搜档网
当前位置:搜档网 › 场效应管在开关电路中的应用

场效应管在开关电路中的应用

场效应管在开关电路中的应用
场效应管在开关电路中的应用

场效应管在开关电路中的应用

场效应管在mpn中,它的长相和我们前面讲的三极管极像,所以有不少修mpn的朋友好长时间还分不清楚,统一的把这些长相相同的三极管、场效应管、双二极管、还有各种稳压IC统统称作“三个脚的管管”,呵呵,如果这样麻木不分的话,你的维修技术恐怕很难快速提高的哦!

好了,说到这里场效应管的长相恐怕我就不用贴图了,在电路图中它常用

表示,关于它的构造原理由于比较抽象,我们是通俗化讲它的使用,所以不去多讲,由于根据使用的场合要求不同做出来的种类繁多,特性也都不尽相同;我们在mpn 中常用的一般是作为电源供电的电控之开关使用,所以需要通过电流比较大,所以是使用的比较特殊的一种制造方法做出来了增强型的场效应管(MOS型),它的电路图符号:

仔细看看你会发现,这两个图似乎有差别,对了,这实际上是两种不同的增强型场效应管,第一个那个叫N沟道增强型场效应管,第二个那个叫P沟道增强型场效应管,它们的的作用是刚好相反的。前面说过,场效应管是用电控制的开关,那么我们就先讲一下怎么使用它来当开关的,从图中我们可以看到它也像三极管一样有三个脚,这三个脚分别叫做栅极(G)、源极(S)和漏极(D),mpn中的贴片元件示意图是这

个样子:

1脚就是栅极,这个栅极就是控制极,在栅极加上电压和不加上电压来控制2脚和3脚的相通与不相通,N沟道的,在栅极加上电压2脚和3脚就通电了,去掉电压就关断了,而P沟道的刚好相反,在栅极加上电压就关断(高电位),去掉电压(低电位)就相通了!

我们常见的2606主控电路图中的电源开机电路中经常遇到的就是P沟道MOS管:

这个图中的SI2305就是P沟道MOS管,由于有很多朋友对于检查这一部分的故障很茫然,所以在这里很有必要讲一下它的工作原理,来加深一下你的印象!

图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,3v稳压IC输入脚得不到电压所以就不能工作不开机!这时,如果我们按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,三极管Q2的基极得到一个正电位,三极管导通(前面讲到三极管的时候已经讲过),由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的

电压就直接入了地,Q1的栅极就从高电位变为低电位,Q1导通电就从Q1同过加到3v 稳压IC的输入脚,3v稳压IC就是那个U1输出3v的工作电压vcc供给主控,主控通过复位清0,读取固件程序检测等一系列动作,输处一个控制电压到PWR_ON再通过R24、R13分压送到Q2的基极,保持Q2一直处于导通状态,即使你松开开机键断开Q1的基极电压,这时候有主控送来的控制电压保持着,Q2也就一直能够处于导通状态,Q1就能源源不断的给3v稳压IC提供工作电压!SW1还同时通过R11、R30两个电阻的分压,给主控PLAY ON脚送去时间长短、次数不同的控制信号,主控通过固件鉴别是播放、暂停、开机、关机而输出不同的结果给相应的控制点,以达到不同的工作状态!

结型场效应管(N沟道JFET)工作原理:

可将N沟道JFET看作带“人工智能开关”的水龙头。这就有三部分:进水、人工智能开关、出水,可以分别看成是JFET的 d极、g 极、s极。

“人工”体现了开关的“控制”作用即vGS。JFET工作时,在栅极与源极之间需加一负电压(vGS<0),使栅极、沟道间的PN结反偏,栅极电流iG≈0,场效应管呈现高达107Ω以上的输入电阻。在漏极与源极之间加一正电压(vDS>0),使N沟道中的多数载流子(电子)在电场作用下由源极向漏极运动,形成电流iD。iD的大小受“人工开关”vGS的控制,vGS由零往负向增大时,PN结的耗尽层将加宽,导电沟道变窄,vGS绝对值越大则人工开关越接近于关上,流出的水(iD)肯定越来越小了,当你把开关关到一定程度的时候水就不流了。

“智能”体现了开关的“影响”作用,当水龙头两端压力差(vDS)越大时,则人工开关自动智能“生长”。vDS值越大则人工开关生长越快,流水沟道越接近于关上,流出的水(iD)肯定越小了,当人工开关生长到一定程度的时候水也就不流了。理论上,随着vDS逐渐增加,一方面沟道电场强度加大,有利于漏极电流iD增加;另一方面,有了vDS,就在由源极经沟道到漏极组成的N型半导体区域中,产生了一个沿沟道的电位梯度。由于N沟道的电位从源端到漏端是逐渐升高的,所以在从源端到漏端的不同位置上,漏极与沟道之间的电位差是不相等的,离源极越远,电位差越大,加到该处PN结的反向电压也越大,耗尽层也越向N型半导体中心扩展,使靠近漏极处的导电沟道比靠近源极要窄,导电沟道呈楔形。所以形象地比喻为当水龙头两端压力差(vDS)越大,则人工开关自动智能“生长”。

