重整,加氢裂化的产品中均含一定数量的C 5及C 5以下烷烃组分。(5)石油化工厂轻烃,主要是溶剂油。据不完全统计,国内目前轻烃年产量7000~10000kt ,到2020年可能达到20000kt [1]。近几年来,随着石油资源的日益减少,将丰富廉价的轻烃,转变为高附加值的苯、甲苯、二甲苯(BTX )的研究已成为当今重要的研究课题和热点问题。轻烃芳构化是近年来发展起来的一种生产芳烃的新工艺,用于生产芳烃或高辛烷值汽油的调和组分。该工艺是以HZSM -5沸石分子筛作为催化剂的活性组分,将重整抽余油、重整拔头油、直馏汽油、焦化汽油、热裂解汽油、热裂解C 5馏

轻烃芳构化技术及应用

轻烃芳构化技术及应用 近几年来,随着石油资源的日益减少,将丰富廉价的轻烃,转变为高附加值的苯、甲苯、二甲苯(BTX)的研究已成为当今重要的研究课题和热点问题。 轻烃芳构化是近年来发展起来的一种生产芳烃的新工艺,用于生产芳烃或高辛烷值汽油的调和组分。轻烃芳构化基本机理是低碳烯烃在固体酸表面活化成正碳离子,然后转化为低碳烯烃中间物种,再低度共聚生成六碳至九碳烯烃等低聚物。低聚物再通过环化、异构化和脱氢等反应步骤生成芳烃。 轻烃芳构化技术主要为非临氢,有两种工艺路线。 一种是芳烃型芳构化工艺路线,原料可以为轻烯烃和碳3以上烷烃,包括炼厂气、液化气、混合C4、裂解C5、油田轻烃等。主要产物是以三苯为主的芳烃(液相产品芳烃含量98%以上),反应温度较高(高于500℃),不仅可以转化碳四中的烯烃,同时碳四烷烃也可以得到转化,缺点是会产生较多的干气(15%左右)。 另一种是汽油型芳构化工艺路线,以高辛烷值汽油调合组分作为目的产物,原料可以为直馏汽油、加氢焦化汽油、轻石脑油、混合碳四、液化石油气等,反应温度较低(一般300-450℃),干气产量较低(低于2%),所得汽油辛烷值较高(RON 85-93或更高)。 国外在上世纪八十年代开始低碳烃的芳构化技术研究,陆续开发出以LPG为原料的移动床芳构化Cyclar工艺(UOP/BP)、采用固定床的M2-Forming工艺(Mobil)和Aroforming工艺(IFP)等轻烃芳构化技术。 20世纪80年代初,国内开始对轻烃芳构化催化剂进行探索。华东理工大学和山西煤化所分别对金属改性的ZSM - 5 沸石用于轻烃芳构化进行研究;抚研院以富含丁烯的C4 馏分、丙烷及混合C3 为原料,在改性的HZSM- 5沸石催化剂上

芳构化反应机理

芳构化反应机理

芳构化活性越低;在同碳数下,烯烃比烷烃更容易生成正碳离子,因而其活性较高;另外,异构烷烃因可以生成相对稳定的叔碳正碳离子,因此其芳构化活性高于正构烷烃。当用烯烃含量较低的FCC装置产的C4液化气制芳烃时,由于原料中烷烃含量高,活化时需要发生更多的裂解或脱氢反应,因此,虽然此后的烯烃低聚、环化反应为强放热,但整个芳构化反应会表现为净吸热。另一方面,当用烯烃含量较高的原料,如裂解抽余碳四或裂解碳五为原料生产芳烃时,由于这些烯烃可以直接通过吸附变成正碳离子,进而发生低聚、环化反应生成芳烃前体,减少了裂解或脱氢反应生成正碳离子环节,所以整个芳构化反应会表现为净放热反应。 同催化重整反应相比,芳构化反应相对节能,而重整反应耗能较大。这主要是因为:重整反应采用C6-C8烷烃为原料,主要发生脱氢反应,因此只有吸热过程;虽然芳构化技术中的芳烃前体也必须通过脱氢反应才能生成芳烃(吸热),但是芳构化技术中采用的轻烃原料一般含有相当一部分烯烃,因此总体上脱氢反应比重整工艺减少。其次,由于轻烃分子在生成芳烃时必须经过低聚和环化反应,而这些反应是强放热反应。因此,同重整反应相比,芳构化反应吸热程度低,而且其中一些放热反应所放出的热量可抵消另外一些吸热反应所吸收的热量(吸热和放热的平衡点根据原料性质不同而不同)。 值得注意的是,虽然烯烃和二烯烃容易芳构化,但对于进入反应器的芳构化原料中的烯烃和二烯烃含量还是要做适当限制。这是因为,烯烃浓度过高时容易在设备及催化剂表面发生聚合,缩短催化剂单程操作周期。二烯烃的危害甚于单烯烃。在实际生产中,一方面要通过原料控制二烯烃的含量,同时要注意保持足够的芳构化干气循环。另外,轻烃中的水分、含氧化合物和氮也是催化剂的毒物,应该加以严格控制。水分和含氧化合物反应生成的水分能够钝化催化剂上的酸性活性中心,缩短催化剂的寿命;而碱性氮则能中和破坏酸性中心,缩短催化剂单程操作周期及催化剂寿命。 不同烃分子生成正碳离子的途径及其相对难易

