搜档网
当前位置:搜档网 › (计算题)法拉第电磁感应定律及其应用专题训练

(计算题)法拉第电磁感应定律及其应用专题训练

(计算题)法拉第电磁感应定律及其应用专题训练
(计算题)法拉第电磁感应定律及其应用专题训练

法拉第电磁感应定律及其应用专题训练

计算题部分

1.如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距L为1m,电阻不计.导轨所在的平面与磁感应强度B为1T的匀强磁场垂直.质量m=0.2kg、电阻r=1Ω的金属杆ab始终垂直于导轨并与其保持光滑接触,导轨的上端有阻值为R=3Ω的灯泡.金属杆从静止下落,

当下落高度为h=4m后灯泡保持正常发光.重力加速度为g=10m/s2.求:

(1)灯泡的额定功率;

(2)金属杆从静止下落4m的过程中通过灯泡的电荷量;

(3)金属杆从静止下落4m的过程中所消耗的电能

2.如图所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1m,导轨的电阻可忽略.M、P两点间接有阻值为R的电阻.一根质量m=1kg、电阻r=0.2Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10m/s2,sin37°=0.6.

(1)试判断金属杆ab在匀强磁场中做何种运动,并请写出

推理过程;

(2)求电阻R的阻值;

(3)求金属杆ab自静止开始下滑通过位移x=1m所需的时

间t.

3.如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连。导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T。一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直。棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变。求:

(1)电路中的电流;

(2)金属棒在x=2m处的速度;

(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;

(4)金属棒从x=0运动到x=2m过程中外力的平均功率

4.如图甲所示,一个圆形线圈的匝数n=1000,面积S=200cm2,电阻r=1Ω,在线圈外接一个阻值R=4Ω的电阻,电阻的一端b与地相接,把线圈放入一个方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化的规律如图乙所示.试问

(1)0~4s内,回路中的感应电动势;

(2)从计时起,t=3s时刻穿过线圈的磁通量为多少?

(3)a点的最高电势和最低电势各为多少?

5.如图所示,竖直平面内有无限长、不计电阻的两组平行光滑金属导轨,宽度均为L=0.5m,上方连接一个阻值R=1Ω的定值电阻,虚线下方的区域内存在磁感应强度B=2T的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r=0.5Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h0=0.8m处由静止释放,进入磁场后恰作匀速运动.(g取10m/s2)求:

(1)金属杆的质量m为多大?

(2)若金属杆2从磁场边界上方h1=0.2m处由静止释放,进入

磁场经过一段时间后开始匀速运动.在此过程中整个回路产生

了1.4J的电热,则此过程中流过电阻R的电量q为多少?

(3)金属杆2仍然从离开磁场边界h1=0.2m处由静止释放,在

金属杆2进入磁场的同时由静止释放金属杆1,两金属杆运动了

一段时间后均达到稳定状态,试求两根金属杆各自的最大速度.

6.如图所示,两根等高光滑的四分之一圆弧轨道,半径为r,间距为L,轨道电阻不计,在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B,

现有一根长度稍大于L,电阻为1

3

R,质量为m的金属棒从轨道最低位置cd开始,在拉力

作用下以速度

v向右沿轨道做匀速圆周运动至ab处,求:

(1)初始时刻cd两端的电压;

(2)在该过程中R上产生的热量;

(3)拉力做的功。

7.一个200匝、面积20 cm 2

的圆线圈,放在匀强磁场中,磁场的方向与线圈平面成30°角,磁感强度在0.05 s 内由0.1 T 增加到0.5 T ,在此过程中,穿过线圈的磁通量变化量是

___________,磁通量的平均变化率是___________,线圈中感应电动势的大小是_________.

8.如图所示P 、Q 为光滑的平行金属导轨(其电阻可忽略不计),导轨间距为0.5m 。已知垂直纸面向里的匀强磁场的磁感应强度B =1T ,R 1=2.5Ω,R 2=R 3=8Ω,通过电路的电流方向如图所示,导体棒ab 的电阻为0.5Ω。当导体棒沿导轨P 、Q 以某一速度运动时,R 2消耗的功率为0.5W 。求:

(1)流过R 2的电流强度;(2)导体棒的运动方向;(3)导体棒的速度大小。

9.如图所示,光滑的金属导轨间距为L ,导轨平面与水平面成 角,轨道下端接有阻值为R 的电阻,质量为m 的金属细杆ab 与绝缘轻质弹簧相连静止在导轨上,弹簧劲度系数为k ,上端固定,弹簧与导轨平面平行,整个装置处在垂直于导轨平面

斜向上的匀强磁场中,磁感应强度为,现给杆一沿导轨向下的初

速度0v ,杆向下运动至速度为零后,再沿导轨平面向上运动达

最大速度1v ,然后减速为零,再沿导轨平面向下运动,一直往复

运动到静止(金属细杆的电阻为r ,导轨电阻忽略不计),试求:

(1)细杆获得初速度的瞬间,通过R 的电流大小;

(2)当杆速度为1v 时,离最初静止位置的距离1L ;

(3)杆由0v 开始运动直到最后静止,电阻R 上产生的焦耳热Q 。

10.如图所示,两根光滑的金属导轨平行放置在倾角为θ=30°的固定斜面上,导轨下端接有定值电阻R =10Ω,导轨自身电阻忽略不计。导轨置于垂直于斜面向上的匀强磁场中,磁感应强度B =0.5T 。将一根质量为m =0.1kg 、电阻可不计的金属棒ab 在导轨上方某处由静止释放,金属棒沿导轨下滑(金属棒ab 与导轨间的摩擦不计)。设导轨足够长,导轨宽度L =2m ,金属棒ab 下滑过程中始终与导轨接触良好,当金属棒沿导轨下滑的高度h =3m 时,

速度恰好达到最大值。此过程中(g =10m/s 2),求:

(1)金属棒ab 达到的最大速度v m ;

(2)该过程通过电阻R 的电量q ;

(3)该过程中电阻产生的热量Q.

11.轻质细线吊着一质量为m =0.32 kg 、边长为L =0.8 m 、匝数n =10的正方形线圈,总电阻为r =1 Ω.。边长为L 2的正方形磁场区域对称分布在线圈下边的两侧,如图甲所示,磁场方向垂直纸面向里,大小随时间变化如图乙所示,从t =0开始经t 0时间细线开始松弛,取g =10 m/s 2. 求:

(1)在前t 0时间内线圈中产生的感应电动势;

(2)在前t 0时间内线圈的电功率;

(3)t 0的值.

12.如图所示,固定的水平光滑金属导轨,间距为L =0.5 m ,左端接有阻值为R =0.8 Ω的电阻,处在方向竖直向下,磁感应强度为B =1 T 的匀强磁场中,质量为m =0.1kg 的导体棒与固定弹簧相连,导体棒的电阻为r =0.2 Ω,导轨的电阻可忽略不计.初时刻,弹簧恰好处于自然长度,导体棒具有水平向右的初速度v 0=4 m/s .导体棒第一次速度为零时,弹簧的弹性势能Ep=0.5 J.导体棒在运动过程中始终与导轨垂直并保持良好接触.求:

(1)初始时刻导体棒受到的安培力的大小和方向;

(2)导体棒从初始时刻到速度第一次为零的过程中,

电阻R 上产生的焦耳热Q .