当开关第一次相碰时,就是预夹断状态,预夹断之后id趋于饱和。

当vGS>0时,将使PN结处于正向偏置而产生较大的栅流,破坏了它对漏极电流iD的控制作用,即将人工开关拔出来,在开关处又加了一根进水水管,对水龙头就没有控制作用了。

绝缘栅场效应管(N沟道增强型MOSFET)工作原理:

可将N沟道MOSFET看作带“人工智能开关”的水龙头。相对应情况同JFET。与JFET不同的的是,MOSFET刚开始人工开关是关着的,水流流不出来。当在栅源之间加vGS>0, N型感生沟道(反型层)产生后,人工开关逐渐打开,水流(iD)也就越来越大。iD的大小受“人工开关”vGS的控制,vGS由零往正向增大时,则栅极和P型硅片相当于以二氧化硅为介质的平板电容器,在正的栅源电压作用下,介质中便产生了一个垂直于半导体表面的由栅极指向P型衬底的电场,这个电场排斥空穴而吸引电子,P型衬底中的少子电子被吸引到衬底表面,这些电子在栅极附近的P型硅表面便形成了一个N型薄层,即导通源极和漏极间的N型导电沟道。栅源电压vGS越大则半导体表面的电场就越强,吸引到P型硅表面的电子就越多,感生沟道将越厚,沟道电阻将越小。相当于人工开关越接近于打开,流出的水(iD)肯定越来越多了,当你把开关开到一定程度的时候水流就达到最大了。MOSFET的“智能”性与JFET原理相同,参上。

绝缘栅场效应管(N沟道耗尽型MOSFET)工作原理:

基本上与N沟道JFET一样,只是当vGS>0时,N沟道耗尽型MOSFET由于绝缘层的存在,并不会产生PN结的正向电流,而是在沟道中感应出更多的负电荷,使人工智能开关的控制作用更明显。

开关只有两种状态通和断,三极管和场效应管工作有三种状态,1、截止,2、线性放大,3、饱和(基极电流继续增加而集电极电流不再增加)。使晶体管只工作在1和3状态的电路称之为开关电路,一般以晶体管截止,集电极不吸收电流表示关;以晶体管饱和,发射极和集电极之间的电压差接近于0V时表示开。开关电路用于数字电路时,输出电位接近0V时表示0,输出电位接近电源电压时表示1。所以数字集成电路内部的晶体管都工作在开关状态。

晶体管饱和的条件, V(工作电压) / Rc(负载电阻阻值) = Ic, Ic / β < Ib . 晶体管截止的条件, Ic ≈ 0; Ib ≤ 0 (基极不能悬浮至少有电阻接地,必要时可用反偏置)

N沟道场效应管NFET,DS间加正向电压,GS极间加电压Vgs,

例如Vgs-Vdson=5v,则NFET导通,等效于三极管的饱和导通状态。做压控线性电阻和无触点的、闭合状态的电子开关。

当Vgs小于夹断电压时,则NFET截止。做无触点的、接通状态的电子开关

第3章 场效应管及其放大电路习题解

第3章场效应管及其基本放大电路 3.1 教学内容与要求 本章介绍了场效应管的结构、类型、主要参数、工作原理及其基本放大电路。教学内容与教学要求如表1.1所示。 表3.1 第3章教学内容与要求 3.2 内容提要 3.1.1场效应晶体管 1.场效应管的结构及分类 场效应管是利用输入电压产生的电场效应来控制输出电流的,是电压控制型器件。工作过程中起主要导电作用的只有一种载流子(多数载流子),故又称单极型晶体管。场效应管有两个PN结,向外引出三个电极:漏极D、栅极G和源极S。 场效应管的分类如下: 2.场效应管的工作原理 (1)栅源控制电压的极性 对JFET,为保证栅极电流小,输入电阻大的特点,栅源电压应使PN结反偏。N沟道JFET:U GS<0;P 沟道JFET:U GS>0。 对增强性MOS管,N沟道增强型MOS管,参加导电的是电子,栅源电压应吸引电子形成反型层构成导

