搜档网
当前位置:搜档网 › 基于MATLAB的TFT模型参数提取

基于MATLAB的TFT模型参数提取

基于MATLAB的TFT模型参数提取
基于MATLAB的TFT模型参数提取

交通流中的nasch模型及matlab代码元胞自动机

元胞自动机NaSch模型及其MATLAB代码 作业要求 根据前面的介绍,对NaSch模型编程并进行数值模拟: ●模型参数取值:Lroad=1000,p=0.3,Vmax=5。 ●边界条件:周期性边界。 ●数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的 结果。 ●基本图(流量-密度关系):需整个密度范围内的。 ●时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画 500个时间步即可)。 ●指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思 路。 ●流量计算方法: 密度=车辆数/路长; 流量flux=density×V_ave。 在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N; 流量flux=N/T。 ●在计算过程中可都使用无量纲的变量。 1、NaSch模型的介绍 作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。 ●时间、空间和车辆速度都被整数离散化。

● 道路被划分为等距离的离散的格子,即元胞。 ● 每个元胞或者是空的,或者被一辆车所占据。 ● 车辆的速度可以在(0~Vmax )之间取值。 2、NaSch 模型运行规则 在时刻t 到时刻t+1的过程中按照下面的规则进行更新: (1)加速:),1min(max v v v n n +→ 规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。 (2)减速:),min(n n n d v v → 规则(2)确保车辆不会与前车发生碰撞。 (3)随机慢化: 以随机概率p 进行慢化,令:)0, 1-min(n n v v → 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为, 又可以反映减速过程中的过度反应行为。这一规则也是堵塞自发产生的至关重要因素。 (4)位置更新:n n n v x v +→ ,车辆按照更新后的速度向前运动。 其中n v ,n x 分别表示第n 辆车位置和速度;l (l ≥1)为车辆长度; 11--=+n n n x x d 表示n 车和前车n+1之间空的元胞数;p 表示随机慢化概率;max v 为最大速度。 3、NaSch 模型实例 根据题目要求,模型参数取值:L=1000,p=0.3,Vmax=5,用matlab 软件进行编程,扔掉前11000个时间步,统计了之后500个时间步数据,得到如下基本图和时空图。 3.1程序简介 初始化:在路段上,随机分配200个车辆,且随机速度为1-5之间。 图3.1.1是程序的运行图,图3.1.2中,白色表示有车,黑色是元胞。

InP基HBT GP大信号模型直流参数提取的研究

第32卷 第2期 2009年4月 电子器件 Ch in es e Jo u rnal Of Electro n Devi ces Vol.32 No.2Apr.2009 Research of DC Parameter Extraction on InP Based HBT GP Large S ignal Model * H U Ding ,H UA N G Yong qing * ,W U Qiang ,L I Yi qun,H UA N G H ui,R EN X iao min (K ey L aborator y of Op tical Communication and L ig ht wa ve T ech nologies,M inistry of Ed ucation, Beij ing Univ ersity of Posts and T elecommunic ations ,Beij ing 100876,China) Abstract:Co nsidering the special physical theo ry and structure,w e used GP larg e sig nal m odel fo r InP based H BT (GP model w as used for BJT prev iously ).By constructing error functio n,w e ex tracted 13SPICE DC parameter in this model w ith analytic m ethod and designed the Parameter extraction measure m ent dev ices,finally the InP/InGaAs H BT of 2 m 19 m emitter size w as modeled based on the above results.By comparison betw een simulated r esults of the ex tracted model and measured data,the mo del has a go od agreem ent w ith DC character istics of fabricated H BT. Key words:H BT ;GP lar ge sig nal model;parameter extraction;DC characteristics EEACC :2560J InP 基HBT GP 大信号模型直流参数提取的研究* 胡 钉,黄永清* ,吴 强,李轶群,黄 辉,任晓敏 (北京邮电大学光通信与光波技术教育部重点实验室,北京100876) 收稿日期:2008 09 10 基金项目:国家 973!项目资助(2003CB314900);教育部 新世纪人才支持计划!资助项目(NCET 05 0111);高等学校学科创 新引智计划资助(B07005);教育部 长江学者和创新团队发展计划资助(IR T 0609);国家 863!计划项目资助(2006AA 03Z416);国家 863!计划项目资助(2007A A 03Z418)作者简介:胡 钉(1984 ),北京邮电大学通信光电子实验室硕士研究生,主要从事光通信器件方面的研究; 黄永清,女,教授,博士生导师,从事光纤通信和半导体光电子器件方面研究 ?G ummel Poo n,一种应用范围很广的晶体管模型,也是晶体管的工业模型 摘 要:基于HBT 特殊的物理机理及结构,将适用于BJT 的G P 大信号模型用于I nP 基HBT 的研究中。通过构建误差函 数,采取解析法提取了该模型中的13项SPI CE 直流参数,并设计了参数提取实验装置,最后将研究结果用于发射极为2 m 19 m 的InP/InG aA s H BT 建模中。通过对比模型仿真和器件实测的数据可以看出,本文采用的HBT G P 模型准确度高,可以较好地表征实际H BT 器件的直流特性。 关键词:H BT ;G P 大信号模型;参数提取;直流特性中图分类号:TN32 文献标识码:A 文章编号:1005 9490(2009)02 0285 06 异质结双极晶体管(H etero junction Bipolar Transisto r,H BT)作为一种结构独特的晶体管从上世纪七十年代出现以来,由于其所具有的高频特性以及良好的电流注入比等优越性,发展十分迅猛。随着材料生长技术和器件制作工艺水平的不断完善与发展,H BT 的性能也不断地得以提高。在卫星通信、移动通信、光纤通信、国防电子系统等通信领域H BT 器件已经得到了非常广泛的应用[1]。 与传统BJT 相比,异质结所特有的物理和电特性给H BT 器件模型的准确建模带来了相当的困 难,因此H BT 模型的准确建立已经成为学术界和工业界研究的热点。尽管H BT 可归于新的器件类型,但其基本工作原理和一般的BJT 相比并没有本 质区别[2],因此利用传统的BJT 大信号模型(如GP 模型?)来表征H BT 的电学特性,利用解析法对其模型参数进行提取是目前较为实用的一种方案。 本文基于H BT 特殊的物理机理及结构,将适用于BJT 的GP 大信号模型用于InP 基H BT 的研究中。通过构建误差函数,采取解析法提取了该模型中的13项SPICE 直流参数,并设计了参数提取

