搜档网
当前位置:搜档网 › 脂肪酸的氧化代谢2011-17

脂肪酸的氧化代谢2011-17

脂质是一类低溶于水而高溶于非极性溶剂的生物有机分子。对于大多数脂质而言,其化学本质是脂肪酸和醇所形成的酯类

一元酸。

氨醇、高级一元醇和固醇。

, 有些尚含氮、磷及硫。

脂类分子都包括碳、氢、氧元素,有的含有氮、磷和硫。

根据脂质在水中和水界面上的行为分为:1.非极性脂质: 不能分散形成单分子层, 不

2.极性脂质:不能分散形成稳定的或不稳定

的分子层,不溶或可溶

脂质的生物学作用

(1)贮存脂质(storage lipid), 属于主要是脂肪,是机体代谢所需燃料的贮存形式和运输形式。

(2) 结构脂质(structural lipid), 是构成生物膜的重要物质,几乎细胞所含有的磷脂都是集中在细胞膜中。

(3)活性脂质(active lipid), 是小量的细胞成分, 具有专一的重要生物活性。它们包括数百种类固醇和萜(类异戊二烯).

一.脂肪酸:是由一条长的烃链和一个末端羧基组成的酸.

饱和脂肪酸

单不饱和脂肪酸

不饱和脂肪酸

多不饱和脂肪酸

软脂酸硬脂酸油酸亚油酸亚麻酸花生四烯酸

脂肪酸的作用

食物中摄入的脂肪,在体内水解为甘油和脂酸,可保证人体必需脂酸的需要。

哺乳动物的必需脂酸有月桂酸、豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸和花生四烯酸。这些脂酸人体不能自身合成,只能从食物中得到,因此称为必需脂酸。这些脂酸具有重要的生物学作用,哺乳动物体内所含有的必需脂酸,以亚油酸含量最多,它从植物中获得。

亚油酸缺乏,将使生长停滞、体重减轻、皮肤成鳞状并使肾脏受损。婴儿可能患湿疹。因此机体不可缺少亚油酸这种必需脂肪酸。植物油中,如玉米油、葵花油、红花油、大豆油中亚油酸含量超过50%。哺乳动物中的花生四烯酸是由亚油酸合成的。花生四烯酸在植物中并不存在,它是合成前列腺素的重要前体。

天然脂肪酸特点:

天然脂肪酸常具有偶数碳原子, 长一般为12-22碳.

?饱和脂肪酸:烃链不含双键(和三键)?不饱和脂肪酸:含一个或多个双键. 有一个双键几乎总是处于C9-C10之间(Δ9), 并且一般为顺式.

z硬脂酸CH3—(CH2)16—COOH 18:0

z软脂酸CH3—(CH2)14—COOH 16:0

z油酸CH3—(CH2)7—CH=CH—(CH2)7—COOH 18:1△9

z月桂酸12:0

z花生酸20:0

z亚油酸18:2△9,12

z亚麻酸18:3△9,12,15

必需脂肪酸(essential fatty acid):维持哺乳动物正常生长所需的而体内又不能合成的不饱和脂肪酸(亚油酸、亚麻酸)。鱼类必需脂肪酸也是亚油酸、亚麻酸。

二、三酰甘油或甘油三酯(triacylglycerol, TG):

是脂肪酸与甘油形成的三酯

简单三酰甘油:三个脂肪酸相同。

混合三酰甘油:三个脂肪酸任何2个不相同或3各不相同。

大多数天然油脂都是简单甘油三酯和混合甘油三酯的复杂混合物。

三酰甘油

z三酰甘油的物理性质

z①三酰甘油一般无色,无臭,无味,呈中性,天然脂肪因含杂质而常具有颜色和气味z

z②三酰甘油的密度小于1g/ml,不溶于水而溶于有机溶剂

z

z③不饱和脂肪酸的熔点比相应的饱和脂肪酸低.