电沟道,所以U GS >0;同理,P 沟道增强型MOS 管,U GS <0。 对耗尽型MOS 管,因二氧化硅绝缘层里已经掺入大量的正离子(或负离子:N 沟道掺入正离子;P 沟道掺入负离子),吸引衬底的电子(或空穴)形成反型层,即U GS =0时,已经存在导电沟道,所以,栅源电压U GS 可正可负。 (2) 夹断电压U GS(off)和开启电压U GS(th) 对JFET 和耗尽型MOS 管,当|U G S |增大到一定值时,导电沟道就消失(称为夹断),此时的栅源电压称为夹断电压U GS(off)。N 沟道场效应管U GS(off ) <0;P 沟道场效应管U GS(off ) >0。 对增强型MOS 管,当?U GS ?增加到一定值时,才会形成导电沟道,把开始形成反型层的栅源电压称为开启电压U GS(th)。N 沟道增强型MOS 管U GS(th ) >0;P 沟道增强型MOS 管U GS(th ) <0。 (3) 栅源电压u GS 对漏极电流i D 的控制作用 场效应管的导电沟道是一个可变电阻,栅源电压u GS 可以改变导电沟道的尺寸和电阻的大小。当u DS =0时,u GS 变化,导电沟道也变化但处处等宽,此时漏极电流i D =0;当u DS ≠0时,产生漏极电流,i D ≠0,沿沟道产生了电位梯度使导电沟道变得不等宽。 当u GS 一定,?u DS ?增大到一定大小时,在漏极一侧导电沟道被夹断,称为预夹断。 导电沟道预夹断前,?u DS ?增大,?i D ?增大,漏源间呈现电阻特性,但u GS 不同,对应的电阻不同。此时,场效应管可看成受u GS 控制的可变电阻。 导电沟道预夹断后,?u DS ?增大,i D 几乎不变。但是,随u GS 变化,i D 也变化,对应不同的u GS ,i D 的值不同。即i D 几乎仅仅决定于u GS ,而与u DS 无关。栅源电压u GS 的变化,将有效地控制漏极电流i D 的变化,即体现了栅源电压u GS 对漏极电流i D 的控制作用。 3.效应管的伏安特性 效应管的伏安特性有输出特性和转移特性。 (1) 输出特性:指当栅源电压u GS 为常量时,漏极电流i D 与漏源电压u DS 之间的关系,即 常数==GS )(DS D u u f i (3-1) 场效应管有四个工作区域: 可变电阻区:导电沟道预夹断前,此时场效应管是一个受u GS 控制的可变电阻。 恒流区:导电沟道预夹断后,此时漏极电流i D 仅决定于u GS ,场效应管相当于一个栅源电压控制的电流源。场效应管作为放大器件应用时,都工作在该区域。 截止区:导电沟道被全部夹断,i D ≈0。 击穿区:?u DS ?太大,靠近漏区的PN 结被击穿,i D 急剧增加,很快会烧毁管子。不允许场效应管工作在击穿区。 (2) 转移特性:指当漏源电压u DS 为常量时,漏极电流i D 与栅源电压u GS 之间的关系,即 常数 ==DS )(GS D u u f i (3-2) 转移特性表示栅源电压u GS 对漏极电流i D 的控制作用。 4.场效应管的主要参数 (1) 直流参数:夹断电压U GS (off );开启电压U GS(th);饱和漏极电流I DSS ;直流输入电阻R GS(DC)。 (2) 交流参数:低频跨导g m ;极间电容。 (3) 极限参数:最大漏极电流I DM ;最大漏源电压U (BR)DS ; 最大栅源电压U (BR)GS ;最大耗散功率P DM 。 3.1.2场效应管放大电路 1. 场效应管的低频小信号模型 场效应管的低频小信号模型,如图3-1(a)所示,简化的低频小信号模型,如图3-1(b)所示。

场效应管在开关电路中的应用

场效应管在开关电路中的应用 场效应管在mpn中,它的长相和我们前面讲的三极管极像,所以有不少修mpn的朋友好长时间还分不清楚,统一的把这些长相相同的三极管、场效应管、双二极管、还有各种稳压IC统统称作“三个脚的管管”,呵呵,如果这样麻木不分的话,你的维修技术恐怕很难快速提高的哦! 好了,说到这里场效应管的长相恐怕我就不用贴图了,在电路图中它常用 表示,关于它的构造原理由于比较抽象,我们是通俗化讲它的使用,所以不去多讲,由于根据使用的场合要求不同做出来的种类繁多,特性也都不尽相同;我们在mpn 中常用的一般是作为电源供电的电控之开关使用,所以需要通过电流比较大,所以是使用的比较特殊的一种制造方法做出来了增强型的场效应管(MOS型),它的电路图符号: 仔细看看你会发现,这两个图似乎有差别,对了,这实际上是两种不同的增强型场效应管,第一个那个叫N沟道增强型场效应管,第二个那个叫P沟道增强型场效应管,它们的的作用是刚好相反的。前面说过,场效应管是用电控制的开关,那么我们就先讲一下怎么使用它来当开关的,从图中我们可以看到它也像三极管一样有三个脚,这三个脚分别叫做栅极(G)、源极(S)和漏极(D),mpn中的贴片元件示意图是这

