搜档网
当前位置:搜档网 › 几何证明题的一般步骤演示教学

几何证明题的一般步骤演示教学

几何证明题的一般步骤演示教学
几何证明题的一般步骤演示教学

几何证明题的一般步

精品资料

1、几何证明题的一般步骤:一“标”二“想”三“整理”

(1)标出已知条件,如线段相等可以用单杆双杆等表示,角相等可以用单弧线双弧线等表示;

(2)一要想出题目或图中的隐含的相等条件:如①对顶角相等、②(部分)公共边、③(部分)公共角、④等(同)角的余(补)角相等,⑤

BD=CE BD+DC=EC+CD即BC=ED等;二要想出已知条件、隐含条件与所求证之间的关系,进而得到解题的思路;

(3)整理时,须按照三角形全等的对应关系和判定条件一一整理,如果(三个或两个)条件不够,那么需要提前做好铺垫,再通过对应关系进行整理,保证思路清晰,书写条理;

思路:证明两条边相等、两个角相等或两边平行的一个重要方法是利用这两条边或这两个角所在的两个三角形全等;

2、证明文字叙述的真命题的一般步骤:

(1)分清条件和结论;(2)画出图形;(3)根据条件写出已知,根据结论写出求证;

(4)证明

3、选择证明三角形全等的方法与技巧(“题目中找,图形中看”)

(1)已知两边对应相等

①证第三边相等,再用S.S.S.证全等

②证已知边的夹角相等,再用S.A.S.证全等

③找直角,再用H.L.证全等

(2)已知一角及其邻边相等

仅供学习与交流,如有侵权请联系网站删除谢谢2

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线” 不同(线线垂直线面垂直) 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

初一数学几何证明题答案

初一典型几何证明题 1、已知: AB=4,AC=2,D是 BC中点, AD是整数,求 AD 解:延长 AD到 E, 使 AD=DE ∵D是 BC中 点∴ BD=DC 在△ ACD和△ BDE中 A AD=DE ∠BDE=∠ ADC BD=DC ∴△ ACD≌△ BDE ∴AC=BE=2 ∵在△ ABE中 AB-BE<AE< AB+BE ∵AB=4 即4-2 <2AD< 4+2 1<AD<3 ∴AD=2B C D 2、已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2 A 1 2 B E C F D 证明:连接 BF 和 EF ∵BC=ED,CF=DF,∠ BCF=∠EDF ∴△ BCF≌△ EDF (S.A.S)

∴BF=EF,∠ CBF=∠ DEF 连接 BE 在△ BEF中 ,BF=EF ∴ ∠ EBF=∠ BEF。 ∵ ∠ ABC=∠ AED。 ∴ ∠ ABE=∠ AEB。 ∴AB=AE。 在△ ABF和△ AEF中 AB=AE,BF=EF, ∠ABF=∠ ABE+∠ EBF=∠AEB+∠BEF=∠AEF ∴△ ABF≌△ AEF。 ∴ ∠ BAF=∠ EAF ( ∠1=∠ 2) 。 3、已知:∠ 1=∠2,CD=DE, EF//AB,求证: EF=AC A 12 F C D E B 过C 作 CG∥EF 交 AD的延长线于点 G CG∥EF,可得,∠ EFD= CGD DE=DC ∠FDE=∠ GDC(对顶角) ∴△ EFD≌△ CGD EF=CG ∠CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠1 ∠1=∠2 ∴∠ CGD=∠2 ∴△ AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC 4、已知: AD平分∠ BAC,AC=AB+BD,求证:∠ B=2∠C

初一几何证明题

初一几何证明题 1.如图,AD ∥BC ,∠B=∠D ,求证:AB ∥CD 。 2.如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。 3. 已知∠1=∠2,∠1=∠3,求证:CD ∥OB 。 4. 如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。 B D E /F C A 2G 3B D C A B D /P C A O 23B D /P C O 2

5. 已知∠1=∠2,∠2=∠3,求证:CD ∥EB 。 6. 如图∠1=∠2,求证:∠3=∠4。 7. 已知∠A=∠E ,FG ∥DE ,求证:∠CFG=∠B 。 8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a ∥b ,c ∥d 。 B D E / C O 23B D /C A 234B D E F C A G 21 3a c d b