z一般三酰甘油中,不饱和脂肪酸含量较高者在室温时为液态,俗称油,饱和脂肪酸含量高的三酰甘油在室温时通常为固态,俗称脂,统称为油脂。

z牛油又称牛脂,其脂肪酸组分中饱和脂肪酸约占60~70%。

z天然脂肪都是多种脂肪的混合物,没有恒定的熔点和沸点,通常把天然脂肪称为油脂。

z2、化学性质

z

z(1)水解和皂化

z脂肪能在酸,碱及脂酶的作用下水解,当

用碱水解时生成甘油和脂肪酸盐,脂肪酸

的钠盐或钾盐就是皂化,所以脂肪的碱性

水解称为皂化。

皂化值:使1g脂肪完全皂化所需要的KOH的毫克数。

z(2 )加成反应:

z1)氢化

z氢化的结果使液态的油转变为半固态的脂称为油脂的硬化。

z2)卤化

z卤素中的溴,碘可与脂肪酸中不饱和键加成,产生饱和的卤化脂。

z

z碘值:把100g油脂所能吸收的碘的克数。

z

z碘值大,表示油脂中不饱和脂肪酸含量高。

z

z(3)酸败(rancidity):天然油脂长时间暴露在空气中会产生难闻的气味, 这种现象叫酸败。

z油脂水解放出游离的脂肪酸,不饱和脂肪酸氧化为过氧化物,再裂解成小分子的醛或酮,低分子量的酸,醛,酮带有刺激性臭味,油脂在

z

z酸值(acid value):是中和1g油脂中的游离脂肪酸所需的KOH的毫克数。

z

z酸败是由空气中氧,水分和霉菌的作用引起的。z

z酸价是衡量油脂质量的指标之一。

z三、蜡(Wax)

z是长链脂肪酸与高级一元醇或固醇所形成的酯。z蜡在室温时比油脂硬而脆,温度稍高时变为柔软的固体,不溶于水。

z蜡在茎,叶,果实表面,皮肤,毛皮,羽毛以及许多昆虫的外骨骼都起保护作用。

z蜂蜡从蜂蜜中取得C16和C18脂肪酸与C30,C32醇生成酯的混合物。

z棕榈蜡:C26酸与C26和C30醇生成酯的混合物。

生物化学第七章脂类代谢习题

第七章脂类代谢 (一)名词解释 1.必需脂肪酸(essential fatty acid) 2.脂肪酸的β氧化(O–oxidation) 3.乙醛酸循环(S1yoxylate cycle) 4.柠檬酸穿梭(citriate shuttle) 5.乙酰辅酶A羧化酶系(acetyl–CoA carnoxylase) 6.脂肪酸合成酶系统(fatty acid synthase system) 7.酮体(acetone body) 8.酰基载体蛋白(ACP,acyl carrier protein) 9.肉毒碱穿梭系统(carnitine shuttle system) 10.脂肪动员(fatty activation) (二)填空题 β氧化在细胞的中进行。 1.真核生物脂肪酸- 2.是脂肪酸以脂酰基形式进入线粒体的载体。 3.当用–CH2(CH2)3COOH去喂狗,然后检查尿代谢排出物,发现它的代谢产物是。4.是脂肪酸全程合成中延伸步骤中二碳单位的直接供体。