个样子: 1脚就是栅极,这个栅极就是控制极,在栅极加上电压和不加上电压来控制2脚和3脚的相通与不相通,N沟道的,在栅极加上电压2脚和3脚就通电了,去掉电压就关断了,而P沟道的刚好相反,在栅极加上电压就关断(高电位),去掉电压(低电位)就相通了! 我们常见的2606主控电路图中的电源开机电路中经常遇到的就是P沟道MOS管: 这个图中的SI2305就是P沟道MOS管,由于有很多朋友对于检查这一部分的故障很茫然,所以在这里很有必要讲一下它的工作原理,来加深一下你的印象! 图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,3v稳压IC输入脚得不到电压所以就不能工作不开机!这时,如果我们按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,三极管Q2的基极得到一个正电位,三极管导通(前面讲到三极管的时候已经讲过),由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的

利用场效应管实现放大电路

利用场效应管实现放大电路 一、设计题目 设计一个场效应管放大器,要求电压增益大于40,输出阻抗小与500欧姆,电源电压15V,输出信号峰峰值不小于8 V,非线性失真度小于10%。 二、技术参数要求 1, 要求电压增益大于40 2,输出阻抗小与500欧姆 3,电源电压15V 4,输出信号峰峰值不小于8 V 5,非线性失真度小于10% 三、所用设备、仪器及清单 示波器一个、信号发生器一个、直流稳压电源一个、数字万用表一个、3DJ6F场效应管三个、47μF电容五个、面包板一个、电阻若干。 四、电路图 五、原理介绍

(1)转移特性栅极电压对漏极电流的控制作用称为转移特性,若用曲线表示,该曲线就称为转移特性曲线。它的定义是:漏极电压UDS恒定时,漏极电流ID同栅极电压UGS的关系,即结型场效应管的转移特性曲线如图所示。图中的Up为夹断电压,此时源极与漏极间的电阻趋于无穷大,管子截止。在UP电压之后,若继续增大UGS就可能会出现反向击穿现象而损坏管子。 (2)输出特性UDS与ID的关系称为输出特性,若用曲线表示,该曲线就称为输出特性曲线。它的定义是:当栅极电压UGS恒定时,ID随UDS的变化关系,即结型场效应管的输出特性曲线如图所示。结型场效应管的输出特性曲线分为三个区,即可变电阻区、饱和区及击穿区。当UDS较小时,是曲线的上升部分,它基本上是通过原点的一条直线,这时可以把管子看成是一个可变电阻。当UDS增加到一定程度后,就会产生预夹断,因此尽管UDS再增加,但IS基本不变。因此预夹断点的轨迹就是两种工作状态的分界线。把曲线上UDS=UGS-UP的点连接起来,便可得到预夹断时的轨迹。轨迹左边对应不同UGS值的各条直线,通称为可变电阻区;

场效应管放大电路

第四章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 4.1 结型场效应管 4.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对应关系: 栅极g—基极b;源极s—发射极e;漏极d—集电极c夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的

结构示意图和它在电路中的代表符号

如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N 区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS-V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。 (b)若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。 (c)上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。 v DS对i D的影响 设v GS值固定,且V P

场效应管及其电路

第4章场效应管及其电路本章要点 ●MOS管的原理、特性和主要参数 ●结型场效应管原理、特性及主要参数 ●场效应管放大电路的组成与原理 本章难点 ●MOS管的原理和转移特性及主要参数 ●场效应管的微变等效电路法 场效应管(FET)是一种电压控制器件,它是利用输入电压产生电场效应来控制输出电流的。它具有输入电阻高、噪声低、热稳定性好、耗电省等优点,目前已被广泛应用于各种电子电路中。 场效应管按其结构不同分为结型(JFET)和绝缘栅型(IGFET)两种,其中绝缘栅型场效应管由于其制造工艺简单,便于大规模集成,因此应用更为广泛。 4.1 绝缘栅场效应管(MOSFET) 绝缘栅型场效应管简称MOS管,由于其内部由金属—氧化物—半导体三种材料制成,可分为增强型和耗尽型两大类,每一类中又有N沟道和P沟道之分。下面主要讨论N沟道增强型MOS管的工作原理,其余三种仅做简要介绍。 4.1.1 N沟道增强型场效应管(NMOS管) 1.结构 N沟道增强型MOS管的结构如图4-1(a)所示。它是在一块掺杂浓度较低的P型硅片(称为衬底)上,通过扩散工艺形成两个高掺杂的N+区,通过金属铝引出两个电极分别作为源极S和漏极D,再在半导体表面覆盖一层二氧化硅绝缘层,在源漏极之间的绝缘层上制作一铝电极,作为栅极G,另外从衬底引出衬底引线B(工作时通常与源极S接在一起)。在两个N+区之间的半导体区,是载流子从源极S流向漏极D的通道,把它称为导电沟道。由于栅极与导电沟道之间被二氧化硅所绝缘,故将此类场效应管称为绝缘栅型。 图4-1(b)是N沟道增强型MOS管的符号,其中箭头方向是由P(衬底)指向N(沟道), 由此可判断沟道类型。符号中的三条断续线表示 GS 0 = U不存在导电沟道,它是判断增强型MOS管的特殊标志。