烷基化反应的机理

烷基化反应的机理 石油炼制过程中的烷基化反应是指在酸性催化剂的作用下,烷烃分子与烯烃分子的化学加成反应,在反应过程中烷烃分子中的活泼氢原子的位置被烯烃所取代。由于异构烷烃中叔碳原子上的氢原子比正构烷烃中伯碳原子上的氢原子活泼得多,因此参加烷基化反应的烷烃为异构烷烃,一般特指异丁烷。 烷基化原料是以催化裂化液化气中异丁烷和异丁烯、丁烯-1为主。烷基化常用的酸性催化剂有硫酸、氢氟酸、三氯化铝等,本装置使用的催化剂为硫酸。 正碳离子的概念 在研究各种有机化学反应的时候,人们发现各种有机反应中间产物大体可以分为3种类型:自由基、阳离子、阴离子。烷基化反应属于其中的阳离子反应,即生成了正碳离子。随着人们对烷基化反应机理的不断探索与认识的日渐成熟,人们普遍接收的是正碳离子——链式反应机理。 所谓正碳离子是一个带正电荷的碳原子,它只有6个外层电子,是缺电荷的,其通式可以写为: 围绕正碳离子的取代物可以是氢原子,也可以是甲基基团,其四种形式分别为: 其稳定性从左到右依次增大,也就是说叔碳原子的正碳离子是最稳定的。这里所说的稳定性是相对而言的,总体来说,各种正碳离子都是极不稳定的,很容易进一步参与反应。只有当其与另一对电子成键以后,也就是说,当这个碳原子周围有了8个电子以后,它才能说是真正稳定了。 正碳离子与另一对电子成键的最常见的形式是加合一个负离子。这是正碳离子的最后一步反应,但却开始了另一个正离子的进程。 正碳离子的化学行为 以酸为催化剂的烷基化反应中,酸所提供的氢质子与烯烃的加成反应是产生正碳离子的主要反应。 C H H H CH 3 CH 3 CH 3CH 3 CH 3 CH 3 H H H C C C C

芳构化反应机理

2.2 工艺原理及特点 液化气芳构化装置的目的是将来自界区的碳四组分其它适宜的原料在DLP催化剂的作用下,通过芳构化反应转化为含有苯、甲苯及二甲苯的混合芳烃,同时生成含有氢气、甲烷及碳二至碳五馏分的气相。然后通过一系列的分离,最终产出符合标准的混合芳烃、轻芳烃及重芳烃,同时副产低烯烃的液化气及少量的干气。 C4液化气等低碳烃在芳构化催化剂中进行芳构化反应的过程较为复杂,以烷烃为例一般要经过脱氢、齐聚、环化及芳构化等过程最终才能生成芳烃,而烯烃的转化则没有脱氢的过程。上述过程中,烷烃脱氢的过程为吸热过程,而齐聚、环化及芳构化过程为放热的过程,所以烷烃的芳构化生成芳烃的能耗要比烯烃的芳构化过程要高。在低温条件下生产轻芳烃汽油组分时,齐聚、环化及芳构化的反应为主导反应,所以是一个强的放热反应。 2.2.1 工艺原理 反应机理 液化石油气等轻烃的芳构化机理十分复杂。一般认为,轻烃在分子筛的酸中心上芳构化反应时经历下列步骤:a)通过在酸中心上发生化学吸附生成正碳离子得到活化; b)正碳离子进一步脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。这些小烯烃是芳烃分子的建筑单元。该步反应属于吸热反应;c)小烯烃分子在B酸中心上低聚(二聚、三聚)生 成C 6-C 8 烯烃,后者再通过异构化和环化生成芳烃前体(带6元环的前体)。该步反应属 于强放热反应;d)芳烃前体在L酸中心上通过脱氢生成苯、甲苯和C 8 等芳烃。这步反应属于吸热反应。在上述反应中,原料在酸中心上生成正碳离子的步骤最为关键,它决定了芳构化反应的活性和选择性。 C 3-C 8 之间的轻烃分子都可以在催化剂的酸中心上通过脱氢和裂解生成乙烯、丙烯、 丁烯和戊烯。当反应温度和催化剂的酸度相同时,从不同碳数的轻烃原料出发,可以得到具有同样热力学平衡分布的乙烯、丙烯、丁烯和戊烯。由于基本建筑单元的种类和浓度分布相近,所以从不同碳数的轻烃原料出发都可以得到苯、甲苯和C 8 等芳烃产物,并且原料对芳烃产物的分布影响不大。但是,若两种芳构化原料的碳数不同(如C3、C4、C5、C6、C7、C8)、结构不同(如直链烃、支链烃和环烷烃)和碳-碳键饱和程度不同(如烷烃、单烯烃、二烯烃),则其芳构化的活性、热效应和芳烃产率会有一定差别。一般来说,碳数越小的原料在酸中心上生成正碳离子越困难,其芳构化活性越低;在同