浅析电力系统模型参数辨识

浅析电力系统模型参数辨识 (贵哥提供) 一、现状分析 随着我国电力事业的迅猛发展, 超高压输电线路和大容量机组的相继投入, 对电力系统稳定计算、以及其安全性、经济性和电能质量提出了更高的要求。现代控制理论、计算机技术、现代应用数学等新理论、新方法在电力系统的应用,正在促使电力工业这一传统产业迅速走向高科技化。 我国大区域电网的互联使网络结构更复杂,对电力系统安全稳定分析提出了更高的要求,在线、实时、精确的辨识电力系统模型参数变得更加紧迫。由于电力系统模型的基础性、重要性,国外早在上世纪三十年代就开始了这方面的分析研究,[1,2]国内外的电力工作者在模型参数辨识方面做了大量的研究工作。[3]随后IEEE相继公布了有关四大参数的数学模型。1990年全国电网会议上的调查确定了模型参数的地位,促进了模型参数辨识的进一步发展,并提出了研究发电机、励磁、调速系统、负荷等元件的动态特性和理论模型,以及元件在极端运行环境下的动态特性和参数辨识的要求。但传统的测量手段,限制了在线实时辨识方法的实现。 同步相量测量技术的出现和WAMS系统的研究与应用,使实现在线实时的电力系统模型参数辨识成为可能。同步相量是以标准时间信号GPS作为同步的基准,通过对采样数据计算而得的相量。相量测量装置是进行同步相量测量和输出以及动态记录的装置。PMU的核心特征包括基于标准时钟信号的同步相量测量、失去标准时钟信号的授时能力、PMU与主站之间能够实时通信并遵循有关通信协议。 自1988年Virginia Tech研制出首个PMU装置以来,[4]PMU技术取得了长足发展,并在国内外得到了广泛应用。截至2006年底,在我国范围内,已有300多台P MU装置投入运行,并且可预计,在不久的将来PMU装置会遍布电力系统的各个主要电厂和变电站。这为基于PMU的各种应用提供了良好的条件。 二、系统辨识的概念 系统模型是实际系统本质的简化描述。[5]模型可分为物理模型和数学模型两大类。物理模型是根据相似原理构成的一种物理模拟,通过模型试验来研究系统的

模型计算步骤

计算步骤步骤目标 建模或计算条件控制条件及处理1.符合原结构传力模式2.符合原结构边界条件3.符合采用程序的假定条件1.振型组合数→有效质量参与系数>0.9吗?→否,则增加2.最大地震力作用方向角→θ0-θm >150?→是,输入θ0=θm ,附加方向角θ0=03.结构自振周期,输入值与计算值相差>10%?→是,按计算值改输入值4.查看三维振型图,确定裙房参与计算范围→修正计算简图5.短肢剪力墙承担的抗倾覆力矩<40%?→是,改为一般剪力墙结构;短肢剪力墙承担的抗倾 覆力矩>50%?→是,规范不许,修改设计 6.框剪结构框架承担的抗倾覆力矩>50%?→是,框架抗震等级按框架结构确定;若为多层结构,可定义为框架结构,抗震墙可作为次要抗侧力构件,其抗震等级可降低一级。 1.周期比控制:T 扭/T 1≤0.9(0.85)?→否,修改结构布置,强化外围削弱中间 2.层位移比控制:最大/平均≤1.2?→否,按双向地震重算 3.侧向刚度比控制:要求见规范;不满足时程序自动定义为薄弱层 4.层受剪承载力控制:Q i /Q i+1<[0.65(0.75)]?→否,修改结构布置;0.65(0.75)≤Q i /Q i+1<0.8?→否,强制指定为薄弱层(注:括号中数据为B级高层),(《高规》4.4.3条) 5.整体稳定控制:刚重比≥[10(框架),1.4(其它)] 6.最小地震剪力控制:剪重比≥0.2αmax?→否,增加振型数或增大地震剪力系数 7.层位移角控制:弹性Δu ei /h i ≤[1/550(框架),1/800(框剪),1/1000(其它)];弹塑性Δ u pi /h i ≤[1/50(框架),1/100(框剪),1/120(其它)]1.构件构造最小断面控制和截面抗剪承载力验算 2.构件斜截面承载力验算(剪压比控制) 3.构件正截面承载力验算 4.构件最大配筋率控制 5.纯弯和偏心构件受压区高度限制 6.竖向构件轴压比控制 7.剪力墙的局部稳定控制 8.梁柱节点核心区抗剪承载力验算 1.钢筋最大最小直径限制 2.钢筋最大最小间距要求 3.最小配筋配箍要求 4.重要部位的加强和明显不合理部分局部调整2.计算一(一次或多次)整体参数 的正确确 定 1.地震方向角θ0=0;2.单向地震+平扭耦联;3.不考虑偶然偏心;4.不强制全楼刚性楼板;5.按总刚分析;6.短肢墙多时定义为短肢剪力墙结构;1.按计算一、二确定的模型和参数;2.取消全楼强制刚性板;3.按总刚分析;4.对特殊构件人工指定。构件优化设计(构件超筋超限控制)4.计算三(一次或多次)5.绘制施工图结构构造抗震构造措施几何及荷 载模型 1.建模整体建模判定整体结构的合理性(平面和竖向规则性控制) 1.地震方向角θ0=0,θ m ; 2.单(双)向地震+平扭耦 联; 3.(不)考虑偶然偏心; 4.强制全楼刚性楼板; 5.按侧刚分析; 6.按计算一的结果确定结 构类型和抗震等级3.计算二(一次或多次)