实验十三基于Multisim的场效应管放大器电路设计

南昌大学实验报告 学生姓名:学号:专业班级:生医091 实验类型:□验证□综合□设计□创新实验日期:20110615 实验成绩:实验十三基于Multisim的场效应管放大器电路设计 一、实验目的: 1、场效应管电路模型、工作点、参数调整、行为特征观察方法 2、研究场效应放大电路的放大特性及元件参数的计算 3、进一步熟悉放大器性能指标的测量方法 二、实验原理: 1.场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 和双极型晶体管相比场效应管的不足之处是共源跨导gm。值较低(只有ms级),MOS管的绝缘层很薄,极容易被感应电荷所击穿。因此,在用仪器测量其参数或用烙铁进行焊接时,都必须使仪器、烙铁或电路本身具有良好的接地。焊接时,一般先焊S极,再焊其他极。不用时应将所有电极短接。 2.偏置电路和静态工作点的确定 与双极型晶体管放大器一样,为使场效应管放大器正常工作,也需选择恰当的直流偏置电路以建立合适的静态工作点。 场效应管放大器的偏置电路形式主要有自偏压电路和分压器式自偏压电路(增强型MOS管不能采用自偏压电路)两种。 三、实验内容及步骤 1.场效应管共源放大器的调试 (1)连接电路。按图2.4.1在模拟电路实验板上插接好电路,场效应管选用N沟道结型管

3DJ6D,静态工作点的设置方式为自偏压式。直流稳压电源调至18V并接好(注意:共地) (2)测量静态工作点 调节电阻R使V D为2.43V左右,并测量此时的Vg、Vs ,填入表2.4.1,并计算。 表2.4.1静态工作点 将函数发生器的输出端接到电路的输入端。使函数发生器输出正弦波并调=2mV,f=lkHz。用示波器观察输出波形,(若有失真,应重调静态工作点,使波形不失真),并用示波器测量输出电压Vo,计算Av (4)测量输入及输出阻抗 用换算法测量放大器的输入电阻,在输入回路串接已知阻值的电阻R,但必须注意,由于场效应管放大器的输入阻抗很高,若仍用直接测量电阻R两端对地电Vs 和Vi进行换算的方法,将会产生两个问题: (1)由于场效应管放大器Ri高,测量时会引人干扰; (2)测量所用的电压表的内阻必须远大于放大器的输入电阻Ri,否则将会产生较大的测量误差。为了消除上述干扰和误差,可以利用被测放大器的隔离作用,通过测量放大器输出电压来进行换算得到Ri。图为测量高输入阻抗的原理图。方法是:先闭合开关S(R=0),输入信号电压Vs,测出相应的输出电压V01,然后断开S,测出相应的输出电压V02,因为两次测量中和是基本不变的,所以 R i=V O2/(V O1-V O2)R 输出电阻测量:在放大器输入端加入一个固定信号电压Vs ,分别测量当已知负载R L断开和接上的输出电压V0和V0L。则 R0=(V0 / V0L -1)R L

场效应管放大电路.(DOC)

第三章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 (一)主要内容: ?结型场效应管的结构及工作原理 ?金属-氧化物-半导体场效应管的结构及工作原理 ?场效应管放大电路的静态及动态性能分析 (二)教学要点: ?了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 ?掌握用公式法和小信号模型分析法分析其放大电路的静态及动态性能 ?了解三极管及场效应管放大电路的特点 (三)基本要求: 介绍结型场效应管和MOS管的工作原理、特性曲线,重点介绍用公式法和小信号模型分析法分析其放大电路静态及动态性能。

3.1 结型场效应管 3.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对 应关系: 栅极g—基极b;源极s—发射极e;漏极d —集电极c 夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的 结构示意图和它在电路中的代表符号 如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS -V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。

场效应管放大电路设计

* 课程设计报告 题目:场效应管放大电路设计 学生姓名: *** 学生学号: ******** 系别:电气信息工程院 专业:通信工程 届别: 2014届 指导教师: ** 电气信息工程学院制 2013年3月

场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 场效应管电路模型、工作点、参数调整、行为特征观察方法 1.2 研究场效应放大电路的放大特性及元件参数的计算 1.3 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1 场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET 是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P 沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体MOS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015 之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。它属于电压控制型