工艺知识芳构化

工艺知识芳构化 工艺知识 装置概况: 1、轻油芳构化装置,产品较重终馏点较高 2、装置改造,利用稳定塔再上溶剂油装置生产溶剂油 3、由于分离溶剂油的可操作性,改为利用溶剂油装置对轻油芳构化原料进行预处理脱除重组分---拔精粗200# 4、正值经济危机之际,原料油涨价而汽油降价,进行液化气芳构化流程改造,再利用溶剂油装置脱轻柴 5、为了更加容易控制反应器床层温度进行反应器改造,并更换R101B/D催化剂为液化气芳构化的专用催化剂 为了更加容易,期间进行的小流程改造不断;大家也看到了,改造的地方也比较多,都是为了操作稳定容易减少劳动强度与损耗,希望大家在以后的操作生产中能提出更好的流程改造方案。 1、富压机中间冷却器退油 2、溶剂油装置的脱丁烷塔顶放空至罐区 3、V110放空改至液化气外送线 4、吸收塔干气调节阀前改至液化气外送至液化气产品罐给罐区补压,调节阀后补压;由于液化气芳构化的催化剂不同,分阀前阀后补压 5、烧焦再生的补风线加调节阀控制补风量,补风管线加粗防冻 6、再生系统加放空调节阀改造,空压机入口加调节阀 7、P301、P302外送合在一起;P303外送与P305合在一起,P304外送与P306合在一起 8、仪表风分净化风与非净化风两条线,烧焦用非净化风 9、V101加放空调节阀 10、V106向V101压油流程 11、脱色塔进料的分布器堵,改用脱己烷塔当脱色塔使用 液化气芳构化的理论知识: 用富含烯烃(丁烯)的液化气作为原料,在反应器进行液化气芳构化 轻油芳构化的主要反应是:裂化、齐聚、环化、脱氢 液化气芳构化的主要反应为:叠合反应(属齐聚反应)此反应为强放热反应,所以反应器床层温度是温升而不是温降,有效地控制床层温度是重点;还进行环化、脱氢反应。 叠合反应是指两个或者两个以上的烯烃分子生成一个高分子量的烯烃的过程。 原料中烯烃含量越高,反应放出的温度越多,床层温度越高,反应周期缩短。 液化气芳构化的影响因素: 1、原料组成对芳构化反应的影响 随着原料中烯烃含量的增加,液体收率和芳烃增加,干气产率下降。 丁烯比丙烯更易发生芳构化反应。同等烯烃总含量的原料中,丁烯含量越高,其中液体产物收率越高,干气产率越低。同时,丁烷较丙烷更易发生芳构化反应。 液化气芳构化生成的芳烃中以轻质芳烃为主,但芳烃的具体分布有一定的差别,其中苯含量变化较大。主要表现为,苯含量随着原料中丁烯含量的升高而降低,相应的二甲苯的含量随着丁烯行

芳构化培训题目

2、芳构化装置专业理论知识 2.1、芳构化基础知识 一、选择题 001、我厂直馏汽油芳构化装置采用()催化剂。 A: ZSM-4 B: ZSM-5 C: ZSM-6 D: ZSM-10 正确答案: B 002、密度为732kg/m3(20℃)的汽油最可能是()。 A: 直馏汽油 B: 芳构化稳定汽油 C: 溶剂油 D: 煤油 正确答案: B 003、环烷烃在一定的条件下可()生成芳烃,是制取芳烃的重要原材料。 A: 脱氢 B: 脱碳 C: 断环 D: 断链 正确答案: A 004、芳构化稳定汽油比常减压直馏汽油具有更深的颜色,主要原因是它们所含的()数量不同。 A: 烃类 B: 微量元素 C: 胶质 D: 沥青质 正确答案: C 005、直馏汽油中含的硫化物在芳构化反应器发生反应后大多转化为()。 A: 硫醇 B: 硫化氢 C: 硫元素 D: 硫醚 正确答案: B 006、一般认为,轻烃分子在ZSM-5分子筛催化剂上的反应包括()。 A: 裂化、缩合、异构化、芳构化 B: 裂化、聚合、磺化、脱氢 C: 裂化、齐聚、磺化、脱氢 D: 裂化、齐聚、环化、脱氢 正确答案: D 007、轻烃分子在ZSM-5沸石孔道内的裂化反应遵循()反应机理。 A: 正碳离子 B: 负碳离子 C: 氢转移 D: 择型芳构化 正确答案: A 008、芳构化原料油再进入原料油加热炉前,要经原料油反应产物换热器换热至()。 A: 露点 B: 泡点 C: 干点 D: 湿点 正确答案: B 009、芳构化装置正常生产时,根据分析一般每次提高原料油出口温度()℃。 A: 3~5 B: 5~10 C: 10~15 D: 15~20 正确答案: A 010、芳构化装置反应器再生时起始温度为()℃。 A: 370 B: 400

芳构化反应系统工艺流程

芳构化反应系统工艺流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

芳构化反应系统工艺流程 混合碳四液化汽和石脑油是在KCIA-Ⅱ分子筛催化剂的作用下,经过碳四烯烃的叠合、脱氢环化、脱氢芳构化及烷烃的裂解等系列催化反应,生成混合芳烃,及副产品液化汽和干气。反应是强放热反应。 1)工艺流程及说明: A.加热反应部分 加热反应单元包括原料-产物换热器、加热炉、反应器、等单元设备操作。由MTBE或罐区来的原料C4和石脑油分别进入原料缓冲罐(V202、V201)。原料C4经泵P202提升后,经计量控制,一线送至原料-产物换热器E201,另一线送至产物-注冷料换热器E202;石脑油经泵P201提升后经计量控制,与一线原料C4混合送至原料-产物换热器E201。混合原料分别经原料-产物换热器E201、E203、加热炉F201加热至280-390℃后由反应器R201顶部进入反应器。部分原料液化气(或贫稀液化气)经产物-注冷料换热器E202加热汽化后,经计量控制分两线由反应器R201中部两催化剂床层之间注入反应器,以便于调节反应床层温度。反应产物由反应器R201底部采出分别经原料-产物换热器E203、(E-202)、E201换热后进入产物气液分离罐V203,罐底部凝液经泵P203提升后计量控制后进入稳定塔;罐顶分离出的气相经产物空冷器AC201、产物水冷器E204冷却至40℃后进入产物凝液分离罐V204,罐顶部采出为不凝气,进入吸收解吸塔T201中部塔板,底部采出液相,经泵P204提升后进入吸收解吸塔中部塔板。 B.催化剂再生部分 反应进行一段时间后,随着反应器R201中催化剂表面结焦的增加,催化剂表面活性降低,当检测到产品质量不能满足要求时,需将反应器R201切换出反应系统进行催化剂烧焦再生处理。催化剂再生采用氮气和空气作为再生气体,并控制再生气体中的氧含量,以防止反应催化剂床层再生烧焦超温破坏催化剂。烧焦前,首先启动再生循环气体压缩机C201,将氮气引至压缩机C201入口处,并经压缩机C201升压至1.0MPa、换热器E201、E203与循环再生气换热后进入再生循环气冷却器E216冷却后进入再生循环气液分离罐V207,罐底分离出循环气带出的油滴,并间歇排出,罐顶为循环气,引至压缩机C201入口增压循环,以逐步将反映其中的油气带出。当反应器中残留的油气满足安全要求,且反应器进口循环再生气的温度达到烧焦需要的温度时,开始从压缩机