13.如图所示,两根足够长、电阻不计且相距L=0.2 m的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一个额定电压U=4 V的小灯泡,两导轨间有一磁感应强度大小B =5 T、方向垂直斜面向上的匀强磁场。今将一根长为2L、质量m=0.2 kg、电阻r=1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:

(1)金属棒刚开始运动时的加速度大小。

(2)金属棒稳定下滑时的速度大小。

14.如图甲所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场方向垂直。已知线圈的匝数N=100,ab边长L1=1.0m、bc边长L2=0.5m,线圈的电阻r=2Ω.磁感应强度B 随时间变化的规律如图乙所示,取垂直纸面向里为磁场的正方向。求:

(1)3 s时线圈内感应电动势的大小和感应电流的方向。

(2)在1~5 s内通过线圈的电荷量q.

(3)在0~5 s内线圈产生的焦耳热Q.

15.如图所示,电阻不计的平行金属导轨MN和OP水平放置,M O间接有阻值为R=0.5(的电阻,导轨相距为l=0.20m,其间有竖直向下的匀强磁场,磁感强度为B=0.50T,质量为m=0.1kg,电阻为r=0.5(的导体棒CD垂直于导轨放置,并接触良好。用平行于MN的恒力F=0.6N向右拉动CD.CD受恒定的摩擦阻力f =0.5N.求:

(1)CD运动的最大速度是多少?

(2)当CD达到最大速度后,电阻R消耗的电功率是多少?

(3)当CD的速度是最大速度的1/4时,CD的加速度是多少?

16.单匝正方形线框abcd,在外力作用下以恒定的速率v向右运动进入磁感应强度为B的有界匀强磁场区域;线框被全部拉入磁场的过程中线框平面保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界.已知线框的四个边的电阻值相等,均为R.求:

(1)在ab 边刚进入磁场区域时,线框内的电流大小;

(2)在ab 边刚进入磁场区域时,ab 边两端的电压;

(3)在线框被拉入磁场的整个过程中,线框中电流产生的热量。

17.如图所示,两根足够长的光滑平行直导轨AB 、CD 与水平面成θ角放置,两导轨间距为L ,A 、C 两点间接有阻值为R 的定值电阻。一根质量为m 、长也为L 的均匀直金属杆ef 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,金属杆ef 的电阻为r ,其余部分电阻不计。现让ef 杆由静止开始沿导轨下滑。

(1)求ef 杆下滑的最大速度v m 。

(2)已知ef 杆由静止释放至达到最大速度的过程中,

ef 杆沿导轨下滑的距离为x ,求此过程中定值电阻R 产

生的焦耳热Q 和在该过程中通过定值电阻R 的电荷量q 。

18.截面积为0.2m 2的100匝圆形线圈A 处在匀强磁场中,磁场方向垂直线圈平面向里,如图所示,磁感应强度正按t

B ??=0.02T/s 的规律均匀减小,开始时S 未闭合。R 1=4Ω,R 2=6Ω,

C=30μF,线圈内阻不计。求:

(1)S 闭合后,通过R 2的电流大小;

(2)S 闭合后一段时间又断开,则S 切断后通过R 2的电量是多少?

19.图所示,ef 、gh 为水平放置的足够长的平行光滑导轨,导轨间距为L=1m ,导轨左端连接一个R =2Ω的电阻,将一根质量为0.2kg 的金属棒cd 垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B =2T 的匀强磁场中,磁场方向垂直导轨平面向下,现对金属棒施加一水平向右的拉力F ,使棒从静止开始向右运动,解

答以下问题。

(1)若施加的水平外力恒为F =8N ,则金属棒达

到的稳定速度ν1是多少?

(2)若施加的水平外力的功率恒为P =18W ,则金属棒达到的稳定速度ν2是多少?

(3)若施加的水平外力的功率恒为P =18W ,则从金属棒开始运动到速度v 3=2m /s 的过程中电阻R 产生的热量为8.6J ,则该过程中所需的时间是多少?

参考答案

1、【答案】(1)12W (2)1C (3)0.4J

【解析】

试题分析:(1)灯泡保持正常发光时,金属杆做匀速运动则有: 0mg BIL -= (1分) 解得灯泡正常发光时的电流:mg I BL

= 代入数据解得:2I A = (1分) 那么灯泡的额定功率为:222312P I R W W ==?= (1分)

(2)金属杆产生的平均电动势为: E t

?Φ=? (1分) 那么平均感应电流为:E I R r

=+ (1分) 则通过灯泡的电荷量为:1BLh q I t C R r =?=

=+ (1分)

考点:动生电动势、电功、电功率

【名师点睛】本题主要考查了动生电动势、电功、电功率。灯泡保持正常发光时,金属杆做匀速运动,重力与安培力二力平衡,列出平衡方程,可得到灯泡的额定电流,即可求得其额定功率.根据法拉第电磁感应定律、欧姆定律和电量的公式结合求解电量.根据能量守恒定律求解灯泡所消耗的电能。

2、【答案】(1)金属杆做匀加速运动(或金属杆做初速为零的匀加速运动). (2)0.3 Ω (3)0.5s

【解析】

试题分析:(1)金属杆做匀加速运动(或金属杆做初速为零的匀加速运动).

通过R 的电流:E BLv I R r R r

==++ (1分) 因通过R 的电流I 随时间均匀增大, 即杆的速度v 随时间均匀增大,杆的加速度为恒量,故金属杆做匀加速运动. (2分)

(2)对回路,根据闭合电路欧姆定律有: BLv I R r

=+ (1分) 对杆,根据牛顿第二定律有:sin F mg BIL ma θ+-= (1分)

将F =0.5v +2代入得:222sin 0.5B L mg v ma R r θ??++-= ?+?

? (1分) 因a 与v 无关,所以22sin 8/mg a m s m

θ+== (1分) 即:22

0.50B L R r

-=+,得0.3R =Ω (1分)

(3)由212x at =得,所需时间0.5t s == (2分) 考点:感应电动势、牛顿第二定律、闭合电路欧姆定律

【名师点睛】本题主要考查了感应电动势、牛顿第二定律、闭合电路欧姆定律。根据闭合电路欧姆定律得到通过电阻R 的电流与速度的关系,根据通过电阻R 的电流随时间均匀增大,分析速度如何变化,判断金属杆做何种运动.根据牛顿第二定律得到加速度与速度的表达式,由于匀加速运动,加速度与速度无关,求出加速度的大小,再求解R .由位移公式求出金属杆ab 自静止开始下滑通过位移x =1m 所需的时间t 。

3、【答案】(1)2A (3分)(2)

s m /3

2 (3分) (3)1.6J (4分)(4)0.7W (4分) 【解析】

(3))5.05.0(8.0x BIl F +==(1分)

F-X 图像为一条倾斜的直线,图像围成的面积就是二者的乘积即

x =0时,F=0.4N x =2m 时,F=1.2N

J Fx W 6.12*)2.14.0(2

1=+==安(3分) (4) 从x =0运动到x =2m ,根据动能定理

2022

121-1mv mv W W -=安外(1分) 解得J W 1.4≈外(1分)

t r R I Pt W )(2+==安解得s t 2=(1分) 所以W t

W P 7.0==外外(1分) 考点:导体切割磁感线时的感应电动势、电磁感应中的能量转化。

【名师点睛】(1)由法拉第电磁感应定律与闭合电路欧姆定律相结合,来计算感应电流的大小;(2)由因棒切割产生感应电动势,及电阻的功率不变,即可求解;(3)分别求出x =0与x =2m 处的安培力的大小,然后由安培力做功表达式,即可求解;(4)依据功能关系,及动能定理可求出外力在过程中的平均功率.