实验一 用MATLAB处理系统数学模型

实验一用MATLAB处理系统数学模型 一、实验原理 表述线性定常系统的数学模型主要有微分方程、传递函数、动态结构图等.求拉氏变换可用函数laplace(ft,t,s),求拉式反变换可用函数illaplace(Fs,s,t);有关多项式计算的函数主要有roots(p),ploy(r),conv(p,q),ployval(n,s);求解微分方程可采用指令 s=dslove(‘a_1’,’a_2’,’···,’a_n’);建立传递函数时,将传递函数的分子、分母多项式的系数写成两个向量,然后用tf()函数来给出,还可以建立零、极点形式的传递函数,采用的函数为zpk(z,p,k);可用函数sys=series(sys1,sys2)来实现串联,用 sys=parallel(sys1,sys2)来实现并联,可用函数sys=feedback(sys1,sys2,sign)来实现系统的反馈连接,其中sign用来定义反馈形式,如果为正反馈,则sign=+1,如果为负反馈,则sign=-1。 二、实验目的 通过MATLAB软件对微分方程、传递函数和动态结构图等进行处理,观察并分析实验结果。 三、实验环境 MATLAB2012b 四、实验步骤 1、拉氏变换 syms s t; ft=t^2+2*t+2; st=laplace(ft,t,s) 2、拉式反变换 syms s t; Fs=(s+6)/(s^2+4*s+3)/(s+2); ft=ilaplace(Fs,s,t) 3、多项式求根 p=[1 3 0 4]; r=roots(p) p=poly(r) 4、多项式相乘 p=[ 3 2 1 ];q=[ 1 4];

实验7~8:MOSFET模型参数提取

MOSFET模型参数的提取 计算机辅助电路分析(CAA)在LSI和VLSI设计中已成为必不可少的手段。为了优化电路,提高性能,希望CAA的结果尽量与实际电路相接近。因此,程序采用的模型要精确。SPICE-II是目前国内外最为流行的电路分析程序,它的MOSFET模型虽然尚不完善,但已有分级的MOS 1到3三种具一定精度且较实用的模型。确定模型后,提取模型参数十分重要,它和器件工艺及尺寸密切相关。尽管多数模型是以器件物理为依据的,但按其物理意义给出的模型参数往往不能精确的反映器件的电学性能。因此,必须从实验数据中提取模型参数。提取过程也就是理论模型与实际器件特性之间用参数来加以拟合的过程。可见,实测与优化程序结合使用应该是提取模型参数最为有效的方法。 MOS FET模型参数提取也是综合性较强的实验,其目的和要求是: 1、熟悉SPICE-II程序中MOS模型及其模型参数; 2、掌握实验提取MOS模型参数的方法; 3、学习使用优化程序提取模型参数的方法。 一、实验原理 1、SPICE-II程序MOS FET模型及其参数提取 程序含三种MOS模型,总共模型参数42个(表1)。由标记LEVEL指明选用级别。一级模型即常用的平方律特性描述的Shichman-Hodges模型,考虑了衬垫调制效率和沟道长度调制效应。二级模型考虑了短沟、窄沟对阈电压的影响,迁移率随表面电场的变化,载流子极限速度引起的电流饱和和调制以及弱反型电流等二级效应,给出了完整的漏电流表达式。三级模型是半经验模型,采用一些经验参数来描述类似于MOS2的二级效应。 MOS管沟道长度较短时,需用二级模型。理论上,小于8um时,应有短沟等效应。实际上5um以下才需要二级模型。当短至2um以下,二级效应复杂到难以解析表达时,启用三级模型。MOS模型参数的提取一般需要计算机辅助才能进行。有两种实用方法,一是利用管子各工作区的特点,分段线性拟合提取;二是直接拟合输出特性的优化提取。其中,直流参数的优化提取尚有不足之处:优化所获仅是拟合所需的特定参数,物理意义不确,难以反馈指导工艺和结构的设计;只适合当前模型,模型稍做改动,要重新提