烷基化反应的机理.docx

-` 烷基化反应的机理 石油炼制过程中的烷基化反应是指在酸性催化剂的作用下,烷烃分子与烯烃分子的 化学加成反应,在反应过程中烷烃分子中的活泼氢原子的位置被烯烃所取代。由于异构 烷烃中叔碳原子上的氢原子比正构烷烃中伯碳原子上的氢原子活泼得多,因此参加烷基 化反应的烷烃为异构烷烃,一般特指异丁烷。 烷基化原料是以催化裂化液化气中异丁烷和异丁烯、丁烯-1 为主。烷基化常用的酸 性催化剂有硫酸、氢氟酸、三氯化铝等,本装置使用的催化剂为硫酸。 4.1 正碳离子的概念 在研究各种有机化学反应的时候,人们发现各种有机反应中间产物大体可以分为3种类型:自由基、阳离子、阴离子。烷基化反应属于其中的阳离子反应,即生成了正碳 离子。随着人们对烷基化反应机理的不断探索与认识的日渐成熟,人们普遍接收的是正 碳离子——链式反应机理。 所谓正碳离子是一个带正电荷的碳原子,它只有6个外层电子,是缺电荷的,其通式 可以写为: C 围绕正碳离子的取代物可以是氢原子,也可以是甲基基团,其四种形式分别为: H H H CH3 H C H CH3 C H CH3 C CH3CH3 C CH3 其稳定性从左到右依次增大,也就是说叔碳原子的正碳离子是最稳定的。这里所说 的稳定性是相对而言的,总体来说,各种正碳离子都是极不稳定的,很容易进一步参与 反应。只有当其与另一对电子成键以后,也就是说,当这个碳原子周围有了8个电子以后,它才能说是真正稳定了。 正碳离子与另一对电子成键的最常见的形式是加合一个负离子。这是正碳离子的最 后一步反应,但却开始了另一个正离子的进程。 4.2正碳离子的化学行为 以酸为催化剂的烷基化反应中,酸所提供的氢质子与烯烃的加成反应是产生正碳离 子的主要反应。

石脑油芳构化操作规程

芳构化操作规程 第一章概述 第一节本装置生产任务及特点 随着我国淘汰70#汽油、2000年全面实现汽油无铅化进程的加快,对于加工流程简单的炼油厂,如何解决低辛烷值汽油组份的深加工问题必将成为技术改造的重点。 轻烃芳构化技术是近十年来发展起来的一种新的石油化工工艺技术,其特点是利用非贵金属改性的沸石催化剂将低分子烃类直接转化为苯、甲苯、二甲苯等轻质芳烃。与目前炼油厂采用的催化重整工艺相比,该技术具有以下几种特征:(1)使用的沸石催化剂具有一定的抗硫、抗氮能力,原料不需要深度精制。(2)其芳烃准备产率不受到原料芳烃潜含量限制。(3)低压、非临氢操作,其操作费用低,基本建设投资少,因而,芳构化技术的开发应用即将成为继催化重整技术以后的又一项生产石油芳烃或高辛烷值汽油组份的新工艺。 多年来,中国石化集团公司洛阳石化工程公司炼制研究所在轻烃芳构化生产芳烃或高辛烷值汽油等方面作了大量的研究开发工作,形成了自己的专有技术,并拥有两项发明专利(ZL93102129.4)。由洛阳石化工程公司炼制研究所等单位共同研究开发的劣质汽油芳构化改质技术已于1998年1月通过了中国石化集团公司(原中国石化总公司)组织的技术鉴定。该技术利用专有催化剂,将诸如焦化汽油、直馏汽油、油田凝析油、重整拔头油、重整抽余油、裂解汽油等轻烃转化为芳烃,用于生产芳烃或高辛烷值汽油。 1998年8月,以直馏汽油为原料的1.0×104t/a芳构化改质工业示范装置在沈阳新民蜡化学品实验厂投入运行。该装置的运转结果达到了预期的目的(即液化石油气+汽油≥90%(wt);汽油ROM≥90),证实芳构化改质技术的可靠和可行性,具备了工业