4、【答案】(1)错误!未找到引用源。 (2)错误!未找到引用源。 (3)最低电势-0.8V 最高电势3.2V

【解析】

(3)在0~4s 内,a 点电势最低,且为负值,错误!未找到引用源。

错误!未找到引用源。 在4~6s 内,a 点电势最高,且为正值,

错误!未找到引用源。

错误!未找到引用源。

考点:法拉第电磁感应定律。

【名师点睛】解决本题的关键熟练掌握楞次定律、闭合电路欧姆定律和法拉第电磁感应定律,以及磁通量表达式的应用,注意成立条件:B 与S 垂直。

5、【答案】(1)错误!未找到引用源。 (2)错误!未找到引用源。 (3) 错误!未找到引用源。 错误!未找到引用源。

【解析】

(2)金属杆2从下落到再次匀速运动的过程中,能量守恒(设金属杆2在磁场内下降h2):

错误!未找到引用源。

解得错误!未找到引用源。

金属杆2进入磁场到匀速运动的过程中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。

解得:错误!未找到引用源。

(2)金属杆2刚进入磁场时的速度错误!未找到引用源。

释放金属杆1后,两杆受力情况相同,且都向下加速,合力等于零时速度即最大。

错误!未找到引用源。,且错误!未找到引用源。, 错误!未找到引用源。,错误!未找到引用源。

整理得到:错误!未找到引用源。

代入数据得错误!未找到引用源。

因为两个金属杆任何时刻受力情况相同,因此任何时刻两者的加速度也都相同,在相同时间内速度的增量也必相同,即:错误!未找到引用源。

代入数据得错误!未找到引用源。(画出v-t图,找到两者速度差值错误!未找到引用源。恒为2m/s的,同样给分)

联立求得:错误!未找到引用源。错误!未找到引用源。

考点:共点力平衡的条件及其应用、法拉第电磁感应定律、安培力。

【名师点睛】本题是电磁感应与力学知识的综合,第3问关键是抓住两杆的加速度相同,任

何时刻速度的增量相同这一隐含的条件分析两杆的速度关系。

6、【答案】(1)034BLv (2)220964R B L v Q r R π=(3)220316F B L v W mgr r R

π=+

(3)由动能定理可得22001122F W mgr Q mv mv -+=

-总 其中2()3R Q I R t =+总,解得220316F B L v W mgr r R

π=+ 考点:考查了导体切割磁感线运动

【名师点睛】解决本题的关键是判断出回路中产生的是正弦式交变电流,相当于线圈在磁场中转动时单边切割磁感线,要用有效值求解热量,用平均值求解电量.

7、【答案】4×10-4 Wb 8×10-3

Wb/s 1.6 V

【解析】

考点:法拉第电磁感应定律。

【名师点睛】感应电动势的大小与磁通量的变化率有关,而与磁通量变化及磁通量没有关系.由此求出则是平均感应电动势,而瞬时感应电动势则由E=BLV ,式中L 是有效长度,V 是切割磁感线的速度。

8、【答案】(1)错误!未找到引用源。 (2)导体棒的运动方向向右 (3)错误!未找到引用源。

【解析】

试题分析:(1) 由错误!未找到引用源。得:错误!未找到引用源。

考点:电磁感应、闭合电路的欧姆定律。

【名师点睛】此题考查法拉第电磁感应定律,闭合电路欧姆定律与楞次定律的应用,掌握焦耳定律与功能关系的内容。

9、【答案】(1)00BLv I R r =+(2)2211()

B L v L k R r =+(3)2012Q mv = 【解析】(1)由0E BLv =;0E I R r =+解得:00BLv I R r

=+

(3)杆最后静止时,杆在初始位置,由能量守恒可得2012Q mv =

所以:2012

Q mv = 考点:考查了导体切割磁感线运动

【名师点睛】本题是导体棒在导轨上滑动的类型,正确分析杆的运动状态,确定其受力情况是关键,并能结合能量守恒分析.

10、【答案】(1)5m/s (2)0.6C (3)1.75J

(2)根据电磁感应定律 有t

E ??=φ 根据闭合电路欧姆定律 有 R

E I =

感应电量t I q ?=R

BLx R =?=φ 由以上各式解得 q =0.6C

(3)金属棒下滑过程中根据能量守恒定律可得:mgh = 12

mv m 2 +Q 解得Q =1.75J

考点:法拉第电磁感应定律;牛顿第二定律;能量守恒定律

【名师点睛】本题是电磁感应与力学知识的综合应用,关键是安培力的分析和计算,它是联系力学与电磁感应的桥梁.

11、【答案】(1)0.4V (2)0.16W (3)2s

(3)分析线圈受力可知,当细线松弛时有:2

L F nBI mg ==安 E I r

= 22mgr n B EL T == 由图知:B =1+0.5t 0(T ),

解得t 0=2 s.

考点:法拉第电磁感应定律;物体的平衡 【名师点睛】解决本题的关键掌握法拉第电磁感应定律B n

n S t t

?ε==.以及知道细线开始松驰时,线圈所受的安培力和重力平衡.

12、【答案】(1)1N ,水平向左;(2)0.24J

(2)此过程,对杆用功能关系可得:

2010.32P W E mv J =-=-安

R r Q R Q r

= 2012R P R Q Q mv E R r ??==- ?+??

联立可得:0.24Q J =.

考点:法拉第电磁感应定律;功能关系

【名师点睛】本题考查了求安培力、电阻产生的焦耳热,分析清楚导体棒的运动过程,应用E=BLv 、欧姆定律、安培力公式、能量守恒定律即可正确解题;要注意总的焦耳热分两部分,R 与r 产生的焦耳热之和是总焦耳热.

13、【答案】(1)4 m/s 2;(2)

4.8 m/s

考点:法拉第电磁感应定律;牛顿第二定律;闭合电路欧姆定律

【名师点睛】电磁感应中导体切割引起的感应电动势在考试中涉及较多,应明确受力分析、功能关系等的灵活应用,注意平衡状态的处理。

14、【答案】(1)5 V , 感应电流方向为a →b →c →d →a .(2)10 C .(3)100 J .

