搜档网
当前位置:搜档网 › 与铁电、弛豫铁电相变及畴界有关的内耗和介电损耗

与铁电、弛豫铁电相变及畴界有关的内耗和介电损耗

与铁电、弛豫铁电相变及畴界有关的内耗和介电损耗
与铁电、弛豫铁电相变及畴界有关的内耗和介电损耗

弛豫性铁电压电单晶体

弛豫性铁电压电单晶体 压电网万学华整理waxeh@https://www.sodocs.net/doc/3613665007.html, 近年来,在新型压电晶体的研究中,弛豫性铁电单晶铌镁酸铅-钛酸铅[(1-x) Pb(Mg1/3Nb2/3)O3-x PbTiO3,简记为(PMNT)]和铌锌酸铅钛酸铅[(1-x)PB(Zn1/3Nb2/3)O3-x PbTiO3,简记为PZNT]以其优良的压电性能而令世人注目,1997年Park和Shrout报道,利用熔盐法成功制备了高质量的PZNT单晶,并报道了各种切型的PZNT单晶晶片介电,压电和铁电性能。如组分为0.92PZN-0.08PT的晶体,沿(001)方向的压电常数d33高达2500pC/N,为PZT材料的3~6倍;压电耦合系数K33为0.94,是现有压电材料中最高的。世界著名杂志Science评论说,这类材料将是新一代高效能超声换能器和高性能微位移器和微驱动器的理想材料,可以预期,在21世纪初叶,对弛豫性铁电单晶的理论和应用研究将会取得更大的进展。 1.弛豫铁电体 含铅弛豫钙钛矿型铁电体是ABO3型钙钛矿型化合物的一个重要分支,其化学通式为 Pb(B1,B2)O3,其中B1为低电价,大半径阳离子,如Zn2+,Ni2+,Mg2+,Fe3+,Sc3+等,B2为高电价,小半径阳离子,如Ta5+,Nb5+,W6+等,通过B位不同离子的复合,可得到一系列具有重要应用的复合钙钛矿型结构固溶体。前苏联学者Smolensky等人于20世纪50年代末首次合成的复合钙钛矿结构铌镁酸铅[Pb(Mg1/3Nb2/3)O3(PZN),Pb(Sc1/2Nb1/2)O3(PSN),Pb(Ni1/3Nb2/3)O3(PMN)等系列的固溶体,均具有与PMN类似的介电特性,后来,人们将PMN类材料称为弛豫铁电体(relaxor ferroelectrics,简称RFE),而将BaTiO3等铁电体称为普通铁电体或正常铁电体。迄今为止,研究最多和应用较广的弛豫铁电体主要是各类铅系复合钙钛矿结构的Pb(B1B2)O3系列材料,最具有代表性的有 Pb(Mg1/3Nb2/3)O3(PMN),铌锌酸铅Pb(Zn1/3Nb2/3)O3(PZN)和钽钪酸铅Pb(Sc1/2Ta1/2)O3(PST)等。 与普通铁电体相比,弛豫铁电体有两个最基本的介电特性:1.弥散相变(diffuse phase transition, 简称DPT):即从铁电到顺电的相变是一个渐变过程,没有一个确定的居里温度T c,通常将其介电常数最大值所对应的温度T m作为一个特征温度,在转变温度T m以上仍然存在较大的自发极化强度;2.频率色散:即在T m温度以下,随着频率增加,介电常数下降,损耗增加,介电峰和损耗峰向高温方向移动。 普通铁电体与弛豫铁电体介电特性的主要区别在介电温度特性,介电频率特性,自发极化强度三个方面,见表1。 由于弛豫性铁电体具有很高的介电常数,相对低的烧结温度和由“弥散相变”得出的较抵容温变化率,大的电致伸缩系数和几乎无滞后的特点,使其在多层陶瓷电容器急新型电致伸缩器

铁电体的结构相变

铁电体的结构相变 系别:材料工程系 学生姓名:牛佳伟 专业班级:材料成型与控制技术材料一班学号:20091360111 指导教师:刘永超 2011 年9 月26日

独创性声明 本人声明所呈交的毕业论文是我个人在导师指导下进行的研究工作及取得的成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:牛佳伟 日期: 2011 年 9月 26 日 毕业论文版权使用授权书 本毕业论文作者完全了解学校有关保留、使用毕业论文的规定,即:学校有权保留并向有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权郑州职业技术学院要以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本论文。 保密□,在________年解密后适用本授权书. 本论文属于 不保密□。 (请在以上方框内打“√”) 毕业论文作者签名:指导教师签名: 日期:年月日日期:年月日