用matlab实现碰撞模型程序代码

用m a t l a b实现碰撞模型程序代码 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

c l c; clear; fill([6,7,7,6],[5,5,0,0],[0,0.5,0]);%右边竖条的填充 holdon;%保持当前图形及轴系的所有特性 fill([2,6,6,2],[3,3,0,0],[0,0.5,0]);%左边竖条的填充 holdon;%保持当前图形及轴系的所有特性 t1=0:pi/60:pi; plot(4-2*sin(t1-pi/2),5-2*cos(t1-pi/2));%绘制中间的凹弧图形gridon;%添加网格线 axis([0,9,0,9]);%定义坐标轴的比例% axis('off');%关闭所有轴标注,标记,背景 fill([1,2,2,1],[5,5,0,0],[0,0.5,0]);%中间长方形的填充 holdon;%保持当前图形及轴系的所有特性 title('碰撞');%定义图题 x0=6; y0=5; head1=line(x0,y0,'color','r','linestyle','.','erasemode','xor','marke rsize',30); head2=line(x0,y0,'color','r','linestyle','.','erasemode','xor','marke rsize',50);%设置小球颜色,大小,线条的擦拭方式 t=0;%设置小球的初始值 dt=0.001;%设置运动周期 t1=0;%设置大球的初始值 dt1=0.001; while1%条件表达式 t=t+dt; x1=9-1*t; y1=5; x3=6; y3=5; ift>0 x2=6; y2=5;%设置小球的运动轨迹 end ift>2.8 t=t+dt; a=sin(t-3); x1=6.1; y1=5.1; x3=4-2*sin(1.5*a); y3=5-2*cos(1.5*a);%设置大球的运动轨迹 end

飞机碰撞模型

飞机碰撞模型 摘要 第六架在边长为160km的正方形区域内以的飞行角从坐标为(0,0)的点出发,在飞行过程中不与其它五架飞机发生碰撞,即在该区域内与其它任意飞机的距离大于8km,就要不断调整该飞机的飞行角度,使其任意时刻与其他飞机的距离大于8km,利用空间中点的距离定义,计算任意时刻该飞机与其他飞机的距离,找到调整角度的最小值为。 1、问题重述 在约10000km高空的某边长160km的正方形区域内,有5架飞机均以800km/h的速度作水平飞行,不碰撞的标准为在该区域内任意两架飞机的距离大于8km。现有5架飞机在区域内飞行且它们不会碰撞,其初始坐标和飞行方向由下表给出: 现有第6架飞机要进入该区域,坐标为(0,0),飞行角为,如果其与内部的5架飞机发生碰撞,就需要调整其飞行角度,请建立优化模型,确定其与内部5架飞机不碰撞的最小调整角。 2、基本假设 1、五架飞机在规定正方形区域飞行中不随意改变路线; 2、飞机在飞行中不考虑其他未知因素; 3、符号说明 :正方形区域的边长; :第i架飞机飞行的方向角度; :第六架飞机飞行过程中的调整角度; :第架、第架飞机的距离; :第架飞机在区域内飞行的路线长度; :第架飞机的飞行速度; :第架飞机在区域内的飞行时间; :第i架飞机的横坐标; :第i架飞机的纵坐标; 4、模型的建立与求解 1、模型的建立 先根据五架飞机起始点与终点坐标,在规定的网格区域内画出它们的飞行路线,再根据给出的区域长度与各架飞机飞行速度,计算出各架飞机在区域内的飞行时间, 再根据计算得出的时间,得出时刻各架飞机的坐标,求出在该时刻第六架飞机与其他五架飞机的距离 即 当<8时,此时就需要调整第六架飞机的飞行角度,使其与另外五架飞机

第三讲-器件模型参数的优化提取详解

元器件模型参数的优化提取微电子学院贾新章 (2013. 11 )

PSpice中的模型和模型参数库 一、概述:为元器件建立模型参数的步骤 二、采用Model Editor分组提取模型参数 三、基于器件物理原理计算部分模型参数 四、建立适用于高级分析的元器件模型参数描述 五、元器件模型参数的综合优化提取。 六、为元器件模型描述建立元器件符号 七、将新建模型设置为PSpice仿真可以调用的库文件

一、概述:为元器件建立模型参数的步骤 第一步:优化提取模型参数 1、采用Model Editor分组提取模型参数; 2、基于器件物理原理,计算部分模型参数; 3、为元器件建立适用于高级分析的模型参数描述; 4、采用PSpice/Optimizer进行一次综合优化提取。 (采用前面结果作为优化提取模型参数的最佳初值)第二步:建立供Capture绘制电路图调用的元器件符号 第三步:将新建模型设置为PSpice仿真可以调用的库文件。下面将分别介绍每一部分的操作方法。