芳构化催化剂应用

RGW-1新型催化剂在芳构化装置上的应用 董先赵荣彬 (南充炼油厂一车间) 摘要:本文介绍了RGW-1催化剂在我厂芳构化装置上的应用情况,结果表明该催化剂技术可靠,干气产率低,产品分布合理,质量满足控制要求,经济效益明显。 关键词:汽油改质芳构化工业应用 1 前言 南充炼油厂常减压蒸馏装置扩能100万吨/年后,年产直馏汽油17万吨,而与之配套的直流汽油加工能力仅10万吨/年,大量直馏汽油直接外卖,严重影响工厂整体经济效益。对芳构化装置扩能,使之能适应全厂100万吨/年配套加工能力成为当前重要研究课题之一。 四川石化南充炼油厂根据全厂统筹安排,将原10万吨/年芳构化装置改造成为18万吨/年芳构化装置,其中加工直馏汽油17万吨/年,加工重催液化气1万吨/年。通过技术交流和综合比较,南充炼油厂最终选择石科院的RGW-1催化剂,该催化剂具有反应温度低、抗积碳能力强、干气产量低和可将含烯烃液化气部分转化为高辛烷值汽油等优点。 2 催化剂特点及反应机理 RGW-1催化剂采用了石科院开发的细晶粒分子筛,活性高,抗积碳能力强,并加入了特殊的改性金属组元(锌、稀土和第ⅤA族元素),提高了催化剂的芳构化和异构化活性,同时催化剂稳定性进一步提高,单程运转周期大幅度延长。另外,该催化剂具备加工处理高含烯烃原料的能力,可将重催含烯烃液化气转换为高辛烷值汽油组分。 2.1催化剂表观性能 RGW-1催化剂为分子筛和γ-Al2O3混合挤条产品,主要表观性质见表1。 表1 催化剂表观性质 项目指标 比表面m2/g ≥280 压碎强度N/cm ≥90 外形白色条状 尺寸(直径×长度)mm φ2~3×5~8 堆密度g/cm30.70~0.74 新型RGW-1催化剂与芳构化装置原使用改性ZSM-5催化剂相比,催化剂晶粒大小有了较大改变,RGW-1催化剂晶粒大小约0.02~0.2μm,原催化剂晶粒大小约1~3μm。RGW-1催化剂晶粒变小的同时增加表面积,抗积碳能力也同时得到增强,延长催化剂单程使用寿命至原催化剂的1.5倍以上。

轻烃芳构化技术

轻烃芳构化技术 中国石化集团洛阳石油化工工程公司工程研究院 目录 1前言 (1) 2轻烃芳构化技术概况 (2) 3G A P工艺技术 (3) 3.1G A P-I工艺技术及其工业应用 (4) 3.1.1芳构化催化剂及原料的性质 (4) 3.1.2G A P-I工艺流程 (5) 3.1.2.1G A P-I工艺反应部分流程 (6) 3.1.2.2再生部分 (6) 3.1.2.3产物分离 (6) 3.1.3工业装置标定结果 (6) 3.1.4装置的单程操作周期 (7) 3.1.5芳构化改质装置的总投资 (8) 3.1.6芳构化改质装置的加工费用 (8) 3.2G A P-I I工艺 (9) 3.2.1G A P-I I工艺流程和特点 (9) 3.2.2原料及芳构化催化剂的性质 (9)

3.2.4G A P-I I工艺产品分布和产品性质 (11) 3.2.5G A P-I I工艺装置的总投资 (12) 3.2.6芳构化改质装置的加工费用 (12) 3.3 GA P-III工艺 (13) 3.3.1 GA P-II I工艺流程和特点 (13) 3.3.2 GA P-II I工艺主要工艺条件 (13) 3.3.3 GA P-II I工艺产品分布及产品性质 (14) 3.3.4GA P-II I工艺的装置总投资 (15) 3.3.5 GA P-II I工艺的加工费用 (15) 3.4 GAP工艺应用小结 (16) 4 GTA工艺及其工业应用 (17) 4.1G T A-I工艺 (17) 4.1.1原料及催化剂的性质 (17) 4.1.2工艺流程 (17) 4.1.3主要工艺参数 (18) 4.1.4产品分布及产品性质 (18) 4.1.5G T A-I工艺的装置总投资 (19) 4.1.6装置加工费用 (20)

芳构化催化剂分析

关于催化剂出现反应期缩短的原因分析 催化剂反应周期缩短、产品液化气烯烃增高,标志着催化剂活性降低,造成的主要原因是原料烯烃中含有醚类、醇类物质,在反应过程中产生水蒸汽,水蒸汽是催化剂老化剂,相当于在生产过程中催化剂不断老化。 水蒸气为什么是催化剂的老化剂呢?水蒸气进入催化剂孔道中造成催化剂孔道结构的破坏,同时会降低活性中心的数量,通常实验状态下,催化剂通过常压、300℃水蒸气老化32小时,常压、350℃水蒸气老化24小时,450℃老化20小时,600摄氏度老化6小时左右,一般催化剂在300℃一下水蒸气不会对催化剂产生影响,一旦温度提高到400℃以上,催化剂的老化将非常明显,但是催化剂的活性降低到一定程度后,其活性将降低的非常慢,也就是水蒸气对催化剂活性影响将变得很小。目前,装置的生产也可以说是不断的在对催化剂进行老化,当老化到一定程度,催化剂将保持一定的低活性,其活性衰减将变得极为缓慢。 通过近期催化剂表现上看,装置催化剂已经处于某一老化阶段,单从温度梯度上判断,目前洛阳催化剂的反应主要表现为叠合、异构、裂解、脱氢反应,可以通过基本的有机化学常识判断,放热反应是叠合、聚合、脱氢,吸热反应是异构、裂解、脱氢反应,当叠合、聚合放热反应热Q放小于异构、裂解、脱氢反应Q吸时,反应床层表现为基本没有温度梯度或出现温度梯度下降趋势,同时反应产物液相中芳烃含量降低,异构烯烃、异构烷烃、直链烷烃增高,甚至出现芳烃含