目录 摘要 (Ⅰ) 1绪论 1.1 铁电体的定义 (1) 1.2 铁电梯的介电系数 (2) 1.3 铁电梯的分类 (2) 2数据仓库技术(铁电体的结构相变) 2.1有序—无序型相转变铁电体自发极化的微观理论 (4) 2.1-1 罗息盐的铁电性 (5) 2.1-2 KDP的铁电性 (5) 2.2位移型相转变铁电体自发极化的微观理论 (6) 2.2-1BaTiO3铁电性 (6) 致谢 (10)

摘要 介绍了几种用于铁电性的理论方法和模型以及相关的研究进展。用来模拟多晶生长的动力学特性,这又为我们研究铁电陶瓷的物理性质提供了一条途径。有效场方法是另一个描写铁电相变的简单而且实用的方法,这里介绍了利用这一方法处理混合铁电体的相变温度随组分的变化,以及量子起伏对铁电相变过程的影响。第一原理计算方法近几年被广泛用于研究铁电体电子结构和相关物理性质。随着计算软件和计算机硬件体系的发展,由这一方法不仅可以得到块体材料的电子结构,多数软件具有进行几何结构优化的功能,而且部分计算能够进行极化强度以及压电性质的计算。通过适当模型的构建,第一原理计算方法已经应用于表面界面、具有掺杂和氧空位等缺陷体系物理性质的研究。这种方法为实现材料性能的理论设计提供了一个有利的工具。在第一原理计算的基础上,结合分子动力学模拟、格林函数等方法,可以进行有限温度下的动力学性质研究。虽然不同层次上的理论方法和模型可以用来研究铁电体的各种物理性质,但是铁电性的许多基本物理问题远没有很好的解决,例如铁电体自发极化产生的物理机制,以及弛豫铁电体所表现出的奇异的物理性质。这些基本问题的完善解决有待于理论和实验工作者的共同努力。 关键词:铁电体;结构;

弛豫铁电单晶铌镁酸铅_钛酸铅研究前沿

0引言 压电、铁电单晶与陶瓷是一类重要的、国际竞争极为激烈的多功能材料。利用其力、热、电、光、声 和化学等方面的特殊性能,可对各类信息进行检测、转换、处理和存储,在工业、民用和国防军事等领域应用非常普遍,如医学超声波换能器、水声换能器阵列、声表面波电子器件和电光调制器等。近年来,对弛豫铁电单晶铌镁酸铅-钛酸铅[(1-x )Pb (Mg 1/3Nb 2/3)O 3-xPbTiO 3(PMN-xPT )](其中x 指晶体中PbTiO 3的含量)的基础理论与应用研究吸引了诸多科学工作者的密切关注[1-5]。主要原因在于其机电性能十分优异,例如沿晶体本征[001]方向极化的PMN-33%PT 单晶,其压电系数d33可达2820pC/N ,超过传统PZT 陶瓷四倍有余;电机耦合系数k 33能达到0.94,也远远优于传统铁电晶体或陶瓷材料。 在单晶生长方面,我国中科院上海硅酸盐研究所[2-4]、西安交通大学[5]等相关研究单位都可以批量 生产高质量的PMN-xPT 铁电单晶,且生长方法比较成熟,重复性和稳定性较好,某些方面甚至达到或超越了国际先进水平。长成晶体的尺寸、数量与质量已经接近实际应用场合对该系列单晶材料的要求,这为单晶的器件应用以及产品的商业化奠定了基础。因此,PMN-xPT 单晶极有希望成为下一代宽带、高灵敏度、高分辨率医学超声波换能器,大位移微驱动器及其它机电功能器件的核心材料。本文拟从准同型相界、全矩阵宏观机电系数、损耗和光学、声学性能等方面对PMN-xPT 铁电单晶进行介绍。1PMN-xPT 单晶的准同型相界 室温下,弛豫铁电单晶PMN-xPT 随组分x 的变化会发生组分诱导铁电相变,并存在一个三方相 (自发极化方向为[111])和四方相(自发极化方向为[001])共存的准同型相界,且单晶在相界附近的压电性能最好。准同型相界(morphotropic phase boundary ,MPB ),最早由Jaffe 等人[6]在上世纪70年代研究PZT 压电陶瓷时提出,他发现PZT 材料在Zr/Ti 比为53/47时存在一个准同型相界,相界处三方相和四方相共存。1989年,Choi 等人[7]通过研究不同组分(x=0.275-0.4)PMN-xPT 陶瓷的介电和热释电性质,确定了的相界在x=0.33附近。年,Guo 等人[8]研究了不同组分PMN-xPT 在[001]弛豫铁电单晶铌镁酸铅-钛酸铅研究前沿 张锐,孙恩伟,李秀明,王竹,项阳 (哈尔滨工业大学物理系,黑龙江哈尔滨150080) 摘要:弛豫铁电单晶铌镁酸铅-钛酸铅[(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-xPT)]具有非常优异的机电性能,吸引了诸多科研领域的学者,从基础理论与实际应用等方面开展了研究工作。该文从PMN-xPT 单晶的准同型相界、全矩阵宏观机电系数、光学与声学性能等方面,系统评述了此体系铁电材料相较于传统铁电材料的特色,介绍了PMN-xPT 单晶在国内外相关研究领域的研究进展及发展方向。理论计算与实验结果表明,PMN-xPT 单晶有望极大地提高医学超声波换能器、水声换能器、声表面波机电器件等的频带宽度、灵敏度及图像分辨率等性能。 关键词:弛豫铁电单晶;PMN-xPT ;机电系数;电光系数;声导波 作者简介:张锐(1973-),男,陕西西安人,哈尔滨工业大学物理系教授,博士生导师,从事弛豫型铁电PMN-PT 和PZN-PT 单晶测试理论与技术方法研究。 中图分类号:TM221.051文献标识码:A 文章编号:1006-2165(2009)06-0086-04收稿日期:2009-06-13 □物理学 第29卷第6期2009年11月大庆师范学院学报JOURNAL OF DAQING NORMAL UNIVERSITY Vol.29No.6 November ,2009