PSpice中的模型和模型参数库 一、概述:为元器件建立模型参数的步骤 二、采用Model Editor分组提取模型参数 三、基于器件物理原理计算部分模型参数 四、建立适用于高级分析的元器件模型参数描述 五、元器件模型参数的综合优化提取。 六、为元器件模型描述建立元器件符号 七、将新建模型设置为PSpice仿真可以调用的库文件

二、采用Model Editor分组提取模型参数 Model Editor模块可以对其支持的几种元器件,依据元器件的各种端特性数据,分组优化提取相应当模型参数数据。 (1) 调用MODEL EDITOR模块; (2) 选择执行Model/New命令,从对话框中设置模型类型。

matlab程序设计与应用(第二版)第三章部分课后答案

第三章1. (1)A=eye(3) (2)A=100+100*rand(5,6) (3)A=1+sqrt(0.2)*randn(10,50) (4)B=ones(size(A)) (5)A+30*eye(size(A)) (6)B=diag(diag(A)) 2. B=rot90(A) C=rot90(A,-1) 3. B=inv(A) ;A的逆矩阵 C=det(A) ;A的行列式的值 D=A*B E=B*A D=E 因此A与A-1是互逆的。 4. A=[4 2 -1;3 -1 2;12 3 0]; b=[2;10;8]; x=inv(A)*b x = -6.0000 26.6667 27.3333 5. (1) diag(A) ;主对角线元素 ans = 1 1 5 9 triu(A) ;上三角阵

ans = 1 -1 2 3 0 1 -4 2 0 0 5 2 0 0 0 9 tril(A) ;下三角阵 ans = 1 0 0 0 5 1 0 0 3 0 5 0 11 15 0 9 rank(A) ;秩 ans = 4 norm(A) ;范数 ans = 21.3005 cond(A) ;条件数 ans = 11.1739 trace(A) ;迹 ans = 16 (2)略 6. A=[1 1 0.5;1 1 0.25;0.5 0.25 2] A = 1.0000 1.0000 0.5000 1.0000 1.0000 0.2500 0.5000 0.2500 2.0000

[V,D]=eig(A) V = 0.7212 0.4443 0.5315 -0.6863 0.5621 0.4615 -0.0937 -0.6976 0.7103 D = -0.0166 0 0 0 1.4801 0 0 0 2.5365

用matlab实现碰撞模型程序代码

clc; clear; fill([6,7,7,6],[5,5,0,0],[0,0.5,0]);%右边竖条的填充 hold on; %保持当前图形及轴系的所有特性 fill([2,6,6,2],[3,3,0,0],[0,0.5,0]);%左边竖条的填充 hold on;% 保持当前图形及轴系的所有特性 t1=0:pi/60:pi; plot(4-2*sin(t1-pi/2),5-2*cos(t1-pi/2));%绘制中间的凹弧图形 grid on;%添加网格线 axis([0,9,0,9]);%定义坐标轴的比例% axis('off');%关闭所有轴标注,标记,背景 fill([1,2,2,1],[5,5,0,0],[0,0.5,0]);%中间长方形的填充 hold on;% 保持当前图形及轴系的所有特性 title('碰撞');%定义图题 x0=6; y0=5; head1=line(x0,y0,'color','r','linestyle','.','erasemode','xor','markersize',30); head2=line(x0,y0,'color','r','linestyle','.','erasemode','xor','markersize',50); %设置小球颜色,大小,线条的擦拭方式 t=0;%设置小球的初始值 dt=0.001;%设置运动周期 t1=0;%设置大球的初始值 dt1=0.001; while 1%条件表达式 t=t+dt; x1=9-1*t; y1=5; x3=6; y3=5; if t>0 x2=6; y2=5;%设置小球的运动轨迹 end if t>2.8 t=t+dt; a=sin(t-3); x1=6.1; y1=5.1; x3=4-2*sin(1.5*a); y3=5-2*cos(1.5*a);%设置大球的运动轨迹

基于MATLAB的地震正演模型实现[1]