量非常低的情况,说明催化剂其芳构化能力降低、异构化能力增强。 但并不是说异构能力增强标志着催化剂已经失活,只能说催化剂的活性已经很低,不适合作轻油芳构化催化剂,相反,活性的降低反而有利于烯烃的叠合,抑制裂解反应的发生,对于提高液相收率更为有利。 通过以上分析,不论是北京催化剂还是洛阳催化剂都存在严重的水蒸气危害,而且这种危害是十分致命的,水蒸气可以造成催化剂永久性失活,这种失活是不可逆的,当然,水蒸气并不是将催化剂的活性完全降低,只是将催化剂的活性降低到某一低活性阶段,这种催化剂可称之为“低活催化剂”,对于“低活催化剂”,需要采用更为精制的管理和使用才能在生产中发挥其重要的作用。 “低活催化剂”简言之就是催化剂的活性低,也就是其活性中心少,要想合理有效的利用好该催化剂就必须严格控制进入反应器的烯烃含量,比如说60%和40%烯烃含量的原料相同流量进入反应器,假设前者其反应周期是2天,后者的反应周期可能为3天,甚至4天。因为烯烃含量低的原料其结焦率和放热率都较低,其反应周期当然长。相反,烯烃含量过高,会造成结焦速度过快,失活过快,反应周期缩短。但烯烃含量高,并不会同比例的增加液相收率,原因很简单,在活性中心数量一定的情况下,催化剂与烯烃的反应量是一定的,无论增加多少烯烃,催化剂都不能将其完全转化为液相,相反会发生烯烃加氢、烯烃异构化反应,甚至造成原料进料量降低,加工量降低的弊端。

《有机化学(第二版)》反应机理

1. 写出下列反应的历程。 CH 3CHCH 2OH + CH 3 24 C(CH 3)3 解: C(CH 3)3 CH 3CHCH 2OH CH 3 H +2H 3C C CH 2 CH 3 H + 重排 H 3C C CH 3 CH 3 + 3)3 2. 写出下列反应历程: CH(CH 3)2 AlBr 3 +CH 2CH 2CH 3Br 解: CH 3 CH 2CH 2重排 + + CH 3CH 3CH 2 CH 2CH 3CH 3)2H + CH 3 ++ CH 3CH(CH 3)2 CH 3. 写出苯与正戊酰氯在AlCl 3催化下的反应产物及反应历程。 解: AlCl 3 +n-C 4H 9COCl n-C 4H 9C + O +[AlCl 4]- + n-C 4H 9C + O 4H 9-n C-C 4H 9-n O H + ++HCl [AlCl 4]-AlCl 3 4.

解: 5. 用方程式解释下列反应的机理: 6.试解释下列反应的机理:解:

7. 试解释下列反应的机理: 解: 反应的机理为: 8. 写出甲烷和氯气在光照下发生氯代反应生成一氯甲烷的反应机理。 解: 9. 反应历程解释下列反应事实 解: 10. 用反应历程解释下列反应事实。 OH CH 3 CH 3CH 3CH 3OH H 3C CH 3H + H 3C CH 3+ CH 3 CH 3 + -H + CH 3 CH 3 重排 Cl 2 hv 2Cl (1) Cl CH 3CH 4HCl ++(2) CH 3Cl CH 3+Cl 2+ Cl (3) Cl Cl +Cl 2 (4) Cl +CH 3 CH 3Cl (5) CH 3+CH 3 CH 3CH 3 (6)

芳 构 化 装 置20120920

芳构化装置 一、装置简介 芳构化装置,主要原料混合碳四液化气,产品有轻芳烃、重芳烃,民用液化气等。原料混合碳四液化气,通过原料加热炉加热后,在反应器内与催化剂接触,经过低聚、环化,脱氢芳构化反应生成粗芳烃混合物,经过吸收稳定系统分离成合格的民用液化气和混合芳烃,再通过分馏分离成轻芳和碳9以上重芳烃。 装置区共有油、气罐16台,水储罐2台,其中地下密闭排放罐1台,机泵20台套。为了防止污染环境和对操作人员造成损害,装置区所有排放的有机液体均排往密闭排放罐,然后根据情况再进行处理和排放。 二、工艺原理 反应部分: 轻烃芳构化的机理十分复杂。一般认为,轻烃在分子筛的酸中心上芳构化反应时经历下列步骤:a)通过在酸中心上发生化学吸附生成正碳离子得到活化;b)正碳离子进一步脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。这些小烯烃是芳烃分子的建筑单元。这步反应属于吸热反应;c)小烯烃分子在B酸中心上低聚(二聚、三聚)生成C6-C8烯烃,后者再通过异构化和环化生成芳烃前体(带6元环的前体)。这步反应属于强放热反应;d)芳烃前体在L酸中心上通过脱氢

生成苯、甲苯和C8芳烃等。这步反应属于吸热反应。在上述反应中,原料在酸中心上生成正碳离子的步骤最为关键。它决定了芳构化反应的活性和选择性。 C3-C8之间的轻烃分子都可以在催化剂的酸中心上通过脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。当反应温度和催化剂的酸度相同时,从不同碳数的轻烃原料出发,可以得到具有同样热力学平衡分布的乙烯、丙烯、丁烯和戊烯。由于基本建筑单元的种类和浓度分布相近,所以从不同碳数的轻烃原料出发都可以得到苯、甲苯和C8芳烃等产物,并且原料对芳烃产物的分布影响不大。但是,若两种芳构化原料的碳数不同(如C3、C4、C5、C6、C7、C8)、结构不同(如直链烃、支链烃和环烷烃)和碳-碳键饱和程度不同(如烷烃、单烯烃、二烯烃),则其芳构化的活性、热效应和芳烃产率会有一定差别。一般来说,碳数越小的原料在酸中心上生成正碳离子越困难,其芳构化活性越低;在同碳数下,烯烃比烷烃更容易生成正碳离子,因而其活性较高;另外,异构烷烃因可以生成相对稳定的叔碳正碳离子,因此其芳构化活性高于正构烷烃。当用烯烃含量较低的FCC碳四液化气制芳烃时,由于原料中烷烃含量高,活化时需要发生更多的裂解或脱氢反应,因此,虽然此后的烯烃低聚、环化反应为强放热,但整个芳构化反应会表现为净吸热。另一方面,当用烯烃含量较高的裂解抽余碳四或裂解碳五为原料生产芳烃时,由于这些烯烃可以直接通过吸附变成正碳离子,进而发生低聚、环化反应生成芳烃前体,减少了裂解或脱氢反应生成正碳离子环节,所以整个芳构化反应会表现为净放热反应。 值得注意的是,虽然烯烃和二烯烃容易芳构化,但对于进入反应器的芳构化原料中的烯烃和二烯烃含量还是要做适当限制。这是因为,烯烃浓度过高时容易在催化剂表面发生聚合,缩短催化剂单程操作周期。二烯烃的危害甚于单烯烃。在实际生产中,一方面要通过碳五预分离装置尽可能脱除十分容易聚合的环戊二烯,同时要注意保持足够的芳构化干气循环。另外,轻烃中的水分、含氧化合物和裂解碳四、裂解碳五抽提过程中采用的含氮溶剂(DMF)也是催化剂的毒物,应该加以严格控制。其中,水分和含氧化合物反应生成的水合物能够钝化催化剂上的酸性活性中心,使催化剂减寿;DMF等溶剂则能在催化剂上发生高温聚合,缩短催化剂单程操作周期。