基于弛豫铁电单晶的1-3结构复合材料的物理性能研究

摘要 压电材料作为超声换能器的核心结构之一,其性能的优劣直接影响着换能器的综合性能,目前研究表明所有压电材料当中,具有钙钛矿结构的铁电体压电性能最佳,且弛豫铁电单晶是压电性能最高的钙钛矿铁电晶体。新型弛豫铁电单晶Pb(Mg1/3Nb2/3)O3-x PbTiO3(PMN-x PT)表现出超高的压电性能和机电耦合系数,尤其在其准同型相界附近的组分沿[001]准立方方向极化的多畴单晶(d33≈2000pC/N,d31≈-2000pC/N,k33≈0.92,k31≈0.94,k15≈0.97),然而作为换能器的发声材料,块体单晶表现出易碎,厚度方向振动模式不纯净,声阻抗高等特点从而抑制了换能器的带宽和灵敏度的提高。将有机聚合物填充到弛豫铁电单晶小柱周围形成的1-3连通结构的复合材料以其柔性好、平面机电耦合系数小、阻抗低、介电常数低,品质因数低等特点成为近年来制备换能器的最佳选择之一。到目前为止,虽关于PMN-x PT单晶自身性能的研究比较充分,而聚合物相的加入对1-3结构弛豫铁电单晶基复合材料的性能退化与单晶微观畴结构的影响,以及二者之间的关联鲜有报导,本论文将从下述几个方面开展研究。 本文结合压电材料的压电方程、声波传播方程、机电耦合系数及内能定义建立了三维的1-3结构压电复合材料的有效机电耦合系数模型,研究了填充聚合物相的弹性刚度系数及压电小柱的宽厚比(G)对的影响,得出机电耦合系数随着聚合物弹性刚度系数的降低而增加,且随着G的增加逐渐增加至饱和值k33的结论。同时,采用本文建立的压电相为一维四方小柱的模型与已有的压电相为一维圆柱小柱的模型相比较,在相同宽厚比的条件下研究小柱的横截面形状对厚度机电耦合系数的影响,研究结果表明具有相等横截面积的圆柱模型在0.3室温)和橡胶(Stycast, T g<室温),相结构为R相的PMN-0.26PT单晶和准同型相界附近的PMN-0.33PT单晶做为压电相,采用改进的切割填充法制备了1-3结构的弛豫铁电单晶基复合材料。基于PMN-x PT单晶的透明特性利用偏光显微镜(PLM)和压电力显微镜(PFM)观察单晶小柱中的畴结构,并探究极化条件、畴结构与宏观压电性能之间的关系,从而揭示边界应力对单晶畴结构的影响,并确定最优的极化条件。为进一步定量地估算聚合物相对单晶小柱产生的应力影响,结合有限元理论和静态平衡条件理论推导了在极化电场作用下,单晶小柱和聚合物相中应力分布的解析方程。随后开展了在温度场的作用下,聚合物相在升温过程