(3)0~1 s 内线圈中的感应电动势: 33310B S E N

V t ?==?, 0~1 s 内线圈中的感应电流335E I A r

==,产生的焦耳热Q 1=I 32r Δt 3=50J ; 1~5 s 内线圈产生的焦耳热Q 2=I 22r Δt 2=50J ; 0~5s 内焦耳热Q =Q 1+Q 2=100 J .

考点:法拉第电磁感应定律;电功

【名师点睛】本题是法拉第电磁感应定律、欧姆定律、焦耳定律和楞次定律等知识的综合应用,这些都是电磁感应现象遵守的基本规律,要熟练掌握,并能正确应用.

15、【答案】⑴10m/s ⑵ 0.5W ⑶ 0.75m/s 2

(2)当CD 达到最大速度后,电路中电流为F F f I Bl Bl

-==安, 电阻R 消耗的电功率是22

22()F l f R P I R B -==

代入数据解得:P=0.5W

(3)当CD 的速度是最大速度的1/4时,安培力F 安′=14

(F ?f ) 此时的加速度为()23(0.60.5)0.75/441

30.F f F F f a m s m m --'--====?安. 考点:法拉第电磁感应定律;安培力;牛顿第二定律的应用

【名师点睛】本题是电磁感应知识与力学、电路等知识的综合应用,关键在于安培力的分析和计算。

16、【答案】(1)4BLv R (2)34BLv (3)234B L v R

考点:法拉第电磁感应定律

【名师点睛】由法拉第电磁感应定律可求出感应电动势,由焦耳定律可求出产生的热量.但注意是ab 边两端的电压,由于ab 边切割,相当电源接入三个电阻均为R 的外电阻,电源的内电阻也为R 的电路,所以ab 边两端的电压是电路中的路端电压.

17、【答案】(1)22()sin m mg R r v B L θ+=(2)222244((2))R R m g R r sin Q mgxsi R r B n L

θθ++=- BLx q R r

=+

(2)根据能量守恒定律有

mgx sin θ=12

mv m 2+Q 总 由公式Q =I 2Rt ,可得

R r Q R Q r

= 又Q R +Q r =Q 总 解得222244

(2())R Q Q mgx R R m g R r sin R r R r B L sin θθ+++总==- 由法拉第电磁感应定律有E t

?Φ=? 又由闭合电路的欧姆定律有E I R r =

+ 解得BLx q I t R r R r

?Φ=?==++。 考点:法拉第电磁感应定律;闭合电路的欧姆定律

【名师点睛】对于电磁感应的综合问题要做好电流、安培力、运动、功能关系这四个方面的分析,同时这类问题涉及知识点多,容易混淆,要加强练习,平时注意知识的理解与应用。

18、【答案】(1)0.04A ;(2)0.72×10-5C .

【解析】(1)根据法拉第电磁感应定律得:BS E n

t ?=?=100×0.2×0.02V=0.4V. 电流的大小为:120.40.0446

E I A R R ===++ 根据楞次定律得,流过R 2的电流方向为a 到b .

故通过R 2的电流大小为0.04A ,方向由a 到b .

(2)开关闭合时,R2两端的电压为:U=IR2=0.24V.

则电容器的电量为:Q=CU=3×10-5×0.24C=0.72×10-5C.故通过R2的电量是0.72×10-5C.

考点:法拉第电磁感应定律;楞次定律;电量

19、【答案】(1)4m/s(2)3m/s(3)0.5s

考点:法拉第电磁感应定律;动能定理;电功率

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

电磁感应计算题精选

3. 如图所示,两根光滑的金属导 计。斜面处在一匀强磁场中,磁场方向垂直于斜面向上。质量为m,电阻可不计的金属棒 直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。在这过程中 A. 作用于金属捧上的各个力的合力所作的功等于零 B. 作用于金属捧上的各个力的合力所作的功等 于mgh与电阻R上发出的焦耳热之和 C. 恒力F与安培力的合力所作的功等于零 ab,在沿着斜面与棒垂 4. 两根光滑金属导轨平行放置在倾角为0=30。的斜面上,导轨左端接 有电阻R=10 / Q,导轨自身电阻忽略不计。匀强磁场垂直于斜面向上,磁感强度B=0.5T。质量Y 为m=0.1kg ,电阻可不计的金属棒ab静止释放,沿导轨下滑。如图所示,设导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属棒下滑h=3m时,速度恰好达到最大速度,求此(1)最大速度(2)从开始到速度达到T h 』 第12讲法拉第电磁感应定律4----能量问题1 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一 种能力。自然界存在着各种不同形式的能,如; ■-动能 机械能:重力势能 I弹性势能(弹簧) ?热能 1. 如图16-7-6所示,在竖直向上B=0.2T的匀强磁场内固定一水平无电阻的光滑U形金属导轨,轨距50cm。 金属导线ab的质量m=0.1kg,电阻r=0.02 Q且ab垂直横跨导轨。导轨中接入电阻 F=0.1N拉着ab向右匀速平移,贝U (1) ab的运动速度为多大? (2 )电路中消耗的电功率是多大? (3)撤去外力后R上还能产生多少热量? 图16-7-6 2. 相距为d的足够长的两平行金属导轨(电阻不计)固定在绝缘水平面上,导轨间有垂直轨道平面的匀强磁 场,磁感强度为B,导轨左端接有电容为C的电容器,在导轨上放置一金属棒并与导轨接触良好,如图所 示。现用水平拉力使金属棒开始向右运动,拉力的功率恒为P,在棒达到最大速度之前,下列叙述正确的是 R=0.08 Q,今用水平恒力 A.金属棒做匀加速运动 B.电容器所带电量不断增加 C.作用于金属棒的摩擦力的功率恒为P D.电容器a极板带负电