催化裂化反应机理

异丙醇脱氢制丙酮所采用的催化剂及其设计原理 张若杰 1201班 化学工程 01201208170114 一、反应机理 脱氢反应是脱氢催化剂(Dehydrogenation catalysts )下进行的气固相催化反应,且反应是吸热的。在异丙醇分子中由于羟基的影响,α-H 比较活泼,容易发生脱氢。 常压200-300℃,异丙醇在催化剂表面,脱氢吸热生成丙酮,并产生大量氢气。本反应主要涉及两个过程。温度适中时,发生主反应: ()()↑+?→? 22323H CO CH CHOH CH (1) 起始时,由于异丙醇的加入,汽化需要吸收大量的热,导致反应温度降低,发生 副反应: ()()()O H COCH CHCH CH CHOH CH CO CH 232232323+?→?+ (2) 温度过高时,发生异丙醇分子内脱水,生成异丙醚: ()()()O H CH CHOCH CH CHOH CH 2232332+?→? (3) 因此温度控制的是否得当是生成目的产物的关键。 二、反应热力学分析 查有关手册得298K 各相关物质的 f H ?和 f G ?值于下表:(kcal/mol ) 求出各反应在298K 的r H ?、r G ?和Kp 值列于下表: 由方程??? ? ??-?=211211ln T T R H Kp Kp r 求出多个温度的Kp 值列于下表:

由上表数据可知,高温、低压有利异丙醇脱氢生成丙酮的反应。 三、分子反应机理 反应物分子先被催化剂上的金属离子Mn+作用而脱去H-(发生C-H键异裂),随后再脱去H+而成不饱和键。要求反应分子交易极化产生Cδ+—Hδ-,催化剂也需要有极化能力的金属离子Mn+用来脱去H-,同时具有负电荷的O2-,以接受H-。因此这类机理类似于酸碱催化。 四、催化剂的选择 在反应过程中,反应温度随催化剂的不同而不同。异丙醇脱氢反应是一简单反应,工业上大多采用气相反应,原料在气相条件下流过列管式固定床反应器,发生脱氢反应,常用铜锌系催化剂。典型的工艺条件为反应压力0.2~0.3 MPa,反应温度200~300℃,异丙醇单程转化率(摩尔分数)大于6O%,产品丙酮对异丙醇总收率(摩尔分数)大于95.5%。 所用催化剂有铜、银、铂、钯等金属以及过渡金属的硫化物,负载于惰性载体上,反应在管式反应器中进行,温度400~600℃。在使用氧化锌-氧化锆、铜-铬氧化物或铜-二氧化硅催化剂时,脱氢温度降低为300~500℃。

芳构化反应机理

芳构化反应机理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

工艺原理及特点 液化气芳构化装置的目的是将来自界区的碳四组分其它适宜的原料在DLP 催化剂的作用下,通过芳构化反应转化为含有苯、甲苯及二甲苯的混合芳烃,同时生成含有氢气、甲烷及碳二至碳五馏分的气相。然后通过一系列的分离,最终产出符合标准的混合芳烃、轻芳烃及重芳烃,同时副产低烯烃的液化气及少量的干气。 C4液化气等低碳烃在芳构化催化剂中进行芳构化反应的过程较为复杂,以烷烃为例一般要经过脱氢、齐聚、环化及芳构化等过程最终才能生成芳烃,而烯烃的转化则没有脱氢的过程。上述过程中,烷烃脱氢的过程为吸热过程,而齐聚、环化及芳构化过程为放热的过程,所以烷烃的芳构化生成芳烃的能耗要比烯烃的芳构化过程要高。在低温条件下生产轻芳烃汽油组分时,齐聚、环化及芳构化的反应为主导反应,所以是一个强的放热反应。 2.2.1 工艺原理 反应机理 液化石油气等轻烃的芳构化机理十分复杂。一般认为,轻烃在分子筛的酸中心上芳构化反应时经历下列步骤:a)通过在酸中心上发生化学吸附生成正碳离子得到活化;b)正碳离子进一步脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。这些小烯烃是芳烃分子的建筑单元。该步反应属于吸热反应;c)小烯烃 分子在B酸中心上低聚(二聚、三聚)生成C 6-C 8 烯烃,后者再通过异构化和环 化生成芳烃前体(带6元环的前体)。该步反应属于强放热反应;d)芳烃前体在L酸中心上通过脱氢生成苯、甲苯和C 8 等芳烃。这步反应属于吸热反应。在上述反应中,原料在酸中心上生成正碳离子的步骤最为关键,它决定了芳构化反应的活性和选择性。 C 3-C 8 之间的轻烃分子都可以在催化剂的酸中心上通过脱氢和裂解生成乙 烯、丙烯、丁烯和戊烯。当反应温度和催化剂的酸度相同时,从不同碳数的轻烃原料出发,可以得到具有同样热力学平衡分布的乙烯、丙烯、丁烯和戊烯。由于基本建筑单元的种类和浓度分布相近,所以从不同碳数的轻烃原料出发都可以得到苯、甲苯和C 8 等芳烃产物,并且原料对芳烃产物的分布影响不大。但是,若两种芳构化原料的碳数不同(如C3、C4、C5、C6、C7、C8)、结构不同