【开题报告】PIMNT单晶生长用多晶料的固相合成

开题报告 应用化学 PIMNT单晶生长用多晶料的固相合成 一、选题的背景与意义 九十年代后期以来,日、美科学家首先发现弛豫铁电单晶铌锌酸铅-钛酸铅[Pb (Zn1/2Nb2/3)-PbTiO3][PZNT]和铌镁酸铅-钛酸铅[Pb(Mg1/2Nb2/3)-PbTiO3][PMNT],准同型相界成分的PZNT、PMNT具有非常高的压电常数,跟传统的压电材料PZT铁电陶瓷 相比,其压电常数d33、机电耦合系数K33从600 pC/N和70%左右分别提高到2000pC/N 和90%,且其应变高达1%以上,比通常应变为0.1%左右的压电材料高1个数量级。由于此类弛豫铁电单晶材料的优异性能,使其在医学超声成像、声纳技术、工业无损探伤等声电转换技术领域具有广阔应用前景。 在驰豫铁电单晶材料的制备技术方面,目前中国科学院上海硅酸盐研究所和美国宾州大学在该领域中的研究处于国际前沿的领先地位,已生长出大尺寸的PZNT和PMNT晶体,但此类高含铅铁电晶体生长存在坩埚侵蚀、熔点较高、晶体均匀性等固有技术难题,尚难以实现此类晶体的稳定批量生长。从性能角度看,PZNT和PMNT晶体的居里温度分别为150o C、160o C,属于居里温度偏低,在某些实际使用环境下其温度稳定性不够,导致器件会逐渐老化,通常其使用温度不宜超过85o C。近年来材料学家还试图寻找居里温度更高的驰豫铁电单晶,稍后发现了铌铟酸铅-钛酸铅(PINT),其居里温度高达240o C,然而,PINT晶体须从添加大量助熔剂PbO的体系中进行生长,熔体对任何材料 的坩埚的侵蚀作用都极其严重,且晶体生长的排杂过程也相当困难,造成所生长晶体尺寸小,且晶体均匀性很差。 鉴于PZNT和PMNT晶体的居里温度偏低,而PINT晶体生长又极其困难的现状,本课题尝试将PMNT晶体与PINT晶体加以混合,以生长准同型相界成分的铌铟酸铅-铌镁 酸铅-钛酸铅(PIMNT),其化学式为0.24Pb(In1/2Nb1/2)O3- 0.42Pb(Mg1/2Nb2/3)O3- 0.34PbTiO3。前期研究表明,PIMNT晶体的析晶特性相似于PMNT晶体而不同于PINT晶体,PIMNT晶体完全可以采用熔体坩埚下降法进行生长,其晶体配合料不必添加助熔剂PbO,甚至可以采用PMNT晶体作为籽晶进行定向生长,PIMNT晶体的熔点还从PMNT晶体的1302o C降低到1276o C,相应的晶体生长温度也可以降低26o C左右,这样有助于减缓熔体对铂坩埚的侵蚀作用,因此大尺寸PIMNT晶体生长的固有困难比PMNT晶体还有所

铅基应用总结

铅基压电陶瓷的应用总结 1、PMN-PT驰豫铁电单晶及其超声换能器性能研究---无机材料, 2001,11---李国荣, 罗豪匙, 殷庆瑞中国科学院上海硅酸盐研究所无机功能材料开放实验室, 本实验室利用Bridgemnt方法已成功制备出可实用的大尺寸PMN-PT压电单晶,用这种新型的压电材料成功地获得了高分辨率的电 声像。为材料研究者提供一些有关PMN-PT超声换能器性能, 有助改善 材料性能来提高压电器件性能, 同时也向应用研究者展示了PMN-PT 单晶的优越压电和机电性能使我国不仅在PMN-PT驰豫铁电单晶材料制 备和研究, 而且在PMN-PT相关的压电器件研究也能处在国际领先的水 平。(1-x)Pb(Mg1/3Nb2/3)—xPbTiO3驰豫铁电单晶材料高的压电和 机电耦合系数d33—3000/N,K P---94% 已远远超出目前使用的压电材料, 是50年来铁电领域中具有重大突破的新型材料, 可望大大提高压电器 件在医学超声成像、水下声纳、无损检测、固态大位移量压电驱动器 等的性能。 2、PMN-PT 单晶及其在高频换能器中的应用研究 刘大安*,陈景,周丹,赵祥永,罗豪甦 中国科学院上海硅酸盐研究所 研究了PMN-29%PT 新型弛豫铁电单晶的长度伸缩振动模式在其最佳切型下的介电、 压电和弹性系数随温度的变化。对于长度伸缩振动模式,当温度从室温升高到80℃时,机 电耦合系数k31 从91.0%增加到93.5%,压电应变系数d31 从1900pCN-1 增加到4500pCN-1 。 当温度超过80℃后,k31 和d31 开始迅速下降。鉴于温度稳定性研究结果,得出对于长度伸 缩振动模式,其使用温度在80℃以下。使用高压性能PMN-PT 单晶成功制备中心频率为10~20MHZ 的高频换能器。使用PiezoCAD并结合KLM 模型对高频换能器制备参数进行理论模拟 和计算,重新设计换能器机构,制备了合适的匹配层及背衬材料,成功制作了中心频率为10~20MHZ 的高频探头。表征了换能器的脉冲回拨频率响应和相对脉冲回波灵敏度等特性,