法拉第与电磁感应定律

法拉第与电磁感应定律 摘要:法拉第,在科学史上做出杰出贡献的实验物理学家,他是名副其实的穷二代,凭借高于常人的智商和自己坚持不懈的努力成为了举世闻名的科学家,他不只是在电磁学中引入了电场线和电磁感应线,这使得后人能更清楚、形象地理解电磁场。他最突出的成就就是发现了电磁感应定律,不但促进了科学的发展而且还开创了人类美好生活的新时代,为人类带来了丰富的物质和精神财富。 关键词:法拉第、电磁感应定律、应用、学习、感应电流 0引言 在21世纪的新时代,法拉第电磁感应定律的运用遍及人类生活的很多方面并使我们的生活越来越便捷,享受着这个时代独有的幸福的同时,我们便更想探索法拉第电磁感应定律具体应用在哪些方面,更想知道到底是什么样的天才发现了这样神奇的定律。本篇论文选择了对近代物理学做出了杰出贡献的英国科学家法拉第的生平进行全面的分析,并综述了电磁感应定律在科技史上的地位。文中有历史、人物和科学的发展过程。 1法拉第简介 1.1法拉第的家庭背景 法拉第,一个自学成才的理工男。1971年9月22日这个未来著名的物理学家呱呱坠地,他是家里的第三个儿子,他的家庭贫困,父亲是一个铁匠,靠着自己勤劳的双手养家糊口,收入甚微,入不敷出。所以,“富二代”、官二代“这样的身份注定与他无缘,要想以后出人头地,只能靠他自己的天赋和努力。贫困的家庭连温饱都难以解决,上学接受教育对他来说那只能是梦想。由于穷困,法拉第在人生最灿烂的时候辍学了,那一年他才13岁,是求知欲最强烈的年华。退学后,为生活所迫,他在街上卖报、在书店当学徒挣钱以贴补家用。是金子就一定会发光,是锤子就一定会受伤,法拉第无疑就是一块金子,就算是出生卑微,无学可上也不会阻碍他这块金子熠熠生辉。 1.2法拉第的求学及工作经历 法拉第酷爱学习,任何一个学习机会对于他都是极其珍贵的,他的哥哥注意到了他的天赋,所以愿意资助他学习,他非常幸运地参加了很多科学活动。通过这些活动他开始接触到了科学的神秘世界并且深深地被科学所吸引,这一切为他未来成为科学家铺好了道路。如果你足够好上帝一定不会埋没你,而且总会为你开上一扇窗,法拉第就是被上帝宠爱的那个人才,上帝为他开了一扇窗从而结识了著名的化学家戴维,他被戴维的才华所征服,随即他大胆地写信给戴维讲述了他对一些科学的见解,并表明自己热爱科学、愿意为科学献身。机会总是垂青于有准备的人,法拉第的能力才华深受戴维的赏识,22岁的他就被戴维任命为自己的实验助理。名师出高徒,法拉第以戴维为师,这为他后来的成就铺就了一条康庄大道。而且法拉第聪明、刻苦,很受戴维的器重,所以每次戴维外出考察时总会让法拉第相伴,而每一次外出考察对他来说都是弥足珍贵的学习机会,都会是他增长知识、开拓视野。 法拉第于1815年回到皇家研究所,而且他的启蒙老师戴维非常耐心地指导他做各种研究工作,在他们共同的努力下好几项化学研究都取得了成果。1816年对法拉第来说是不寻常的一年,是他科学道路的新起点,因为在这一年他发表了他人生中的首篇论文。从1818年开始他和J·斯托达特共同钻研合金钢,并且第一次独立创立了著名的金相分析方法。由于法拉第工作兢兢业业,深受研究院的重视,所以1821年被学院提升担任皇家学院总监这一要职。在两年之后的1823年,经过刻苦的钻研他发现了氯气与其余一些气体的液化方法。世界总是公平的,春天种下什么种子秋天就会收获什么果实,而法拉第所付出的努力也是会得到回报的,1824年1月他终于正式成为皇家学会的会员。1825年2月法拉第传承了启蒙老师戴维曾经的职位即被任命为皇家研究所实验室主任。就在这一年,他又有一项伟大的发现-----他发现了有机物苯。

电磁跳环演示实验报告

电磁跳环演示实验报告 实验原理 1、电磁感应:当通过回路的磁通量发生改变时,就会产生电磁感应现象,产生感应电动势,若回路闭合,则会产生感应电流,且产生的感应电动势满足法拉第电磁感应定律。 2、法拉第电磁感应定律:回路中的感应电动势ε与通过该回路的磁通量Ф的时间变化率成正比,即/d dt ε=-Φ。对于导体回路是N 匝线圈,定义全磁通:1N i i =ψ=Φ∑,其中i Φ为通过线圈第i 匝的磁通量。 对于各匝线圈磁通量相同的特别情形,则有/Nd dt ε=-Φ。 3、楞次定律:感应电流的效果总是反抗引起感应电流的原因。 4、安培定律:通电导线在磁场中会受到力的作用,满足F IBl =。 5、麦克斯韦的涡旋电场理论:随时间变换的磁场在其周围产生电场,并且感应电场的环流不为零,而等于感应电动势,即S C B E dl dS t ε?=?=-??????。 实验器材 1台电磁跳环演示仪(接交流电源),2 个相同的封闭小铝环(记为A 环)、1个钻 有许多小孔的封闭小铝环(B 环)、1个开口 小铝环(C 环)、一个封闭的小塑料环(D 环)、 一个大铝环(E 环),一个连有小灯泡的线 圈。右图为本实验所用的电磁跳环演示仪。

实验内容 一、普通实验 1、分别将1个封闭的小铝环(A环)、钻有许多小孔的小铝环(B环)、开口的小铝环(C环)和小塑料环(D环)放入电磁跳环演示仪中,接通电源,观察实验现象。 现象:A环和B环向上跳起,C环和D环不动。 解释:由于A环和B环是封闭的导体铝环,当接通电磁跳环演示仪的电源时,通电线圈瞬间产生磁场,使穿过铝环的磁通量瞬间增大,由电磁感应定律和楞次定律可知,铝环将产生感应电流激发反向磁场来“抵抗”磁通量的增加,在由安培定律可判断出铝环受到向上的安培力(其值远大于铝环自身的重力)作用,因而往上跳。然而,由于C 环是开口的,因而其形不成闭合回路,也就不会有感应电流的产生,故不受安培力的作用,C环由于自身的重力作用仍处在台面上。D环由于不是导体,自然也就不会有感应电流产生,故不受安培力作用,仍处在台面上。 2、将1个A环放入电磁跳环演示仪中,接通电源,待A环稳定在半空中时,再用手拿着大铝环(E环),缓缓套入演示仪中直到与稳定的A环处在同一平面(近似),而后将E环较慢地向上(或向下)运动,观察实验现象。 现象:A环“跟随”E环向上(或向下)运动。 解释:在E环靠近A环的过程中,E环已经由于电磁感应而产生了感应电流,其感应电流又会激发磁场来影响A环。由楞次定律和安培定

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

天津高考电磁感应计算题汇总

电磁感应---天津真题 (2005年).(16分)图中MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计。 导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直。质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1。当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率v 和滑动变阻器接入电路部分的阻值R 2。 (2007年) 24.(18分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C 。长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中。ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q 。求 (1)ab 运动速度v 的大小; (2)电容器所带的电荷量q 。 (2010年)11.(18分)如图所示,质量m 1=0.1kg ,电阻R 1=0.3Ω,长度l=0.4m 的导体棒ab 横放在U 型金属框架上。框架质量m 2=0.2kg ,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4m 的MM ’、NN ’相互平行,电阻不计且足够长。电阻R 2=0.1Ω的MN 垂直于MM ’。整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T 。垂直于ab 施加F=2N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM ’、NN ’保持良好接触,当ab 运动到某处时,框架开始运动。设框架与水平面间最大静摩擦力等于滑动摩擦力,g 取10m/s 2. (1)求框架开始运动时ab 速度v 的大小; (2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q=0.1J ,求该过程ab 位移x 的大小。 a P