基于MATLAB的地震正演模型实现 贾跃玮 (中国地质大学(北京) 北京100083) 摘 要 人工合成地震正演模型是进行三维模型计算的基础。针对地震勘探的原理,本文运用MATLAB强大数学计算和图像可视化功能,对一个三层介质模型制作了人工合成地震记录。文章首先说明了地震记录形成的物理机制,然后介绍了地质模型的构造及参数选择,最后针对该具体地质模型制作了合成地震记录。 关键词 地震;MATLAB;正演 0引 言 地震勘探就是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理方法。地震勘探是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用。 人工合成二维地震模型记录是各种复杂地震模型正演计算的基础,是对地震勘探经典理论的忠实实现。在实际工作中,针对具体地质构造进行二维地震模拟能够有效帮助地球物理工作者在地震剖面上识别各种地质现象。MATLAB环境集编程、画图于一体,特别适合人工合成地震记录的快速实现。因此,我们在MATLAB环境下设计了一个三层地质模型,并对该模型模拟了地震记录,旨在可视化地观察地震波场记录特征并验证地震褶积模型。 1地震记录形成的物理机制 在地震记录上看到的波形是地震子波叠加的结果,从地下许多反射界面发生反射时形成的地震子波,振幅大小决定于反射界面反射系数的绝对值,极性的正负决定于反射系数的正负,到达时间的先后取决于界面深度和覆盖层的波速。若地震子波波形用S(t)表示,反射系数是双程垂直反射旅行时t的函数,用R(t)表示,地震记录f(t)形成的物理过程在数学上就可表示为:f(t)=S(t)3R(t)=∫0T S(τ)R(t-τ)dτ 地震子波和反射系数资料常常不易取得,因此计算时常做这样一些假设: (1)地质模型的建立是来自大量观察实际地质结构的经验性归纳总结。 (2)为了模型建立和计算过程中突出理论数值,去除了一些干扰因素,对一切衰减、噪声都不进行考虑。 (3)地层在横向上均匀,纵向上是由大量具有不同弹性性质的薄层构成。 (4)地震子波以平面波形式垂直入射到界面,各薄层的反射子波与地震子波形状相同,只是振幅及极性不同。 (5)所有波的转换、吸收及绕射等能量损失都不考虑。 基于以上这些假设条件进行地震记录合就必须已知地震子波以及地层的反射系数,而反射系数又主要由地层的波阻抗反映,所以必须首先获取地层的速度和密度资料。 速度资料可通过连续速度测井获得,密度资料可从密度测井获得,得不到密度资料时,可近似假定密度不变,以速度曲线代替波阻抗曲线来计算反射系数。加德纳根据实际资料提出了一个由速度推算密度的经验公式: ρ=0.23V0.25 (速度单位:英尺/秒) 或 ρ=0.31V0.25 (速度单位:米/秒)

如何精确提取revit模型中柱、梁、板的工程量

郑州高铁站东广场BIM小组用REVIT模型 精确提取柱、梁、板工程量 一、项目简介 郑州综合交通枢纽地下交通工程(东广场)位于郑州东站站房东侧,长途汽车站南侧。107国道以东、圃田西路以西、动力南路与动力北路之间的东广场地块内,周边用地主要为二类居住用地、行政办公用地以及商业金融用地。107国道从东广场西侧下穿,地铁1号线郑州东站至博学路站盾构区间从东广场地块中部穿过。总建筑面积113367.8㎡,其中地下一层建筑面积为36510.6㎡、地下二层(停车场)建筑面积为38428.6㎡、地下三层(停车场)建筑面积为38428.6㎡。主要结构类型为钢筋混凝土结构。 二、BIM小组介绍 本项目BIM小组成员有施工单位中铁21局、BIM咨询服务单位河南金途建筑信息技术有限公司组成。其中河南金途建筑信息技术有限公司是一家专注于提供BIM技术咨询服务的公司,是河南省首批独

立的第三方专业咨询服务机构,拥有大批具有施工经验及BIM应用经验的工程师;中铁二十一局集团有限公司,隶属于国务院国资委中国铁建股份有限公司,是集工程建设、科研开发、房地产开发、矿产资源开发、商贸经营等于一体的国有特大型建筑施工企业集团。两家合作可谓强强联合。 三、如何精确提取结构柱的工程量 东广场项目使用的主要建模软件是市场上主流的BIM应用软件,欧特克公司开发的REVIT,熟知这款软件的人大概都了解Revit模型板扣减柱、板扣减梁等扣减规则是不符合国内算量要求的。为了解决板扣减柱这个难题,我们是对revit自带的结构柱族做了参数修改,设置了柱高的报告参数、柱截面面积、柱体积等参数。欧特克给出报告参数解释:报告参数是一种参数类型,其值由族模型中的特定尺寸标注来确定。报告参数可从几何图形条件中提取值,然后使用它向公式报告数据或用作明细表参数。也就是说我们设置了柱高的报告参数后,其值是不受板剪切影响的。结构柱族参数及明细表如下图:

MOSFET模型参数的提取

MOSFET 模型参数的提取 计算机辅助电路分析(CAA )在LSI 和VLSI 设计中已成为必不可少的手段。为了优化电路,提高性能,希望CAA 的结果尽量与实际电路相接近。因此,程序采用的模型要精确。SPICE-II 是目前国内外最为流行的电路分析程序,它的MOSFET 模型虽然尚不完善,但已有分级的MOS 1到3三种具一定精度且较实用的模型。确定模型后,提取模型参数十分重要,它和器件工艺及尺寸密切相关。尽管多数模型是以器件物理为依据的,但按其物理意义给出的模型参数往往不能精确的反映器件的电学性能。因此,必须从实验数据中提取模型参数。提取过程也就是理论模型与实际器件特性之间用参数来加以拟合的过程。可见,实测与优化程序结合使用应该是提取模型参数最为有效的方法。 MOS FET 模型参数提取也是综合性较强的实验,其目的和要求是: 1、熟悉SPICE-II 程序中MOS 模型及其模型参数; 2、掌握实验提取MOS 模型参数的方法; 3、学习使用优化程序提取模型参数的方法。 一、实验原理 1、 SPICE-II 程序MOS FET 模型及其参数提取 程序含三种MOS 模型,总共模型参数42个(表1)。由标记LEVEL 指明选用级别。一级模型即常用的平方律特性描述的Shichman-Hodges 模型,考虑了衬垫调制效率和沟道长度调制效应。二级模型考虑了短沟、窄沟对阈电压的影响,迁移率随表面电场的变化,载流子极限速度引起的电流饱和和调制以及弱反型电流等二级效应,给出了完整的漏电流表达式。三级模型是半经验模型,采用一些经验参数来描述类似于MOS2的二级效应。 MOS 管沟道长度较短时,需用二级模型。理论上,小于8um 时,应有短沟等效应。实际上5um 以下才需要二级模型。当短至2um 以下,二级效应复杂到难以解析表达时,启用三级模型。MOS 模型参数的提取一般需要计算机辅助才能进行。有两种实用方法,一是利用管子各工作区的特点,分段线性拟合提取;二是直接拟合输出特性的优化提取。其中,直流参数的优化提取尚有不足之处:优化所获仅是拟合所需的特定参数,物理意义不确,难以反馈指导工艺和结构的设计;只适合当前模型,模型稍做改动,要重新提取,不利于分段模型;对初值和权重的选取要求很高。 2、模型公式 N 沟MOSFET 瞬态模型如图1所示。当将图中二极管和漏电流倒向,即为P 沟模型。若去掉其中电容即变为直流模型。 (1) 一般模型(MOS1模型) 漏电流表达式分正向工作区和反向工作区两种情况: 1) 正向工作区,0 Ds V 前提下: 表1. MOS 场效应晶体管模型参数表