铁电体

铁电体 铁电体是指可以产生自发极化并且自发极化可以随外电场的变化而发生转向的电介质材料,铁电体包含于压电体,压电体是指能够产生压电效应及逆压电效应的电介质材料,晶体具有压电性的前提是点群结构是非中心对称的。结构中心对称的晶体发生形变后,其正电荷和负电荷中心仍然重合,不具备产生压电效应及逆压电效应的条件。因为正负离子产生相互位移的结果是相互抵消的,所以只有不具备中心对称结构的晶体才具有压电效应可以成为压电晶体,但并不是具有压电效应的点群结构都可以产生自发极化强度,因为很多晶体的压电效应都是在某个特定方向产生的,说明该晶体的点群结构只在某个特定方向上非中心对称。这就是说所有铁电体都是压电体,但压电体不一定是铁电体,比如石英,四硼酸锂等著名的压电体都不是铁电体[12]。 图1-2 电介质晶体分类 在晶体学的32种点群中,有21种点群是非中心对称的,它们分别是1、2、m、222、2m m、4、4、422、4m m、3、32、422、3m、6、6、622、6m m、6m2、23、43m、432。在这21种点群中,属于432点群的晶体至今未发现压电效应,这可能是由于432点群具有很高的轴对称性造成的,在这21种非中心对称的点群中有10种点群的晶体可能具有自发极化,它们是1、2、m、m m2、4、4m m、3、3m、6、6m m,并且在这10种点群晶体中自发极化还会随着温度的变化而发生改变,如果热胀冷缩效应足够大,那么温度的变化会导致应变的产生,这就是热释电效应,所以铁电体一定是属于可以产生自发极化的这10个点群范围内的[13],图1-2中给出了几种晶体之间的关系。 铁电体的本质特性是可以产生自发极化,自发极化的产生是由于晶胞内部正负电荷中心不重叠而形成电偶极矩的体现,铁电体呈现自发极化状态,在其正负端面分别出现一层符号相反的束缚电荷使其净电压发生变化。当铁电体受到机械束缚或外界条件发生变化时自发极化状态也将发生变化,所以自发极化的状态是不稳定的,也不是一致有序的。在铁电体的研究理论中就将铁电体内部分为许多小区域,每个小区域内的自发极化具有相同的方向,不同小区域内自发极化的方

压电材料的研究

摘要:本文阐述了各类新型压电材料的性能和应用。从压电材料的压电效应入手,介绍了压电材料的分类及发展应用。针对不同类型的压电材料在实际生活中的应用情况,概述了近年压电材料的研究状况,并系统地简介了压电材料在各个领域的应用和发展。 关键词:压电材料压电效应压电材料的分类研究方向实际应用压电材料的应用遍及大家日常生活的各个角落,人们几乎每天都在应用压电材料。香烟、电热水器、汽车发动机等的点火装置要用到压电点火器;电子手表、声控门、电话等要用到压电谐振器或者是蜂鸣器;收音机要用到压电微音器、压电扬声器;数码相机要用到压电马达等等。 压电材料不仅在工业和民用产品上使用广泛,在军事上也有大量应用。雷达、军用通讯和导航设备等都需要大量的压电陶瓷滤波器和压电SAW滤波器。 压电材料还应用于结构缺陷的识别、柔性结构振动的控制以及医学上的免疫检测、人工耳蜗等。 一、压电材料与压电效应 1880年,法国物理学家居里兄弟发现:把重物放在石英晶体上,晶体的表面会产生电荷,产生的电荷量与其承受的压力成比例,这一发现被称为压电效应。随即,居里兄弟又发现了逆压电效应:即在外电场作用下,压电体会产生形变。 压电效应表现为:当某些电介质在一定方向上受到外力的作用而发生形变时,其内部会发生极化现象,同时在它的两端出现正负相反的电荷,当作用力的方向改变时,电荷的极性也随之改变,受力所产生的电荷量与外力的大小成正比。当去除外力后,它又会恢复到不带电的状态,这种现象称为正压电效应。正压电效应是把机械能转换为电能,逆压电效应是把电能转换为机械能。 二、压电材料的分类 我们可以将压电材料分为以下六类: (1)单晶材料,如石英、磷酸二氢氨等;