9.如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED 。 10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l 1∥l 2,l 3∥l 5,l 2∥l 4。 11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB ∥CD 。 12、如图,∠A=2∠B ,∠D=2∠C ,求证:AB ∥CD 。 13、如图,EF ∥GH ,AB 、AD 、CB 、CD 是∠EAC 、∠FAC 、∠GCA 、∠HCA 的平分线,求证:∠BAD=∠B=∠C=∠D 。 A B C D F E 21l l l 341 2345l 21A B C D 3 4 E B C D O A B D F E A

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

初中数学几何证明试题有答案

初中数学几何证明试题 有答案 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

十二周培优精选 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F . 求证:∠DEN =∠F . 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 求证:CE =CF .(初二) A P C D B A F G C E B O D

2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE = 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二) 经典题4 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠求证:∠PAB =∠PCB . 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .( D

经典题(一) 1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得 EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得 △DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC是正三角形 4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。 经典题(二) 1.(1)延长AD到F连BF,做OG⊥AF, 又∠F=∠ACB=∠BHD, 可得BH=BF,从而可得HD=DF,

七年级数学几何证明入门专项练习

几何证明题专项训练1 1、(1)∵∠1=∠A(已知), ∴∥,(); (2)∵∠3=∠4(已知),∴∥, () (3)∵∠2=∠5(已知),∴∥, (); (4)∵∠ADC+∠C=180o(已知),∴∥, (). 2,如图, (1)∵∠ABD=∠BDC(已知), ∴∥,(); (2)∵∠DBC=∠ADB(已知), ∴∥,(); (3)∵∠CBE=∠DCB(已知), ∴∥,(); (4)∵∠CBE=∠A,(已知),∴∥,();(5)∵∠A+∠ADC=180o(已知),∴∥,();(6)∵∠A+∠ABC=180o(已知),∴∥,(). 3、如图,∠1=∠2,AC平分∠DAB,试说明:DC∥AB. 4,如图,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC,∠1=∠2,试说明:DE∥FB. 5、作图题(用直尺和圆规作图,保留作图痕迹,要求写出作法)。 已知∠1,求作∠ACB,使∠ACB=∠1。

6.如图2-67,已知∠1=∠2,求∠3+∠4的度数. 7、如图2-56 ①∵AB//CD (已知), ∴∠ABC=__________( ) ____________=______________(两直线平行,错角相等), ∴∠BCD+____________=?180( ) ②∵∠3=∠4(已知), ∴____________∥____________( ) ③∵∠FAD=∠FBC (已知), ∴_____________∥____________( ) 8、如图2-57,直线AB ,CD ,EF 被直线GH 所截,∠1=?70,∠2=?110,∠3=?70.求证:AB//CD . 证明:∵∠1=?70,∠3=?70(已知), ∴∠1=∠3( ) ∴ ________∥_________( ) ∵∠2=?110,∠3=?70( ), ∴_____________+__________=______________, ∴_____________//______________, ∴AB//CD ( ). 9.如图2-58,①直线DE ,AC 被第三条直线BA 所截, 则∠1和∠2是________,如果∠1=∠2,则_____________//_____________, 其理由是( ). ②∠3和∠4是直线__________、__________,

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

初一数学几何证明题

初一数学几何证明题 初一数学几何证明题一般认为,要提升数学能力就是要多做,培养兴趣。事实上,兴趣不是培养出来的,而是每次考试都要考得好,产生信心,才能生出兴趣来。所以数学不好,问题不在自信,而是要培养学好数学的能力那么,我们应如何提升的数学能力呢?可以从以下四方面入手:1. 提升视知觉功能。由于数学研究客观世界的"数量与空间形式",要想从纷繁复杂的客观世界抽出这些" 数与形",首先必须具备很强的视知觉功能,去辨识,去记忆,去理解。2. 提升对数学语言的理解能力。数学有着自己独特的语言体系,它是一种"文字兼数字与符号的结构"。数学里的符号、公式、方程式、图形、图表以及文字都需要通过阅读才能了解。3. 提升对数学材料的概括能力。对数学材料的抽象概括能力是数学学习能力的灵魂。若一个看到一大堆东西,看了半天也不晓得它们背后的"数量关系与空间形式",这将是数学学习上极为糟糕的事。因为数学的精髓就在于,它舍弃了具体的内容,而仅仅抽出"数与形",并对这些"数与形"进行操作。4. 提示孩子的运算能力。对"数或符号"的运算操作能力是数学学习所必须具备的一项重要技能。我们日常生活中的衣食住行,时时刻刻也离不开运算。在运算中会出现各种各样的问题,需具体问题具体分析。俗语说,冰冻三尺非一日之寒,同样数学能力的培养也是一个漫长的过程,要善于发现自己的弱点,进行强化与补救训练。 1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若