电磁感应现象在手摇三相发电机演示实验中的应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (1) 2电磁感应现象 (1) 2.1电磁感应现象定义 (1) 2.2电磁感应现象的实质 (2) 3手摇三相交直流发电机演示实验 (2) 3.1原理简析 (2) 3.2演示仪简介及部件原理详述 (2) 3.3三相电流产生机制理论分析 (2) 4三相电路组成结构分析 (3) 4.1三相电源的星形联接 (3) 4.2三相电源的三角形联接 (4) 4.3三相负载的星形联接 (4) 4.4三相负载的三角形联结 (5) 5实验时遇到的问题解析 (5) 5.1实验时微噪产生及原因 (5) 5.2实验仪选用单极励磁绕组的原因 (5) 5.3实验过程中接通电源的瞬间及电源误接交流灯泡发光 (6) 5.4实验时电压6V时为何转子吸到定子上 (6) 6提出演示实验方案 (6) 参考文献 (6)

电磁感应现象在手摇三相发电机演示实验中的应用 物理学院物理学专业08.2班王吉国 摘要:本文分析了手摇三相发电机演示实验的工作原理,解释了电磁感应现象在本实验中的应用,结合本实验室现有仪器从中详述三相电路组成部分,其中着重分析了三相电路的电源联接方式和负载的联接方式以及线电压和相电压与线电流和相电流之间的关系,从而揭示了演示实验中的能量转化方式.进一步通过了实验演示步骤及演示过程对实验中遇到的问题进行理论分析与解释,基于节能理念探寻最佳演示方案,并对实验结果进行理论修正,从而得到研究的实际意义. 关键词:电磁感应现象;三相电路;实验疑问;分析;实验方案 The Electromagnetic Induction Phenomenon in Hand Three-phase Generator Experimental Demonstration of Application Wang jiguo Class 2, Grade 2008 Physics Major School of Physics Abstract: This paper analyzes the hand three-phase generator experimental demonstration of working principle, explaining the electromagnetic induction phenomenon in the application of this experiment, combined with the laboratory instruments from existing described the three-phase circuit component which focuses on analyzing the power of the three-phase circuit connection mode and a load and line voltage. This way and phase voltage and current line of the relationship between the line and reveals experiment of energy conversion way. Further through the experiment demonstration of the experimental process steps and demonstrates the problems in the theory analysis and explanation, based on energy conservation idea for best demo program and the experimental results are theory point correction, and get the practical significance of the study. Keywords: electromagnetic induction phenomenon; the three-phase circuit; the experiment doubt; analysis; experiment scheme 1 引言 自一八二零年奥斯特发现电流的磁效应,从此人们开始进行相关的实验探索,一八三一年法拉第发现电磁感应现象,以后人们应用电磁感应现象制作成了发电机和感应加速器等,其中最具影响力的是发电机. 2 电磁感应现象 2.1 电磁感应现象定义

物理法拉第电磁感应定律的专项培优练习题及答案

物理法拉第电磁感应定律的专项培优练习题及答案 一、法拉第电磁感应定律 1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得: 1Blv t ?Φ =? 2(sin )x x B l I BI g t t θ??= 解得 2sin x l t g θ = ab 棒在区域Ⅱ中做匀速直线运动的速度

《法拉第电磁感应定律》教学案例

法拉第电磁感应定律教学设计 鹿城中学理化生教研组田存群 课程背景: “法拉第电磁感应定律”是高二物理选修(3-2)中的第四章第4节内容,是电磁学的核心内容。从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础。从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。 鉴于此部分知识较抽象,而我的学生的抽象思维能力较弱。在这节课的教学中,我注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简,使同学们利用已掌握的旧知识,来理解所要学习的新概念。力求通过明显的实验现象诱发同学们真正的主动起来,从而激发兴趣,变被动记忆为主动认识。 课程详述: 一.教学目标: 1.知道感应电动势,能区分磁通量的变化Δφ和磁通量的变化率Δφ/Δt。 通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力。 2.通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律.使学生明确电磁感应现象中的电路结构,通过对公式E=nΔφ/Δt的理解,引导学生推导出E=BLv,并学会初步的应用。 3.通过介绍法拉第的生平事迹,使学生了解法拉第探索科学的方法和执著的科学研究精神,教育学生加强学习的毅力和恒心。 二.教学重点: 法拉第电磁感应定律的建立过程及规律理解。 三.教学难点: 1.磁通量、磁通量的变化量、磁通量的变化率三者的区别。 2.理解E=nΔφ/Δt是普遍意义的公式,而E=BLv是特殊情况下导线在切割磁感线情况下的计算公式。 四.教具:

电磁感应计算题复习

电磁感应计算题专题 计算题 (共15小题) 1. 如图13-17所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的中距离为L ,导轨上横放着两根导体棒ab 和cd.设两根导体棒的质量皆m ,电阻皆为R ,导轨光滑且电阻不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B 。开始时ab 和cd 两导体棒有方向相反的水平初速,初速大小分别为v 0和2v 0,求: (1)从开始到最终稳定回路中产生的焦耳热。 (2)当ab 棒的速度大小变为 4 v 时,回路中消耗的电功率。 2. 如图13-18所示,在空中有一水平方向的匀强磁场区域, 区域的上下边缘间距为h ,磁感强度为B 。有一宽度为b(b <h =、长度为L ,电阻为R 。质量为m 的矩形导体线圈紧贴磁场区域的上边缘从静止起竖直下落,当线圈的PQ 边到达磁场 下边缘时,恰好开始做匀速运动。求: (1)线圈的MN 边刚好进入磁场时,线圈的速度大小。 (2)线圈从开始下落到刚好完全进入磁场,经历的时间。 3. 水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图.(取重力加速度g=10m/s 2) (1)金属杆在匀速运动之前做什么运动? (2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少? 4. 如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触 图13-17 图13-18

法拉第电磁感应专题大题

法拉第电磁感应定律专题 1.如图所示,宽度L二的足够长的平行光滑金属导轨固定在绝缘水平面上,导 轨的一端连接阻值R=Q的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=.—根质量m=10g的导体棒MN放在导轨上,并与导轨始终接触良好,导轨和导体棒的电阻均可忽略不计。现用垂直MN的水平拉力F拉动导体棒使其沿导轨向右匀速运动,速度v=s,在运动过程中始终保持导体棒与导轨垂直。求: (1)在闭合回路中产生感应电流I的大小; (2)作用在导体棒上拉力F的大小; (3)当导体棒移动50cm时撤去拉力,求整个过程中电阻R上产生的热量Q。 X X 乂MX XXX Q, R2=6Q,整个装置放在磁感应强度为B=的匀强磁场中,磁场方向垂直与整个导轨平面,现用外力F拉着AB向右以v=5m/s速度作匀速运动.求: (1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向, (2)导体棒AB两端的电压U. 3.如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应 强度为B,方向垂直于纸面向内。一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计, 导体棒与圆形导轨接触良好。求: (1)在滑动过程中通过电阻r的电流的平均值; (2)MN从左端到右端的整个过程中,通过r的电荷量; (3)当MN通过圆导轨中心时,通过r的电流是多大 2.如图所示,两个光滑金属导轨(金属导轨电阻忽略不计)相距L=50cm, 导体棒AB的电阻为r=1 Q,且可以在光滑金属导轨上滑动,定值电阻R1=3 4?如图(a)所示,平行金属导轨MN、PQ光滑且足够长,固定在同一水平面上,两导轨间距L=,电阻R=Q,导轨上停放一质量m =、电阻r =Q的金属杆, 导轨 X X n n XXX F X X X [x X XXX X X i/ X X X