铁电体的电滞回线

铁电体电滞回线及居里温度的测量 自从1921年了J.Valasek 发现罗息盐是铁电体以来,迄今为止陆续发现的新铁电材料已达一千种以上。铁电材料不仅在电子工业部门有广泛的应用,而且在计算机、激光、红外、徽波、自动控制和能源工程中都开辟了新的应用领域。电滞回线是铁电体的主要特征之一,电滞回线的测量是检验铁电体的一种主要手段。通过电滞回线的测量可以获得铁电体的一些重要参数。在居里温度处,铁电材料的许多物理性质将发生突变,因此居里温度的测量对研究铁电体的性质有重要的的意义。通过本实验可以了解铁电体的基本特性,掌握电滞回线及居里温度的一种测量方法。 一、实验原理 1. 电滞回线。我们知道,全部晶体按其结构的对称性可以分成32类(点群)。32类中有10类在结构上存在着唯一的“极轴”,即此类晶体的离子或分子在晶格结构的某个方向上正电荷的中心与负电荷的中心重合。所以,不需要外电场的作用,这些晶体中就已存在着固有的偶极矩S P ,或称为存在着“自发极化”。 如果对具有自发极化的电介质施加一个足够大(如kV/cm)的外电场,该晶体的自发极化方向可随外电场而反向,则称这类电介质为“铁电体”。众所周知,铁磁体的磁化强度与磁场的变化有滞后现象,表现为磁滞回线。正如铁磁体一样铁电体的极化强度随外电场的变化亦有滞后现象,表现为“电滞回线”,且与铁电体的磁滞回线十分相似。铁电体其它方面的物理性质与铁磁体也有某种对应的关系。比如电畴对应于磁畴。激发极化方向一致的区域(一般μm 10108--)称为铁电畴,铁电畴之间的界面称为磁壁。两电畴反向平行排列的边界面称为180°磁壁,两电畴互相垂直的畴壁称为90°畴壁。在外电场的作用下,电畴取向态改变180°的称为反转,改变90°的称为90°旋转。晶体中每个电畴方向都相物的则称为单畴,若每个电畴的方向各不相同,则称为多畴。 电滞回线是铁电体的主要特征之一,电滞回线的测量是 检验铁电体的一种主要手段。通过电滞回线的测量可以获得 铁电体的自发极化强度s P ,剩场极化强度r P ,矫顽场C E 及 铁电耗损等重要参数,如图1所示。该图是典型的电滞回线。 当外电场施加于晶体时,极化强度方向与电场方向平行的电 畴变大,而与之反平行方向的电畴则变小。随着外电场的 增加,极化强度P 开始沿图1中OA 段变化,电场继续增 大,P 逐渐饱和,如图中的BC 段所示,此时晶体已成为单畴。将BC 段外推至电场0=E

材料的铁电性能综述

材料的铁电性能综述 摘要: 回顾了铁电现象的发现及发展,简述了铁电性的机理,描述了铁电材料应用现状与前景,并介绍了几类前景很好的铁电材料。指出目前对于铁电性的还需要进行更多的和更深入全面的研究。 关键词:铁电性,电畴,铁电薄膜,存储器 前言: 铁电材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。铁电材料是一类重要的功能材料,是近年来高新技术研究的前沿和热点之一。 在一些电介质晶体中,晶胞的结构使正负电荷重心不重合而出现电偶极矩,产生不等于零的电极化强度,使晶体具有自发极化,晶体的这种性质叫铁电性(ferroelectricity)。 铁电性: 铁电性是某些绝缘体材料中在外加电场的作用下自发极化可以被反转的特性。多数材料的极化是与外加电场线性成正比的,非线性效应是不显著的。这种极化叫做电介质极化。有些称作顺电体的材料,线性的极化效应更加显著。于是与极化曲线斜率相对应的介电常数是以一个外加电场的函数。除了非线性效应以外,铁电材料中还存在自发极化。这种材料称作焦电材料。铁电材料与其不同之处在于它的自发极化可以在外加电场作用下被反转,产生一个电滞归线。一般来说,材料的铁电性只存在于某一相变温度以下,称为居里温度。在这个温度以上,材料变为顺电体。 铁磁体中的原子有固定的磁偶极矩,这些磁矩自发排列起来。自发排列的原因是固体中电子的量子力学效应。铁磁体的居里温度指向顺磁体转变的温度,同理对铁电体,指材料不再是铁电体的温度。对于一块未极化铁电晶体,电畴随机