D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z 证明;过E点分别作AB,BC上的高交AB,BC于M,N点. 过F点分别作AC,BC上的高交于P,Q点. 根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN. 过D点做BC上的高交BC于O点. 过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J 点. 则X=DO,Y=HY,Z=DJ. 因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD 同理可证FP=2DJ。 又因为FQ=FP,EM=EN. FQ=2DJ,EN=2HD。 又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN 又因为 FQ=2DJ,EN=2HD。所以DO=HD+JD。 因为X=DO,Y=HY,Z=DJ.所以x=y+z。 2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN 相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。 当∠BON=108°时。BM=CN还成立 证明;如图5连结BD、CE.

初中数学几何证明步骤规范性初步基础题(含答案)

初中数学几何证明步骤规范性初步基础题 一、单选题(共4道,每道25分) 1.如图,已知线段AB=18cm,C是线段AB的中点,则AC的长是多少? 解:如图, ∵() ∴() 又∵() ∴() 即AC的长为9cm. ①;②C是线段AB的中点;③AB=18;④⑤; ⑥;⑦;⑧;⑨以上空缺处填写正确的顺序是() A.②⑤③④ B.②⑤①⑧ C.③②①④ D.②④⑥⑨ 答案:A 试题难度:三颗星知识点:中点(一个中点) 2.如图,已知线段AB=14cm,点O是线段AB上任意一点,C、D分别是线段OA、OB的中点,求CD的长. 解:∵C、D分别是线段OA、OB的中点 ∴() ∴ 又∵AB=14 ∴() 即CD的长为7cm. ①C是线段AB的中点;②AB=14;③;④; ⑤;⑥;⑦以上空缺处填写正确的

顺序是() A.③⑥ B.④⑥ C.⑤⑥ D.③⑦ 答案:A 试题难度:三颗星知识点:中点(两个中点) 3.如图,已知∠AOB=78°,OC平分∠AOB,求∠AOC的度数. 解:∵() ∴() 又∵() ∴() ①OC平分∠AOB;②∠AOB=2∠AOC;③∠COB=∠AOC;④∠AOC=∠AOB; ⑤∠AOB=78°;⑥;⑧以上空缺处填写正确的顺序是() A.①④⑤⑥ B.①②⑤⑧ C.①②⑤⑥ D.①③⑤⑥ 答案:A 试题难度:三颗星知识点:角平分线(一个角平分线) 4.已知OC平分∠AOB,OD平分∠AOC,且∠COD=27°,求∠AOB的度数. 解:∵OD平分∠AOC ∴() ∵∠COD=27° ∴()

又∵OC平分∠AOB ∴() ∵∠AOC=54° ∴() ①;②∠AOC=2∠COD;③∠COD=∠AOD;④∠COD=∠AOC; ⑤∠AOB=2∠AOC;⑥∠AOC=∠BOC;⑦∠AOC=∠AOB;⑧∠AOD=27°; ⑨以上空缺处填写正确的顺序是() A.②①⑤⑨ B.③⑧⑥⑨ C.④①⑦⑨ D.②⑤⑥⑨ 答案:A 试题难度:三颗星知识点:角平分线(两个角平分线)

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初一下册数学角度几何解析题以及练习题(附答案)