5.ACP 的中文名称是 ,其生物学功能是 。 6. 是动物和许多植物主要的能源储存形式,是由 与三分子 酯化而成的。 7.在线粒体外膜脂酰辅酶A 合成酶催化下,游离脂肪酸与 和 反应,生成脂肪酸的活化形式 ,再经线粒体内膜 进入线粒体基质。 8.一个碳原子数为n (n 为偶数)的脂肪酸在-β氧化中需经 次-β氧化循环,生成 个乙酰辅酶A , 个FADH 2和 个NADH+H + 。 9.乙醛酸循环中两个关键酶是 和 ,使异柠檬酸避免了在循环中的两次 反应,实现从乙酰辅酶A 净合成 循环的中间物。 10.脂肪酸从头合成的C2供体是 ,活化的C2供体是 ,还原剂是 。 11.乙酰辅酶A 羧化酶是脂肪酸从头合成的限速酶,该酶以 为辅基,消耗 ,催化 与 生成 ,柠檬酸为其 ,长链脂酰辅酶A 为其 。 12.脂肪酸从头合成中,缩合、两次还原和脱水反应时酰基都连接在 上,它有一个与 一样的 长臂。 13.脂肪酸合成酶复合物一般只合成 ,动物中脂肪酸碳链延长由 或 酶系统催化。 14.真核细胞中,不饱和脂肪酸都是通过 途径合成的;许多细菌的单烯脂肪酸则是经由 途径合成的。 15.甘油三酯是由 和 在磷酸甘油转酰酶的作用下先形成,再由磷酸酶转变成 ,最后在 催化下生成甘油三酯。 16.磷脂合成中活化的二酰甘油供体为 ,在功能上类似于糖原合成中的 或淀粉合成中的 。 18.在所有的细胞中,活化酰基化合物的主要载体是 。 19.乙酰辅酶A 和CO 2生成 ,需要消耗 高能磷酸键,并需要 辅酶参加。 20.酮体包括 、 和 三种化合物。 22.脂肪酸合成过程中,乙酰辅酶A 来源于 或 ,NADPH 来源于––途径。 23.脂肪酸的合成需要原料 、 、 和 等。 24.丙酰辅酶A 的进一步氧化需要 和 作酶的辅助因子。 26. 合成中,活性中间物 在功能上类似于多糖合成中核苷酰磷酸葡萄糖中间物。

22 脂肪酸的分解代谢

第28章、脂肪酸的分解代谢(p230) 本章重点:1、脂肪酸分解代谢过程,2、脂肪酸代谢的能量产生,3、脂肪酸分解脱氢,4脂肪酸分解代谢和糖酵解的关系。 本章主要内容: 一、脂肪的水解——脂酶的水解作用(细胞质中) 生物体内脂肪是由脂肪酶水解,在脂肪酶的催化下生成一分子甘油和三分子脂肪酸,脂肪酶的特点:主要作用于有酯键的化合物,不论脂肪来源于什么组织,不论脂肪酸碳链的长短,只要是酯键,脂肪酶就可以使其断裂,这就是酶的专一性即键专一性。 事实上,脂肪的水解不是一步完成的,而是分步完成,分步进行水解。第一步脂肪酶水解第一或第三全酯键,即α或α′酯键,如果第一步水解α-酯键,第二水解α′酯键,生成α和α′脂肪酸和甘油-酯,最后,β-位的脂肪酸在转移酶的催化下β-的脂肪酸转到α或α′位上,再在脂肪酶的作用下,脂肪酸水解下来,共生成三分子脂肪酸和一分子甘油,水解过程为: 脂肪(甘油三酯)水解的产物:一分子甘油和三分子脂肪酸。 二、甘油的转化 脂肪的水解产物甘油是联系脂肪代谢和糖代谢的重要化合物,它可以轩化成磷酸甘油醛进入糖代谢,其代谢过程为: 生成的磷酸2羟丙酮有两种去路: 1、DHAP可以进入EMP途径生成pyr,再经脱氢、脱羟生成乙酰COA,经TCA循环氧化 成CO2和H2O。 2、G-3-P可以与DHAP逆EMP途径在醛缩酶催化下生成F-1.6-P,继续转化成糖类。 甘油被彻底氧化以后可以生成多少molATP呢?首先总结氧化的部位: ①α-磷酸甘油脱氢,生成1molNADH·H+ ②G-3-P生成1,3-DPG 1molNADH·H+ ③Pyr脱氢 1molNADH·H+ ④异柠檬酸脱氢1molNADH·H+ ⑤α-酮戊二酸脱氢 1molNADH·H+ ⑥平果酸脱氢 1molNADH·H+ ⑦琥珀酸脱氢 1molFADH2 琥珀酰COA→琥珀酸 另外,甘油还可在代谢的过程中转化到蛋白质中去,如进入TCA后生成Pyr、OAA、α-Kg等可经转氨基作用生成Ala、Asp和Glu参与到蛋白质的合成中去。 三、脂肪酸的降解 脂肪酸的降解(分解)即氧化分解有几种形式,最重要的是β-氧化,其次是α-氧化和ω-氧化。 (一)β-氧化(线粒体内进行) 1、概念:脂肪酸的β-氧化作用是脂肪酸经一系列酶的作用,从α、β碳位之间断裂生 成1mol乙酰COA和比原来脂肪酸少两个碳原子的脂酰COA。 2、β-氧化过程:脂肪酸β-氧化的合成过程包括下列几个主要步骤: 1)活化或叫做脂酰COA的形成:脂肪酸首先与辅酶A缩合同时消耗一分子ATP,形成活化的脂酰COA,这步反应要消耗ATP的两个高能磷酸键。 第一步反应是在脂酰 COA合成酶的催化下进行的,活化了的脂酰COA借线粒体内膜两侧的肉毒碱脂酰COA转移酶的作用,进入线粒体内。 肉毒碱脂酰COA转移酶 脂酰COA++COA 肉毒碱的结构: 肉毒碱起携带脂肪酸酰基通过线粒体内膜的作用。