MATLAB程序设计基础

第三章MATLAB程序设计基础 chapter 3: Foundation of MATLAB program design 一、数据及数据文件(Data and Data file) 1. 数据类型:(Data mode)为适应各种不同计算和处理的需求,MATLAB提供了多种数据类型,主要有: 数值数组(Numeric array)— 包括整形(int8,uint8,int16,uint16,int32,uint32)单精度 (signal), 双精度(duble)(MATLAB最常用的变量类型), 稀疏(sparce)数组。按维数分有一维、二维和多维数 组。 Int---Integrate. Uint---Unsigned Integer data 字符数组(Character array):由字符串组成的数组 单元数组(Cell array):用不同类型和大小的数组组成的数组,同 一个元胞数组中各元胞的内容可以不同。 结构数组(Structure array):与单元数组类似,但其数据的组织能 力更强,更富于变化。 Java类(Java class):由JavaAPI或第三方定义的类函数。 函数句柄(Function handle):可以在一个参数列表中传递,并使 用feval运行. 在工作空间浏览器中不同的数据类型有着不同的图标标识。2. 数据文件(Data file) MATLAB支持的各种数据文件(Readable file formats of MATLAB)的主要类型及其存取方法如下述: (1)二进制数据文件:(Binary date file)以.mat为扩展名。是标准的MATLAB数据文件,以二进制编码形式存储。.mat文件可以由MATLAB提供的save和load命令直接存取。 (2)ASCⅡ码数据文件:(ASCⅡcode data file)扩展名为.txt, .dat

完全弹性碰撞matlab

Matlab设计实验 课题名称:完全弹性碰撞 一.设计背景: 完全弹性碰撞(Perfect Elastic Collision):在理想情况下,完全弹性碰撞的物理过程满足动量守恒和能量守恒。如果两个碰撞小球的质量相等,联立动量守恒和能量守恒方程时可解得:两个小球碰撞后交换速度。如果被碰撞的小球原来静止,则碰撞后该小球具有了与碰撞小球一样大小的速度,而碰撞小球则停止。多个小球碰撞时可以进行类似的分析。 二.设计意义 真实情况下,由于小球间的碰撞并非理想的弹性碰撞,还会有能量的损失,所以最后小球还是要停下来。 所以该设计主要用于研究能量守恒中的某些问题。还有就是用于实验演示。三.程序设计 该程序主要设置了三个不同颜色的小球,在真空环境下(理想环境下)的碰撞实验演示。 该程序可以通过改变各种参数,研究各种情况下的实验数据。 程序: pole=1.8;%定义摆线的长度 xmax=2;%定义横坐标长度 ymax=2;%定义纵坐标长度 basew=2.3;%定义图中方框的宽度 baseh=2.3;%定义图中方框的高度 instant=0.2;%定义摆线间距 %三视图的初始设置 %第一幅图