物理法拉第电磁感应定律的专项培优练习题及答案

一、法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==?? 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

《电磁感应计算题复习专题》例题.doc

电磁感应计算题复习专题 1 ?阻值为R =4Q 的电阻连接在图甲电路中,并放置于粗糙水平面上。电路有一边长为厶=lm,阻值厂=1 Q 的正方形区域CDEF,放置在边长为2厶的竖直向下正方形磁场中,磁感应强度3大小随时间变化如图 乙所示,线框始终静止不动。其他部分电阻不计。求: t =3s 吋通过电阻R 的电流方向及R 两端的电压U. 2.足够长的、间距为厶=lm 的光滑平行金属导轨CD 、EF 水平放置,导轨间有竖直向下的匀强磁场,磁 感应强 度5=0.5To 质量〃尸0.1kg,电阻为r =1 Q 的金属棒ah 垂直导轨放置且与导轨接触良好。已知电阻 阻值为R=4Q 。金属棒必在水平恒力F 的作用下由静I 上开始向右运动,当金属棒必达到最大速度v 时, 电阻人的电功率P=4Wo 其他部分电阻不计。求: (1)金属棒必的电流方向和最大速度u 的大小。 (2) 水平恒力F 的大小。 (3) 当达到最大速度后撤去水平恒力F,金属棒〃运动直至到停止过 程中 电路产生的热量0。 3.竖直放置的平行金属板M 、N 相距d=0.2m,板长L 0=5m,板间有竖直向下的匀强磁场,磁感应强度3 =0.5T,极 板按如图所示的方式接入电路。足够长的、间距为厶=lm 的光滑平行金属导轨CD 、EF 水平放 置,导轨间有竖直向下的匀强磁场,磁感应强度也为3。电阻为厂=1Q 的金属棒ob 垂直导轨放置且与导 轨接触良好。己知滑动变阻器的总阻值为R=4Q,滑片P 的位置位于变阻器的中点。有一个质量为加=1.0 X10池g 、电荷量为g=+2.0X10叱 的带电粒子,从两板屮间左端以初速度v 0 =10m/5沿中心线水平射入 ---- c C 7 — V D A X X R X X XXX > r D XXX F (1) (2) t =3s 时线框受到的安培力F 的大小和方向。 (3) 0?3s 内整个电路的发热暈Qo X x Dx X X X X B X X X X X x Fx X Ci 乙 Ei

法拉第的电磁感应实验

法拉第的电磁感应实验 作者:不详日期:2006-11-2 来源:本站点击: 我们现在生活在一个电气时代里:电动机在工厂里轰鸣,电车在飞驰,电灯照亮了千家万户,电视机在播放节目,电脑在运作……由于有了电,旧时代许多令人神往的幻想已变成了现实。如今电气业给我们创造的这一切福利和文明,都起源于1831年10月17日法拉第的一次具有划时代意义和意外的电磁实验成功。由于这次成功,法拉第制造了世界上第一台电磁感应发电机;由于这次成功,人类制造出今天的发电机、电动机、水电站,以及一切电力站网。 法拉第(1791~1867)出生于英国伦敦一个铁匠家里。由于家庭贫困,他12岁时就到一家书店当学徒。由于经常接触图书,他发现书里有许多自己从不知道的事物,书籍简直是知识的海洋。从此以后他开始刻苦自学,认真读书,发奋要成为一个有学识的人。他不仅认真阅读电学、化学方面的书籍,而且用平日节约下来的一点钱买了几件实验仪器,按书中所说的做起实验来。 法拉第不仅向书本学习,还利用一切机会向当时著名的科学家学习,买票听他们的讲演,认真做记录。1810年春天,法拉第凑钱去听科学家塔特林讲解自然科学。他每晚都将所做的记录整理誊清。特别对法拉第人生具有重大转折意义的是,他于1812年时到英国皇家学院去听著名科学家戴维的化学讲演。正是从此开始,他踏上了献身科学的道路。 他大胆地给戴维先生写了封信,而且将听讲的记录全寄去了。他在信中说明了自己对科学的热爱,并且渴望能在皇家学会得到一份工作。戴维看到了他的严肃认真和对科学的热情,竟然答应了他的请求,介绍他到皇家学院当助理员,担任了戴维的实验助手。 实验室的工作为法拉第提供了优越的条件。他可以自由地利用图书馆,获得各种资料,从而可以发展各方面的知识。作为戴维的助手和随从,法拉第又获得了到欧洲大陆进行科学考察的机会。尽管在旅行中受到戴维夫人的凌辱,以及其他不公正的待遇,但法拉第借这次机会却增长了知识,结交了朋友,了解了当时各国的科学状况。

电磁感应计算题专项训练及答案

电磁感应计算题专项训练 【注】该专项涉及规律:感应电动势、欧姆定律、牛顿定律、动能定理 1、( 2010重庆卷)法拉第曾提出一种利用河流发电的设想,并进行了实验研究。实验装置 的示意图如图所示,两块面积均为 S 的矩形金属板,平行、正对、竖直地全部浸在河水中, 间距为d 。水流速度处处相同,大小为 v ,方向水平。金属板与水流方向平行。地磁场磁感应强度的竖直分量为 B,水的电阻率为 p 键 K 连接到两金属板上。忽略边缘效应,求: (1) 该发电装置的电动势; (2) 通过电阻R 的电流强度; (3) 电阻R 消耗的电功率 水面上方有一阻值为 R 的电阻通过绝缘导线 和电 2、(2007天津)两根光滑的长直金属导轨 MN MN'平行置于同一水平面内,导轨间距为 I , 电阻不计。M M 处接有如图所示的电路,电路中各电阻的阻值均为 R,电容器的电容为 C 。 现有长度也为I ,电阻同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为 B 方向 竖直向下的匀强磁场中。ab 在外力作用下向右匀速运动且与导轨保持良好接触,在 ab 在运 动距离为s 的过程中,整个回路中产生的焦耳热为 Q 求:⑴ab 运动速度v 的大小;⑵电容 3、( 2010江苏卷)如图所示,两足够长的光滑金属导轨竖直放置,相距为 L , 一理想电流表 与两导轨相连,匀强磁场与导轨平面垂直。一质量为 m 有效电阻为R 的导体棒在距磁场上 边界h 处由静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为 I 。整 个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求: ⑴磁感应强度的大小 B; ⑵ 电流稳定后,导体棒运动速度的大小 v ; ⑶ 流经电流表电流的最大值 I m 器所带的电荷量q 。