七年级下册数学几何解析题以及练习题(附答案) 9.(2011·)如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________. 答案 105° 解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°. 12.如图所示,在△ABC 中,∠A =80°,∠B =30°,CD 平分∠ACB ,DE ∥AC . (1)求∠DEB 的度数; (2)求∠EDC 的度数. 解 (1)在△ABC 中,∠A =80°,∠B =30°, ∴∠ACB =180°-∠A -∠B =70°. ∵DE ∥AC , ∴∠DEB =∠ACB =70°. (2)∵CD 平分∠ACB , ∴∠DCE =1 2∠ACB =35°. ∵∠DEB =∠DCE +∠EDC , ∴∠EDC =70°-35°=35°. 13.已知,如图,∠1=∠2,CF ⊥AB 于F ,DE ⊥AB 于E ,求证:FG ∥BC .(请将证明补 充完整) 证明 ∵CF ⊥AB ,DE ⊥AB (已知), ∴ED ∥FC ( ). ∴∠1=∠BCF ( ). 又∵∠1=∠2(已知),

∴∠2=∠BCF(等量代换), ∴FG∥BC( ). 解在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相 等;内错角相等,两直线平行. 14.如图,已知三角形ABC,求证:∠A+∠B+∠C=180°. 分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法,如下: 证法1:如图甲,延长BC到D,过C画CE∥BA. ∵BA∥CE(作图所知), ∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等). 又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义), ∴∠A+∠B+∠ACB=180°(等量代换). 如图乙,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明 ∠A+∠B+∠C=180°吗?请你试一试. 解∵FH∥AC, ∴∠BHF=∠A,∠1=∠C. ∵FG∥AB, ∴∠BHF=∠2,∠3=∠B, ∴∠2=∠A. ∵∠BFC=180°, ∴∠1+∠2+∠3=180°, 即∠A+∠B+∠C=180°. 15.(2010·)平面内的两条直线有相交和平行两种位置关系. (1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD.又因∠BOD是△ POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD 内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠

七年级数学几何证明题

七年级数学几何证明题 1. 如图,在ABC中,D在AB上,且△ CAD^P A CBE都是等边三角形, 求证:(1)DE=AB(2)Z EDB=60 2. 如图,在A ABC中, AD平分/ BAC DE||AC,EF 丄AD交BC延长线于F。求证: / FAC=z B 4、一个零件的形状如图,按规定/ A=90o,/ C=25o,Z B=25o,检验已量得/ BDC=150,就判断这个零3. 已知,如图,在△ ABC中,AD,AE分别是△ ABC的高和角平分线,若/ B=30 / C=50求:(1),求/ DAE的度数(2)试写出/ DAE与 / C - / B有何关系?(不必证明) A

件不合格,运用角形的有关知识说明零件不合格的理由 D A B 5、如图,已知DF// AC,/C=Z D,你能否判断CE// BD?式说明你的理由 6、如图,△ ABC中,D在BC的延长线上,过D作DEL AB于E,交AC于F. 已知/ A=30 , / FCD=80 ,求/ D。 7、如图,BE平分/ ABD CF平分/ ACD BE、CF交于G, 若/ BDC = 140 °,/ BGC = 110。,则 / A ? C 8、如图,AD L BC于D, EGLBC于G,Z E = / 1,求证AD平分/ BAC B G D

9、如图,直线。丘交厶ABC勺边AB AC于D E,交BC延长线于F, 若/B= 67°,/ ACB= 74°,/ AED= 48°,求/ BDF的度数? 10、如图,将一副三角板叠放在一起,使直角勺顶点重合于O,则/ AOC/+ DOB 11、如图,将两块直角三角尺的直角顶点C叠放在一起? (1)若/ DCE=35,求/ ACB的度数; (2)若/ ACB=140,求/ DCE的度数; ( 3)猜想: / ACB与/ DCE有怎样的数量关系,并说明理由 12、已知:直线ABW直线CDf交于点0, / BOC= (1) 如图1,若EOLAB求/ D0E的度数; (2) 如图2,若E0平分/ AOC求/ DOE勺度数. 13、已知,为上一点.