figure('name','理想情况下能量守恒定律 1','position',[500,340,440,320]);%定义第一幅图的标题和位置 fill([xmax,xmax,-xmax,-xmax,xmax,xmax-0.05,xmax-0.05,- xmax+0.05,-xmax+0.05,xmax-0.05],[ymax,-ymax,- ymax,ymax,ymax,ymax-0.05,-ymax+0.05,-ymax+0.05,ymax- 0.05,ymax-0.05],[0,1,1]); %填充底座背景 hold on;%保持当前图形及坐标所有特性 fill([xmax-0.05,xmax-0.05,-xmax+0.05,-xmax+0.05],[ymax- 0.5 ,ymax-0.55,ymax-0.55,ymax-0.5],'g');%填充方框内横杆背景 hold on;%保持当前图形及坐标所有特性 text(-0.25,1.7,'1');text(0,1.7,'2');text(0.25,1.7,'3');%在坐标处标识 说明文字 text( -1.0,1.7,'a');text( -1.0,-1.7,'b');%在坐标处标识说明文字 text(1.0,1.7,'真空容器');text(-1.8,1.7,'主视图');%在坐标处标识说明文 字 axis([-basew,basew,-baseh,baseh]);%定义背景坐标范围在x(-2.3~2.3) Y(-2.3~2.3)之间 %axis('off');%覆盖坐标刻度并填充背景 theta0=7 *pi/6;%摆线1的初始角度 x0=pole*cos(theta0);%摆线1末端x坐标 y0=pole*sin(theta0)+1.5;%摆线1末端y坐标 body1=line([-instant,x0-instant],[1.5,y0],'color','r','linestyle','- ','erasemode','xor');%设置摆线1 head1=line(x0- instant,y0,'color','r','linestyle','.','erasemode','xor','markersize',40);%设置第一个小球颜色,大小 theta1=3*pi/2;%摆线2,3的角度 x1=pole*cos(theta1);%摆线2,3末端x坐标 y1=pole*sin(theta1)+1.5;%摆线2,3末端y坐标 body=line([-0.001,x1],[1.5,y1],'color','k','linestyle','- ','erasemode','xor');%设置摆线2

实验四 用MATLAB求解状态空间模型

实验四 用MATLAB 求解状态空间模型 1、实验设备 MATLAB 软件 2、实验目的 ① 学习线性定常连续系统的状态空间模型求解、掌握MATLAB 中关于求解该模型的主要函数; ② 通过编程、上机调试,进行求解。 3、实验原理说明 Matlab 提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有: 初始状态响应函数initial()、阶跃响应函数step()以及可计算任意输入的系统响应数值计算函数lsim()和符号计算函数sym_lsim()。 数值计算问题可由基本的Matlab 函数完成,符号计算问题则需要用到Matlab 的符号工具箱。 4、实验步骤 ① 根据所给状态空间模型,依据线性定常连续系统状态方程的解理论,采用MATLAB 编程。 ② 在MATLAB 界面下调试程序,并检查是否运行正确。 习题1:试在Matlab 中计算如下系统在[0,5s]的初始状态响应,并求解初始状态响应表达式。 Matlab 程序如下: A=[0 1; -2 -3]; B=[]; C=[]; D=[]; x0=[1; 2]; sys=ss(A,B,C,D); [y,t,x]=initial(sys,x0,0:5); plot(t,x) 0011232????==????--????x x x

习题2:试在Matlab 中计算如下系统在[0,10s]内周期为3s 的单位方波输入下的状态响应。并计算该系统的单位阶跃状态响应表达式。 Matlab 程序如下: A=[0 1; -2 -3]; B=[0; 1]; C=[]; D=[]; x0=[1; 2]; sys=ss(A,B,C,D); [u t]=gensig('square',3,10,0.1) 0011232????==????--???? x x x

参数提取

A Parameter Extraction Method for Microwave Coupled Resonater Filters 摘要:本文提出了一种直接优化耦合矩阵从而求得耦合系数及谐振频率的方法。首先在柯西法的基础上构建了一种更精确有理多项式模型,这种模型既适合无耗的滤波器,也适合有耗的滤波器,其次提出了一种简单而高效的目标函数,新的目标函数对初值敏感度低,优化速度快,这种方法能应用于级联型以及交叉耦合型的耦合谐振滤波器的参数提取,最后的例子证明了此方法的有效性。 1.介绍 在滤波器的仿真及实物的调试中,往往不能一次性的得到需要的耦合系数及谐振频率,需要不停的“迭代”来得到最优的波形,能够有效的指导调试人员的计算机辅助调试技术是提高效率的一个主要因素。为此,人们提出了各种计算机辅助调试的方法。这些方法基本上可以归为5类。1.耦合谐振滤波器的顺序调谐;2.基于电路模型参数提取的计算机辅助调谐;3.基于输入反射系数的极点和零点的计算机辅助调谐;4.时域调谐;5模糊逻辑调谐。 本文提出的方法可以归类到基于电路模型的参数提取,它的基本原理是:首先将带通滤波器的S 参数归一为低通原型S 参数,再通过一个适当的有理多项式拟合S 参数,柯西法是最常用到的有理多项式拟合方法,该方法通过对精确模型响应有限的抽样,得到一个超定方程。解该方程,即可得到表述滤波器响应的两个多项式P (s ) ,F (s ) 系数,再通过Feld-keller 方程计算出多项式E (s )的系数。 ()()()()()()s E s E s P s P s F s F -=-+-* ** (1) 然而这种方法至少存在两个缺陷,其一,拟合出来的相位不准,其二,对于有耗的情况,在用Feld-keler 方程求解E(s)的时候并不能保证虚轴两边根的个数一样,也就是不能保证E(s)的最高阶数等于滤波器阶数,这样所得到的耦合矩阵及谐振频率并不准确。本文在柯西法的基础上提出了一种新的多项式拟合方法,能很好的解决这两个问题,下文称之为改进柯西法。得到E ,F ,P 以后就可以通过综合或者优化的方法提取耦合矩阵及谐振频率,本文应用单纯型法优化耦合矩阵,提出了一种新的目标函数,能够快速而精确的得到最优解。 2.滤波器模型及分析 图1 有限Q 值谐振腔滤波器等效电路模型

相关主题