脂类代谢考试试题及答案

第九章脂类代谢 一、选择题(请将选择的正确答案的字母填写在题号前面的括号内) ()1合成甘油酯最强的器官是 A 肝; B 肾; C 脑; D 小肠。 ()2、小肠粘膜细胞再合成脂肪的原料主要来源于 A 小肠粘膜吸收来的脂肪水解产物; B 肝细胞合成的脂肪到达小肠后被消化的产物 C 小肠粘膜细胞吸收来的胆固醇水解产物; D 脂肪组织的水解产物; E 以上都对。 ()3、线粒体外脂肪酸合成的限速酶是 A 酰基转移酶; B 乙酰辅酶A羧化酶; C 肉毒碱脂酰辅酶A转移酶Ⅰ; D 肉毒碱脂酰辅酶A转移酶Ⅱ; E β—酮脂酰还原酶。 ()4、酮体肝外氧化,原因是肝脏内缺乏 A 乙酰乙酰辅酶A硫解酶; B 琥珀酰辅酶A转移酶; C β—羟丁酸脱氢酶; D β—羟—β—甲戊二酸单酰辅酶A合成酶; E 羟甲基戊二酸单酰辅酶A裂解酶。 ()5、卵磷脂含有的成分是 A 脂肪酸、甘油、磷酸和乙醇胺; B 脂肪酸、甘油、磷酸和胆碱; C 脂肪酸、甘油、磷酸和丝氨酸; D 脂肪酸、磷酸和胆碱; E 脂肪酸、甘油、磷酸。 ()6、脂酰辅酶A的β—氧化过程顺序是 A 脱氢、加水、再脱氢、加水; B 脱氢、脱水、再脱氢、硫解; C 脱氢、加水、再脱氢、硫解; D 水合、加水、再脱氢、硫解。 ()7、人体内的多不饱和脂肪酸是指 A 油酸、软脂肪酸; B 油酸、亚油酸; C 亚油酸、亚麻酸; D 软脂肪酸、亚油酸。 ()8、可由呼吸道呼出的酮体是 A 乙酰乙酸; B β—羟丁酸; C 乙酰乙酰辅酶A; D 丙酮。 ()9、与脂肪酸的合成原料和部位无关的是