排列,净极化强度为零。当外加一个电场时,电畴同时向电场方向转动,当电场足够强时,全部电畴沿电场方向排列一致,这时晶体变成一个大电畴,处于极化饱和状态。当扭转电场时,极化反转但不回零,晶体获得一个剩余极化强度PR,当电场被扭转到矫顽场Ec时,剩余极化强度被去除。铁电相是一个相当严格的状态,大多数材料都是顺电状态,顺电相指即使没有固有电偶极子,电场也可诱发极化。而铁电体是有极性的,他们因为晶胞的原子排列而拥有一个固有电偶极矩。晶体有32个群,其中,21种是非中心对称的。在他们之中,20中是压电体,即压力诱发极化。而在这20种之中只有10种在无压力下是有极性的,即热释电体,温度变化导致热膨胀,热膨胀导致极化强度变化。最后,在这当中,当极化强度还可以被电场重新定向时,晶体才是铁电体。 铁电相转变是一种结构变化,它反映出晶体保持自发极化的能力,并由晶体惯用元胞中的离子相对位移引起。铁电相变发生在温度TC,这与铁磁体的居里温度相似。在具体点以上,晶体通常是中心对称的顺电相,居里点以下就不是顺电系相了,而表现出铁电行为。在铁电相,晶体中至少有一组离子处在双势阱中,两个位置能量相等。在TC以上,粒子在双势阱中有足够的动能前后振动并越过分隔势阱的势垒,所以原子时间上的平均位置在势阱的中间。 电畴和铁电极化,铁电行为是由在铁电相时至少有一组离子拥有双势阱引起的。在一个局部区域内,所有离子均位于势阱的同一侧,这个局部区域叫作电畴。如果铁电相变在一个理想晶体中随着温度的一个极小下降而发生(保证整个晶体的热力学平衡)晶体被单畴化。晶体中所有离子热力学耦合并处于双势阱的同一侧,位于任一侧的几率相等。在真实的情况中,晶体中足够远的不同区域独立地形成电畴,而且反向不同。 在公式 公式涉及电位移矢量,电场强度和极化强度,其中既包括外场引起极化,还包括固有极化。 自由电荷满足泊松方程,,所以 在一个理想的铁电晶体中,,这和普通电介质一样。对于一个真实的晶体,在晶体表面为0,和大块晶体在缺陷处测得的值不同。

铁电性能综合测试

铁电薄膜的铁电性能测量 引言 铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可能随电场而转向.铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里-外斯(Curit-Weiss)定律。铁电相与顺电相之间的转变通常称为铁电相变,该温度称为居里温度或居里点Tc。铁电体即使在没有外界电场作用下,内部也会出现极化,这种极化称为自发极化。自发极化的出现是与这一类材料的晶体结构有关的。 晶体的对称性可以划分为32种点群。在无中心对称的21种晶体类型种除432点群外其余20种都有压电效应,而这20种压电晶体中又有10种具热释电现象。热释电晶体是具有自发极化的晶体,但因表面电荷的抵偿作用,其极化电矩不能显示出来,只有当温度改变,电矩(即极化强度)发生变化,才能显示固有的极化,这可以通过测量一闭合回路中流动的电荷来观测。热释电就是指改变温度才能显示电极化的现象,铁电体又是热释电晶体中的一小类,其特点就是自发极化强度可因电场作用而反向,因而极化强度和电场E 之间形成电滞回线是铁电体的一个主要特性。 自发极化可用矢量来描述,自发极化出现在晶体中造成一个特殊的方向。晶体红,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生位移,使电荷正负中心不重合,形成电偶极矩。整个晶体在该方向上呈现极性,一端为正,一端为负。在其正负端分别有一层正和负的束缚电荷。束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高,在受机械约束时,伴随着自发极化的应变还将使应变能增加,所以均匀极化的状态是不稳定的,晶体将分成若干小区域,每个小区域称为电畴或畴,畴的间界叫畴壁。畴的出现使晶体的静电能和应变能降低,但畴壁的存在引入了畴壁能。总自由能取极小值的条件决定了电畴的稳定性。 参考资料 [1]钟维烈,铁电物理学,科学出版社,1996。 [2]干福熹,信息材料,天津大学出版社,2000 [3]J.F.Scoot,Ferroelectric Memories,Springer,2000。 实验目的 一、了解什么是铁电体,什么是电滞回线及其测量原理和方法。 二、了解铁薄膜材料的功能和应用前景。 实验原理 一、铁电体的特点 1.电滞回线 铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线