七年级数学典型几何证明50题

初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S) A B C D E F 2 1 A D B C

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC ∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2 ∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC 4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C B A C D F 2 1 E A

几何证明中的几种技巧

几何证明中的几种技巧 一.角平分线--轴对称 1.已知在ΔABC 中,E为BC的中点,AD平分BAC ∠,BD AD ⊥于D.AB=9,AC=13.求DE的长. 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD=DF.又BE=EC,即DE为ΔBCF 的中位 线.∴11 ()222DE FC AC AB = =-=. 2.已知在ΔABC 中,108A ∠=o ,AB=AC,BD平分ABC ∠.求证:BC=AB+CD. B B 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=o , 108A BED ∠=∠=o ,36C ABC ∠=∠=o . ∴72DEC EDC ∠=∠=o ,∴CD=CE,∴BC=AB+CD. 3.已知在ΔABC 中,100A ∠=o ,AB=AC,BD平分ABC ∠.求证:BC=BD+AD. B B 分析:在BC上分别截取BE=BA,BF=BD.易证ΔABD ≌ΔEBD .∴AD=ED, 100A BED ∠=∠=o .由已知可得:40C ∠=o ,20DBF ∠=o .由∵BF=BD, ∴80BFD ∠=o .由三角形外角性质可得:40CDF C ∠==∠o .∴CF=DF. ∵100BED ∠=o ,∴80BFD DEF ∠=∠=o ,∴ED=FD=CF,∴AD=CF,

∴BC=BD+AD. 4.已知在ΔABC 中,AC BC ⊥,CE AB ⊥,AF平分CAB ∠,过F作FD∥BC ,交AB于D.求 证:AC=AD. C B C B 分析:延长DF交AC于G.∵FD∥BC,BC⊥AC,∴FG⊥AC. 易证ΔAGF ≌ΔAEF .∴EF=FG.则易证ΔGFC ≌ΔEFD .∴GC=ED. ∴AC=AD. 5.如图(1)所示,BD和CE分别是ABC V 的外角平分线,过点A作AF⊥BD于F,AG⊥CE于G,延长AF及AG与BC相交,连接FG. (1)求证: 1 ()2FG AB BC CA = ++ (2)若(a)BD与CE分别是ABC V 的内角平分线(如图(2)); (b)BD是ΔABC 的内角平分线,CE是ΔABC 的外角平分线(如图(3)). 则在图(2)与图(3)两种情况下,线段FG与ΔABC 的三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. 图(1) 图(2) 图(3) 分析:图(1)中易证ΔABF ≌ΔIBF 及ΔACG ≌ΔHCG .∴有AB=BI,AC=CH及AD=ID,AG =GH.∴GF为ΔAIH 的中位线.∴ 1 ()2FG AB BC CA = ++. 同理可得图(2)中 1()2FG AB CA BC = +-;图(3)中1 ()2FG BC CA AB =+- 6.如图,ΔABC 中,E是BC边上的中点,DE⊥BC于E,交BAC ∠的平分线AD于D,过D作DM⊥AB于M,作DN⊥AC于N.求证:BM=CN.

立体几何证明题练习

立体几何 1.(2014?山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD⊥BC,AB=BC=AD,E,F分别为线段AD, PC的中点. (⊥)求证:AP⊥平面BEF; (⊥)求证:BE⊥平面PAC. 2.(2014?四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形 (⊥)若AC⊥BC,证明:直线BC⊥平面ACC1A1; (⊥)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE⊥平面A1MC?请证明你的结论. 3.(2014?江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证: (1)直线PA⊥平面DEF; (2)平面BDE⊥平面ABC. 4.(2014?黄山一模)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD的中点. (1)求证:AF⊥平面PCE; (2)求证:平面PCE⊥平面PCD; (3)求四面体PEFC的体积.

5.(2014?南海区模拟)如图,四棱锥P﹣ABCD的底面是直角梯形,AB⊥CD,AB⊥AD,⊥PAB和⊥PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点. (⊥)求证:PO⊥平面ABCD; (⊥)求证:OE⊥平面PDC; (⊥)求直线CB与平面PDC所成角的正弦值. 6.(2013?天津)如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点. (⊥)证明:EF⊥平面A1CD; (⊥)证明:平面A1CD⊥平面A1ABB1; (⊥)求直线BC与平面A1CD所成角的正弦值. 7.(2013?浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=, ⊥ABC=120°,G为线段PC上的点. (⊥)证明:BD⊥平面PAC; (⊥)若G是PC的中点,求DG与PAC所成的角的正切值; (⊥)若G满足PC⊥面BGD,求的值.

相关主题