A 乙酰辅酶A; B NADPH+H+; C 线粒体外; D 肉毒碱;E、HCO3- ()10、并非以FAD为辅助因子的脱氢酶有 A 琥珀酸脱氢酶; B 脂酰辅酶A脱氢酶; C 二氢硫辛酸脱氢酶; D β—羟脂酰辅酶A脱氢酶。 ()11、不能产生乙酰辅酶A的是 A 酮体; B 脂肪酸; C 胆固醇; D 磷脂; E 葡萄糖。 ()12、甘油磷酸合成过程中需哪一种核苷酸参与 A ATP; B CTP; C TTP; D UDP; E GTP。 ()13、脂肪酸分解产生的乙酰辅酶A的去路 A 合成脂肪酸; B 氧化供能; C 合成酮体; D 合成胆固醇; E 以上都是。()14、胆固醇合成的限速酶是 A HMGCoA合成酶; B 乙酰辅酶A羧化酶; C HMGCoA还原酶; D 乙酰乙酰辅酶A硫解酶。 ()15、胆汁酸来源于 A 胆色素; B 胆红素; C 胆绿素; D 胆固醇。 ()16、脂肪酸β—氧化的限速酶是 A 肉毒碱脂酰转移酶Ⅰ; B 肉毒碱脂酰转移酶Ⅱ C 脂酰辅酶A脱氢酶; D β—羟脂酰辅酶A脱氢酶; E β—酮脂酰辅酶A硫解酶。 ()17、β—氧化过程的逆反应可见于 A 胞液中脂肪酸的合成; B 胞液中胆固醇的合成; C 线粒体中脂肪酸的延长; D 内质网中脂肪酸的合成。 ()18、并非类脂的是 A 胆固醇; B 鞘脂; C 甘油磷脂; D 神经节苷脂; E 甘油二脂。 ()19、缺乏维生素B2时,β—氧化过程中哪一个中间产物合成受到障碍? A 脂酰辅酶A; B β—酮脂酰辅酶A; C α,β—烯脂酰辅酶A ; D L—β—羟脂酰辅酶A; E 都不受影响。 ()20、合成胆固醇的原料不需要 A 乙酰辅酶A; B NADPH; C A TP ; D O2。 ()21、由胆固醇转变而来的是

脂肪酸氧化

脂肪酸氧化 脂肪酸的β-氧化过程肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。此过程可分为活化,转移,β-氧化共三个阶段。 1. 脂肪酸的活化 和葡萄糖一样,脂肪酸参加代谢前也先要活化。其活化形式是硫酯——脂肪酰C oA,催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。 活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反应。 脂酰CoA合成酶又称硫激酶,分布在胞浆中、线粒体膜和内质网膜上。胞浆中的硫激酶催化中短链脂肪酸活化;内质网膜上的酶活化长链脂肪酸,生成脂酰CoA,然后进入内质网用于甘油三酯合成;而线粒体膜上的酶活化的长链脂酰CoA,进入线粒体进入β-氧化。 2. 脂酰CoA进入线粒体 催化脂肪酸β-氧化的酶系在线粒体基质中,但长链脂酰CoA不能自由通过线粒体内膜,要进入线粒体基质就需要载体转运,这一载体就是肉毒碱(carnitine),即3-羟-4-三甲氨基丁酸。 长链脂肪酰CoA和肉毒碱反应,生成辅酶A和脂酰肉毒碱,脂肪酰基与肉毒碱的3-羟基通过酯键相连接。催化此反应的酶为肉毒碱脂酰转移酶(carnitine acyl tran sferase)。线粒体内膜的内外两侧均有此酶,系同工酶,分别称为肉毒碱脂酰转移酶I和肉毒碱脂酰转移酶Ⅱ。酶Ⅰ使胞浆的脂酰CoA转化为辅酶A和脂肪酰肉毒碱,后者进入线粒体内膜。位于线粒体内膜内侧的酶Ⅱ又使脂肪酰肉毒碱转化成肉毒碱和脂酰CoA,肉毒碱重新发挥其载体功能,脂酰CoA则进入线粒体基质,成为脂肪酸β-氧化酶系的底物。 长链脂酰CoA进入线粒体的速度受到肉毒碱脂酰转移酶Ⅰ和酶Ⅱ的调节,酶Ⅰ受丙二酰CoA抑制,酶Ⅱ受胰岛素抑制。丙二酰CoA是合成脂肪酸的原料,胰岛素通过诱导乙酰CoA羧化酶的合成使丙二酰CoA浓度增加,进而抑制酶Ⅰ。可以看出胰岛素对肉毒碱脂酰转移酶Ⅰ和酶Ⅱ有间接或直接抑制作用。饥饿或禁食时胰岛素分泌减少,肉毒碱脂酰转移酶Ⅰ和酶Ⅱ活性增高,转移的长链脂肪酸进入线粒体氧化供能。 3. β-氧化的反应过程 脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。 第一步脱氢(dehydrogenation)反应由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α,β-烯脂肪酰辅酶A。 第二步加水(hydration)反应由烯酰CoA水合酶催化,生成具有L-构型的β-羟脂酰CoA。 第三步脱氢反应是在β-羟脂肪酰CoA脱饴酶(辅酶为NAD+)催化下,β-羟脂肪酰CoA脱氢生成β酮脂酰CoA。