烷基化反应报告

烷基化反应 专 题 报 告 班级: 学号: 姓名: 完成日期:

烷基化反应专题报告 前言 随着我国国民经济可持续发展国策的实施,汽车排放尾气对空气的污染问题成为我们关注的焦点,我国石油炼制工业面临的最关键问题就是如何生产符合国家日益严格的环保标准的清洁燃料,以满足国内交通行业和市场的需求。 石油炼制过程中的烷基化反应是指在酸性催化剂的作用下,烷烃分子与烯烃分子的化学加成反应,在反应过程中烷烃分子中活泼氢原子的位置被悉听所取代,由于异构烷烃中叔碳原子上的氢原子比正构烷烃中碳原子上的氢原子活泼的多,因此参加烷基化反应烷烃。反应生成异辛烷(烷基化汽油)的催化反应过程。 烷基化汽油具有以下特点:该种汽油具有辛烷值高(RON95~98) 、敏感性低(RON 与MON 之差一般≤3) 康保性能好;蒸汽压低、燃烧热值高、不含烯烃芳烃硫含量也低。燃烧完全而清洁,不污染环境等优点,是航空汽油和车用汽油的理想调和油。真是由于烷基化的各种优点,使它成为石油加工过程的重要过程之一,越来越受到广泛关注。 烷基化原理及影响因素 一、烷基化原理 碳四烷基化遵循正碳离子反应机理,其过程主要包含四个步骤: 步骤1:叔丁基正碳离子的生成

步骤2:叔丁基正碳离子与丁烯加成生成碳八正碳离子 叔丁基正碳离子与不同的丁烯异构体进行烷基化反应可以生成不同的碳八正碳离子。 TMP+和DMH+分别是三甲基戊烷和二甲基己烷的正碳离子。TMP组分是烷基化油中的理想组分,具有较高的辛烷值(RON 100~109),而DMH的辛烷值较低(RON 55~76),DMH组分的大量存在会降低烷基化油的品质。 步骤3:碳八正碳离子的异构 生成的碳八正碳离子会通过氢转移或甲基转移而生成更稳定的正碳离子。 步骤4:氢转移形成碳八异构烷烃

芳构化反应系统工艺流程

芳构化反应系统工艺流程 混合碳四液化汽和石脑油是在KCIA-Ⅱ分子筛催化剂的作用下,经过碳四烯 烃的叠合、脱氢环化、脱氢芳构化及烷烃的裂解等系列催化反应,生成混合芳烃, 及副产品液化汽和干气。反应是强放热反应。 1)工艺流程及说明: A.加热反应部分 加热反应单元包括原料-产物换热器、加热炉、反应器、等单元设备操作。 和石脑油分别进入原料缓冲罐(V202、V201)。原料由MTBE或罐区来的原料C 4 C 经泵P202提升后,经计量控制,一线送至原料-产物换热器E201,另一线送4 至产物-注冷料换热器E202;石脑油经泵P201提升后经计量控制,与一线原料 C 混合送至原料-产物换热器E201。混合原料分别经原料-产物换热器E201、E203、4 加热炉F201加热至280-390℃后由反应器R201顶部进入反应器。部分原料液化 气(或贫稀液化气)经产物-注冷料换热器E202加热汽化后,经计量控制分两线 由反应器R201中部两催化剂床层之间注入反应器,以便于调节反应床层温度。 反应产物由反应器R201底部采出分别经原料-产物换热器E203、(E-202)、E201 换热后进入产物气液分离罐V203,罐底部凝液经泵P203提升后计量控制后进入 稳定塔;罐顶分离出的气相经产物空冷器AC201、产物水冷器E204冷却至40℃ 后进入产物凝液分离罐V204,罐顶部采出为不凝气,进入吸收解吸塔T201中部 塔板,底部采出液相,经泵P204提升后进入吸收解吸塔中部塔板。 B.催化剂再生部分 反应进行一段时间后,随着反应器R201中催化剂表面结焦的增加,催化 剂表面活性降低,当检测到产品质量不能满足要求时,需将反应器R201切换出 反应系统进行催化剂烧焦再生处理。催化剂再生采用氮气和空气作为再生气体, 并控制再生气体中的氧含量,以防止反应催化剂床层再生烧焦超温破坏催化剂。 烧焦前,首先启动再生循环气体压缩机C201,将氮气引至压缩机C201入口处, 并经压缩机C201升压至1.0MPa、换热器E201、E203与循环再生气换热后进入 再生循环气冷却器E216冷却后进入再生循环气液分离罐V207,罐底分离出循环 气带出的油滴,并间歇排出,罐顶为循环气,引至压缩机C201入口增压循环, 以逐步将反映其中的油气带出。当反应器中残留的油气满足安全要求,且反应器 进口循环再生气的温度达到烧焦需要的温度时,开始从压缩机C201入口引入空 气,烧焦初期,要求控制循环再生气中的氧体积含量不大于0.5%,以控制反应

相关主题