常见的Mos场效应管电子开关应用电路示例介绍

常见的Mos场效应管电子开关应用电路示例介绍 在脉冲与数字电路中,MOS场效应管作为最基本的开关元件得到了普遍的应用。MOS场效应管以燥声系数低、截止频率高、开关特性好、抗干扰能力强、增益高、功耗低、不存在二次热击穿等优点,广泛应用于彩色电视机、计算机等电器设备中。本文主要以MOS场效应管在开关电路中的应用示例作简要介绍。华强北IC代购网专业人士解析以下内容。 MOS场效应管在开关电路中的应用 实际上MOS场效应管是一种增强型的场效应管,其构造原理比较抽象,根据使用的场合要求不同做出来的种类也很多,特性也不尽相同。我们一般将其作为电源供电的电控开关使用,所以需要通过电流比较大,它的电路图符号如下: N沟道MOS场效应管 P沟道MOS场效应管

这两种MOS场效应管的作用刚好是相反的,那么怎么用它来当开关呢?从图中我们可以看到它与三极管一样有三个引脚,分别叫做栅极(G)、源极(S)和漏极(D)。以图1为例: 图1 图1中脚1就是控制极栅极,通过在栅极上加电压来决定脚2和脚3是否相通。在N沟道MOS场效应管中,若在栅极加上电压脚2和脚3就通电了,去掉电压就为关断状态。而P沟道MOS场效应管则刚好相反。 MOS场效应管开关电路工作原理 以我们常见的2606主控电路图中的电子开关电路为例,下图中用是美国VISHAY型号为SI2305的P沟道MOS管。下面简要介绍电子开关应用的工作原理:

图2 图2中电池的正电通过开关S1接到场效应管Q1的2脚源极,但由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,所以此时是关机状态。 当按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,这时三极管Q2的基极得到一个正电位,三极管导通。而由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的电压就直接入了地,Q1的栅极就从高电位变为低电位,Q1导通电就从Q1同过加到3v稳压IC的输入脚,3v稳压IC就是那个U1输出3v的工作电压vcc供给主控,主控通过复位清0。通过读取固件程序检测等一系列动作,输出控制电压到PWR_ON再通过R24、R13分压送到Q2的基极,Q2一直保持导通状态,即使你松开开机键断开Q1的基极电压,Q2的导通状态还是能由主控电压保持着,这时电源处于开机状态。 SW1还同时通过R11、R30两个电阻的分压,给主控PLAY ON脚送去时间长短、次数不同的控制信号,主控通过固件鉴别是播放、暂停、开机、关机而输出不同的结果给相应的控制点,以达到不同的工作状态。

场效应管放大电路设计

* 课程设计报告题目:场效应管放大电路设计 学生姓名:学生学号: *** ******** 系专届别: 业: 别: 电气信息工程院 通信工程 2014届 指导教师:** 电气信息工程学院制 2013年3月

**师范学院电气信息工程学院2014届通信工程专业课程设计报告 场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 1.2 1.3场效应管电路模型、工作点、参数调整、行为特征观察方法研究场效应放大电路的放大特性及元件参数的计算 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免P N结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可 分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体M OS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入 阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模 集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。

第3章 场效应管放大电路习题答案

第3章场效应管放大电路 3-1判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R GS 大的特点。(?) (2)若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。(?) 3-2选择正确答案填入空内。 (1)U GS=0V时,不能够工作在恒流区的场效应管有B 。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 (2)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将 A 。 A.增大 B.不变 C.减小 3-3改正图P3-3所示各电路中的错误,使它们有可能放大正弦波电压。要求保留电路的共源接法。 图P3-3 解:(a)源极加电阻R S。 (b)漏极加电阻R D。 (c)输入端加耦合电容。 (d)在R g支路加-V G G,+V D D改为-V D D 改正电路如解图P3-3所示。

解图P3-3 3-4已知图P3-4(a)所示电路中场效应管的转移特性和输出特性分别如图(b)(c)所示。 A 、R i和R o。(1)利用图解法求解Q点;(2)利用等效电路法求解 u 图P3-4

解:(1)在转移特性中作直线u G S =-i D R S ,与转移特性的交点即为Q 点;读出坐标值,得出I D Q =1mA ,U G S Q =-2V 。如解图P3-4(a )所示。 解图P 3-4 在输出特性中作直流负载线u D S =V D D -i D (R D +R S ),与U G S Q =-2V 的那条输出特性曲线的交点为Q 点,U D S Q ≈3V 。如解图P3-4(b )所示。 (2)首先画出交流等效电路(图略),然后进行动态分析。 mA/V 12DQ DSS GS(off) GS D m DS =-= ??= I I U u i g U Ω ==Ω==-=-=k 5 M 1 5D o i D m R R R R R g A g u 3-5 已知图P3-5(a )所示电路中场效应管的转移特性如图(b )所示。求解 电路的Q 点和u A 。 图P 3-5 解:(1)求Q 点: 根据电路图可知, U G S Q =V G G =3V 。 从转移特性查得,当U G S Q =3V 时的漏极电流 I D Q =1mA