介电测量技术试验指导书试验一铁电体介电常数与介电温谱测试一

介电测量技术实验指导书: 实验一铁电体介电常数与介电温谱测试 一、实验目的 1.掌握介电常数的定义及测量原理; 2.熟悉介电测量设备的使用方法; 3.了解几种不同的铁电体的介电温谱及其相变行为; 4.掌握数据处理方法和对数据的分析。 二、实验原理 介电常数是表征介质极化能力的一个参数,它正比于单位电场在介质中诱导的电位移大小。一般说来,固体介质中存在的极化机制有电子位移极化、离子位移极化、偶极取向极化和空间电荷极化四种类型。决定于具体的极化机制,固体介质的介电常数可以处于从2到104的宽广范围内。对于铁电体而言,极化的情况相比较于一般介质要复杂得多,既有极化的非线性,又有因为铁电畴的存在而带来的不可逆过程和滞后效应的影响。 根据测量时电场强弱与计算范围的大小,铁电体介电常数可以分为三种:小信号介电常数,交流介电常数以及微分介电常数。如表1所示。 表1铁电体介电常数的分类 测量电场计算范围公式测量方法 小信号介电常数 (可逆介电常数) 小信号交变电场小信号范围ε=ΔP/ΔE LCR 交流介电常数 (有效/等效介电常数)强交流电场大范围内平均量ε=P/E 电滞回线 西林电桥 微分介电常数强交变电场局部小范围ε=dP/dE 电滞回线微分 在本实验中只要求测量小信号介电常数及其温度依赖关系。 低频下测量铁电材料的小信号介电常数的方法主要是应用平行板电极电容器的测量原理,通过测量样品的电容量,经计算求得的。若忽视平行板电容器的边缘效应,电容量与介电常数的关系如下:

d A C r εε0=(1) 式中C 为被测样品在低频下的电容量,A 为平行板重叠部分面积,d 为两平行板之间的距离,0ε=8.85×10-12(F/m )为真空介电常数,r ε为相对介电常数。由 A Cd r 0εε= 即可计算出相对介电常数。平行板电容器一般要求样品的横向尺寸(直径/边长)要大于10倍样品厚度。 铁电体的介电常数温谱曲线携带了铁电相变的信息,对于一级相变和二级相变铁电体,其相变温度(T c )以上的介温曲线满足居里外斯定律 T T C r ?= ε(2) 其中,一级相变铁电体满足T 0

偶极矩介电常数汇总

溶液法测定极性分子的偶极矩 一、实验目的 了解电介质极化与分子极化的概念,以及偶极矩与分子极化性质的关系。掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术,用溶液法测定乙酸乙酯的偶极矩。 二、实验原理 德拜(Peter Joseph William Debye )指出,所谓极性物质的分子尽管是电中性的,但仍然拥有未曾消失的电偶极矩,即使在没有外加电磁场时也是如此。分子偶极矩的大小可以从介电常数的数据中获得,而对分子偶极矩的测量和研究一直是表征分子特性重要步骤。 1、偶极矩、极化强度、电极化率和相对电容率(相对介电常数) 首先定义一个电介质的偶极矩(dipole moment )。考虑一簇聚集在一起的电荷,总的净 电荷为零,这样一堆电荷的偶极矩p 是一个矢量,其各个分量可以定义为 ∑∑∑===i i i z i i i y i i i x z q p y q p x q p 式中电荷i q 的坐标为),,(i i i z y x 。偶极矩的SI 制单位是:m C ?。 将物质置于电场之中通常会产生两种效应:导电和极化。导电是在一个相对较长的(与分子尺度相比)距离上输运带电粒子。极化是指在一个相对较短的(小于等于分子直径)距离上使电荷发生相对位移,这些电荷被束缚在一个基本稳定的、非刚性的带电粒子集合体中(比如一个中性的分子)。 一个物质的极化状态可以用矢量P 表示,称为极化强度(polarization )。矢量P 的大小 定义为电介质内的电偶极矩密度,也就是单位体积的平均电偶极矩,又称为电极化密度,或 电极化矢量。这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。P 的国际单位制 度量单位是2 -?m C 。为P 取平均的单位体积当然很小,但一定包含有足够多的分子。在一个微小的区域内,P 的值依赖于该区域内的电场强度E 。 在这里,有必要澄清一下物质内部的电场强度的概念。在真空中任意一点的电场强度E 的定义为:在该点放置一个电荷为dq 的无限微小的“试验电荷”,则该“试验电荷”所受

相关主题