我看法拉第 电磁学小论文

法拉第与电磁感应 【摘要】迈克尔·法拉第(Michael Faraday,1791年9月22日—1867年8月25日),英国物理学家,也精于化学,在电磁学及电化学领域有贡献。迈克尔·法拉第是英国著名化学家戴维的学生和助手,他的发现奠定了电磁学的基础,是麦克思韦的先导。1831年10月17日,法拉第首次发现电磁感应现象。有人问戴维一生中最伟大的发现是什么,他绝口不提自己发现的钠、钾、氯、氟等元素,却说:“我最伟大的发现是一个人,是法拉第。” 【关键词】法拉第成才贡献楷模创造性 一、法拉第的成才 迈克尔·法拉第于1791年9月22日出生在英国伦敦南效萨里郡纽英镇的一个铁匠家庭。由于他家里相当穷,上不起学。他被家人送到书店里学习装订技术,法拉第在装订书籍的同时从书店老板那里习得识字。从书中学到很多新的知识。特别是当他接触到有趣的书籍时就贪婪地读起来,尤其是百科全书和有关电的书本,简直使他着了迷。繁重的体力劳动、无知和贫穷,都没有能阻挡法拉第向科学进军。就这样,法拉第走上了自学的道路。法拉第学徒期满,在一家书铺做装订工。1812年,法拉第听完了当时著名的化学家戴维在皇家学院做的一系列化学讲座,并作了详细的笔记。这时法拉第已无法安心自己的工作,他是那样地向往科学。他给皇家学会会长兼皇家学院院长写了一封求职信,却石沉大海。同年12月,法拉第又一次向命运挑战了。他鼓起勇气给戴维写信,并且把装订成册的戴维4次讲座的笔记一起送去。法拉第巨大的热情、超人的记忆和献身科学的精神,感动了这位大化学家。法拉第到皇家学院化学实验室当了戴维的助手。科学圣殿的大门向学陡出身的法拉弟打开了。 法拉第在戴维指导下开始了自己的研究工作。1815年,他参与了煤矿安全灯的研制工作。1816年,法拉第发表了他的第一篇论文“多斯加尼本工生石灰的分析”。到1819年他已经在化学、气体液化、特种钢研究等方面发表论文37篇,成了一位小有名气的化学家。1821年10月,法拉第发表了一篇有关电磁学的论文“论某些新的电磁运动兼论磁学的理论”,开始在电磁学领域崭露头角。同年,他发明了电磁旋转器,用实验证实了电磁力是一种旋转力。1824年,被选为皇家研究所的实验室主任。1831年发现了电磁感应现象,这是法拉第在科学上的最高成就,这在物理学上起了重大的作用。1833年到1834年他研究电流通过溶液时产生的化学变化,提出了法拉第电解定律。1834年,他又重新研究了感应现象,这一次发现了静电感应, 并独立地和亨利同时发现了自感现象。1843年法拉第第一个证明了电荷守恒定律。1845年,发现了偏振光在磁场作用下通过重玻璃后偏振面旋转,称为“磁旋光效应”。他还提出了“场”和“力线”的概念,同年又发现了物质的抗磁性。法拉第的最后一个研究课题是探索光束在磁场中分裂效应,在这个课题上他没能取得成功,但后来终于被塞罗发现。1855年法拉第完成了电磁学巨著——《电的实验研究》。1858年,法拉第离开皇家学院,到伦敦度过晚年生活。1867年8

电磁感应现象教案公开课用Word版

课题:电磁感应现象 扶沟高中曹曼红 授课学生使用教材:(全日制普通高级中学教材·第二册(必修加选修)第十六章第一节)教学目标 1 知识和技能: (1)在初中对电磁感应现象认识的基础上,准确知道电磁感应现象的定义。 (2)在实验中逐步深入理解产生感应电流的条件,能动手正确组装和连接研究电磁感应现象的电路,并在实验过程中正确选择和使用实验器材。 (3)在表述探究结果的过程中,能逐步认识到引入磁通量的物理意义。并能用磁通量的概念表述产生感应电流的条件。 (4)在阅读教材的基础上,能初步理解磁通量的定义方式,并准确的掌握磁通量的定义式。 2 过程和方法: (1)通过初中所学电磁感应现象的回顾,建立研究电磁感应现象的电路模型。清晰研究对象,明确电路中各部分的作用。通过对学生提出问题的归纳,明确本节课的研究问题,即探讨闭合电路的部分导体做切割磁感线运动是否是产生感应电流的普遍条件,产生感应电流的普遍条件是什么。 (2)通过学生分组实验,逐层深入挖掘感应电流产生的条件。实验的研究方法采用通过实验来“证伪”的方法。 (3)用演示实验,在学生分组实验得到初步结论的基础上,进一步对学生的认知进行去伪存真,创设情景是学生在认知的不断冲突中得到正确的结论,体验到引入磁通量这一物理概念的重要性,为后续知识的学习打下基础。 (4)阅读教材,自主学习来完成对磁通量概念初步认识,并在教师引导下从磁通量的变化的角度重新认识实验结论,并能找到实验中引起磁通量变化的因素。 (5)启发学生观察实验现象,从中分析归纳出产生感应电流的条件,从而进一步理解电磁感应现象,理解产生感应电流的条件。 3 情感、态度与价值观: (1)形成运用实验探索求知规律的价值观。 (2)体验科学探究和严谨和艰辛。 教学重点和难点: 重点:理解产生感应电流的条件 难点:实验探究产生感应电流条件的过程和方法及磁通量的概念 教学设计思路和教学流程: 设计思路:依据建构主义学习理论,为了丰富学生经历,体现学习过程是一个体验、反思、自我构建的过程。本节课以魔术作为引入来引起学生的直觉兴趣,在学生初中学习基础上,在教师的逐步引导下,通过学生实验和教师演示实验,将学生的直觉兴趣,逐步转化为操作兴趣、和理论兴趣,帮助学生构建新知。

电磁感应计算题专题

电磁感应计算题专题 命题人:蓝杏芳 学号________. 姓名________. 四.计算题 (共15小题) 1. 如图13-17所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的中距离为L ,导轨上横放着两根导体棒ab 和cd.设两根导体棒的质量皆m ,电阻皆为R ,导轨光滑且电阻不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B 。开始时ab 和cd 两导体棒有方向相反的水平初速,初速大小分别为v 0和2v 0,求: (1)从开始到最终稳定回路中产生的焦耳热。 (2)当ab 棒的速度大小变为4 0v 时,回路中消耗的电功率。 2. 如图13-18所示,在空中有一水平方向的匀强磁场区域,区域的上下边缘间距为h ,磁感强度为B 。有一宽度为b(b <h =、长度为L ,电阻为R 。质量为m 的矩形导体线圈紧贴磁场区域的上边缘从静止起竖直下落,当线圈的PQ 边到达磁场 下边缘时,恰好开始做匀速运动。求: (1)线圈的MN 边刚好进入磁场时,线圈的速度大小。 (2)线圈从开始下落到刚好完全进入磁场,经历的时间。 3. 水平面上两根足够长的金属导轨平行固定放置,问距为L , 一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图.(取重力加速度g=10m/s 2) (1)金属杆在匀速运动之前做什么运动? (2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少? 4. 如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触 图13-17 图13-18

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的??B t 叫 磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率 ??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==222ω, 故2 2 1l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。

相关主题