场效应管及其放大电路

3. 场效应管及其放大电路 (文字材料) 本章概要 本章首先介绍结型场效应管和绝缘栅型场效应管的结构、放大原理、伏安特性以及主要电参数,然后讨论了场效应管的微变等效电路,分析了场效应管和晶体管的特点,并讨论了场效应管组成的共源极、共漏极和共栅极三种基本放大电路的工作原理、特性分析及参数计算。 本章内容的组成及结构 结型场效应管 绝缘栅型场效应管 结构、类型(N 沟道、P 沟道)、符号 结型 工作原理 伏安特性、主要参数 按工作方式:增强型、耗尽型 按导电沟道:N 沟道、P 沟道 工作原理 伏安特性、主要参数 场效应管的小信号模型(微变等效电路) 场效应管与晶体管的比较 场效应管的偏置及静态分析 共源极放大电路 三种基本放大电路的动态分析 共漏极放大电路 共栅极放大电路 学习目标 (1)熟练掌握场效应管的伏安特性; (2)熟练掌握场效应管的微变等效电路; (3)熟练掌握场效应管组成的三种基本放大电路的组成、工作原理及静态和动态分析; (4)了解三种放大电路的各自特点及应用场合; (5)了解场效应管与双极型三极管的异同点。 重难点指导 重点: (1)结型及MOS 型场效应管的工作原理及伏安特性; 场效应管 及 其放 大 电路 类型 绝缘栅型 结构、类型 场效应管基本放大电路 场效应管 (FET )

(2)共源极和共漏极放大电路的静态及动态参数计算; 难点: (1)场效应管跨导的概念以及微变等效电路; (2)场效应管放大电路的静态与动态主要指标计算。 本章导学 1. 场效应管 1.场效应管(FET)有结型场效应管(JFET)和绝缘栅型场效应管(IGFET)两大类型。它们都有N沟道和P沟道两类。IGFET又分为增强型和耗尽型;JFET只有耗尽型。IGFET大多制成金属—氧化物—半导体结构,简称为MOSFET。 2.场效应管与半导体三极管的区别 1.半导体三极管(晶体管)是一种电流控制器件,有两种载流子参与导电,属于双极型器件,因此又常称半导体三极管为双极型晶体管;场效应管只靠一种载流子(多数载流子)导电,属于单极型器件,因此又常称场效应管为单极型晶体管,它是一种电压控制器件,i G≈0,具有输入电阻高的特点。 3.场效应管的工作原理 a.控制漏极电流的基本原理:通过控制电压的变化改变场效应管导电沟道的宽度,以改变其电阻的大小来控制漏极电流。 b.JFET和MOSFET在控制漏极电流方式上的区别:JFET通过控制电压的变化改变耗尽层的宽度来控制漏极电流;MOSFET利用半导体表面的电场效应,直接改变作为导电沟道的反型层宽度,以达到控制漏极电流的目的。 4.场效应管的伏安特性 由于FET的i G≈0,所以只给出输出特性和由它派生的转移特性。各类FET的输出特性曲线如表3.1中所示。 a.输出特性i D = f (u DS) | u GS一定由输出特性曲线可见,FET有三个工作区: 可变电阻区——沟道尚未出现予夹断,管子可看作是一个由电压控制的可变电阻。在不同的u GS下,曲线上升的斜率不同,电阻值也不同。 恒流区——沟道出现予夹断,i D只受u GS控制,几乎不随u DS的改变而变化,输出特性曲线几乎成为水平的直线。恒流区又称饱和区或放大区。 夹断区——管子处于沟道完全夹断的情况,i D≈0,夹断区也称为截止区。 b.转移特性:i D = f (u GS) | u DS一定它描述了场效应管的u GS对i D的控制能力。 5.场效应管的主要参数 a.直流参数:开启电压U GS(th)(适用于增强型MOSFET);夹断电压U GS(off)、零偏漏极电流I DSS(适用于耗尽型FET)。 b.交流参数:极间电容C gs、C ds、C gd;跨导g m(也称互导),它是管子在保持U DS一定时,漏极电流微变量d i D与栅源极间电压微变量d u GS的比值,即:

场效应管原理及应用

转;场效应管的工作原理及应用1 场效应管的工作原理及应用 场效应管(用FET表示)与晶体管的控制机理不同,它是利用输入电压去控制输出电流的一种半导体器件。根据结构和工作原理不同分为绝缘栅型(又称MOS管或MOS-FET)场效应管和结型(JFET)场效应管两大类型。与晶体管相比,它具有输入电阻高,制造工艺简单,特别适合大规模集成等诸多优点,因此得到了广泛的应用。 1.FET的工作原理和放大作用 为了说明FET的工作原理和放大作用,我们先从一个简单而实用的亮度调整电路谈起。 图1是一个用MOSFET构成的亮度调整由路。 由图1可见。如果我们旋动调节旋钮(调节图中RW电位器)就可以改变MOSFET的输入电压VGS,实现控制灯泡电流、改变灯光亮度的目的。电阻R1和R2的阻值决定了控制电压的范围,R1主要决定输入控制电压VGS的最大值,R2主要决定输入控制电压VGS的起始值。由于R1和R2的值可取得很大,因此可减少控制回路的电流,节省电能。并联在输入端的稳压二极管D2用来限制输入控制电压VGS,使 VGS不超过1OV,以保护 MOSFET。那么 MOSFET是如何实现用输入电压VGS去控制输出电流ID的呢?又为什么电路中的 R1和R2可选得很大呢?这正是由MOSFET的控制机理和结构来实现的。MOSFET有N沟道和P沟道两种类型,每种类型又分为增强型和耗尽

型,即N为道增强型、N沟还耗尽型、P沟道增强型和P为道耗尽型四种MOS管,我们在图1光度调整电路中所采用的MOS管为N沟道增强型MOSFET。它的结构及符号如图2(a)、(b)所示。它是在一块P 型硅片上扩散两个相距很近的高掺杂N型区(用N+表示),并分别从两个N型区上引出两个电极,分别称为源极(用S表示)和漏极(用D表示),在源区和漏区之间的衬底表面覆盖一层很薄的绝缘层,再在这绝缘层上覆盖一层金属薄层,形成栅极(用G表示),因此,栅极与其它两电极之间是绝缘的,故输入电阻极高。另外,从衬底基片上引出一个电极,称为衬底电极(用B表示),在分立元件中,常将B与源极S相连,而在集成电路中,B和S一般是不相连的、由图2(a)可见,增强型MOSFET的漏区和源区之间被P型衬底隔开,好像两个“背对背’连接的二极管。所以,当不加栅极电压(即VGS=0)时,不论漏极、源极之间加什么极性的电压。总有一个PN结处于反偏,在忽略反向饱和电流的情况下。漏极电流ID≈0。此时,可近似地认为MOS管处于截止状态。当栅极和源极间加正向电压(即VGS>0)时,同时将衬底与源极短接,则在栅极金属板与半导体之间的绝缘层产生一个垂直电场,这个电场吸引衬底和两个N+区的电子,VGS 越大,吸引的自由电子数越多。表面层空穴数越少,当VGS超过某一临界值VT(称为开启电压),将最终使表面层的电子数多于空穴数,使衬底表面由原来的P型转变为N型,且与两个N+区连通,形成漏区和源区间的导电沟道(N沟道)。此时,如果在漏极和源极之间加正向电压(VGS>0),就会有电流经沟道到达源极,形成漏极电流

场效应管做开关电路

与三极管一样,场效应管不仅可以对模拟信号放大,也可作为控制开关使用,之所以我们将开关电路(而不是放大电路)的应用提前介绍,是因为在实际应用当中,场效应管当作开关电路应用的情况还是相对更多一些。可以这么说,大多数读者曾经使用过或将来会使用三极管电路进行信号放大的应用,但大多数读者都不曾使用或将来也不会使用场效应管进行信号放大的应用。因此,我们将场效应管的开关电路详细描述一下。 场效应管开关电路大体可分为两大类,即模拟开关(Analog Switch)与数字开关,前者我们在此不进行讨论,读者可参考文章《模拟开关》,而常用的数字开关电路大都使用增强型的NMOS或PMOS为核心,NMOS控制开关电路的基本结构如下图所示:

其中,漏极电阻R1为上拉电阻,当场效应管Q1截止时将输出电压上拉至电源V CC(高电平),可以理解为开漏(OD)输出结构的上拉电阻,具体可参考文章《电阻(4)之上/下拉电阻》,栅极串联电阻R2为限流电阻,防止输入电压变换的瞬间导致栅极电流超额而损坏场效应管,下拉电阻R3用来确保无输入信号(即悬空)时场效应管处于截止状态。 此开关电路的基本原理很简单!当输入信号V i为低电平“L”时,场效应管Q1处于截止状态,输出电压V o由漏极电阻R1上拉为电源VCC(高电平),此时场效应管Q1相当于一个处于断开状态的开关,如下图所示: 当输入信号V i为高电平“H”时,场效应管Q1处于导通状态,输出电压V o被场效应管下降至低电平,此时场效应管Q1相当于一

个处于闭合状态的开关,如下图所示: 场效应管开关应用电路的要求主要有两点,其中之一是限流电阻R2的阻值,需要根据开关频率、前级驱动能力、栅-源电容C GS等因素来决定,其中C GS与栅极电阻相当于一个RC充放电电路。一般来讲,对于开关频率相对较高的应用,限流阻值R2一般为十几

相关主题