脂肪进行合成代谢的过程

郑州增肥专科医院 来源:河南省现代研究院中医院增肥专科脂肪是怎样消耗的——脂肪分解的“三大环节” 为了方便大家理解这个相对专业的生化反应过程,我画了一张图(如下),我就按图解说了。 建议大家先仔细阅读一下图,再接着看下文—— 第一环节:脂肪动员 我们的脂肪主要以“甘油三酯(TG)”的形式储存在脂肪组织内,另外,心肌、骨骼肌、血浆中也有少量甘油三酯存在。对于减肥瘦身来说,主要是将脂肪组织内的甘油三酯动员起来用于供能,才能达到理想的效果。如果一个人脂肪动员的能力较低,就更容易产生肥胖,或者更不容易减肥。 一些特定的食物也能促进脂肪动员,如茶(茶多酚、咖啡碱)、咖啡、辣椒,以及瓜拉那等草本提取物,同时伴有心跳加速、血压增高的反应,因此需慎重使用。 第二环节:活性脂酸转移 当脂肪酸从脂肪组织中分解出来进入血浆后,在血浆蛋白的帮助下运送到全身各处的活动细胞内,开始了它的第二个环节——活化。只有被活化的脂肪酸才能进入被称作“细胞内动力工厂”的“线粒体”内,进一步被氧化分解。这个进入过程就是第三环节:活性脂酸转移。 脂肪酸被活化是受一系列酶的催化作用完成的,因此,这些酶的活性成为脂肪分解的一个限制因素。当然,这个因素主要受遗传决定,同时也受特定的代谢物质(如共轭亚油酸,CLA)影响。 第三环节:脂肪酸β氧化 这是脂肪酸在线粒体内最后被分解成二氧化碳和水,并产生能量的过程,受一系列酶和其他代谢反应影响。值得重视的是,脂肪酸的β氧化和糖的氧化在最后阶段都必须进入一个叫“三羧酸循环”的生化反应过程,才能最终分解成二氧化碳和水,最大限度地释放能量。

如果脂肪分解过程中,糖供应不足,导致三羧酸循环不能顺利进行,脂肪分解也会受到抑制,从而产生“酮体”。高浓度的酮体对人体是有害的,可能造成“酮中毒”。

生物化学讲义13-脂肪酸的氧化及合成 考研生物化学辅导讲义

第二部分生物能学和代谢 §13.1 脂肪代谢 1 脂类概述 2脂肪动员 3甘油的氧化 4脂肪酸的氧化 5酮体的生成与利用 6脂肪酸的合成 7脂肪的合成 By Wang Ziiffeng 第二部分生物能学和代谢 ?脂类的分类与结构: 脂肪:甘油三酯脂类磷脂 鞘脂 糖脂 类脂 胆固醇 胆固醇脂By Wang Z iiff eng 第二部分生物能学和代谢 脂肪作为储能物质的优缺点: ?脂肪具有高度还原性,彻底氧化释放的能量是同等重量的糖或蛋白质的两倍多。 ?脂肪具有高度疏水性,因而不会增加细胞胞浆的渗透压,也不会因水化增加额外的重量。但消化需要乳化,运输需要其他蛋白质协助。 ?脂肪具有化学惰性,不易产生副反应。但C-C键的断裂需要激活。 By Wang Z iiff eng 第二部分生物能学和代谢 §13.1 脂肪代谢 1 脂类概述 2 脂肪动员 3甘油的氧化 4脂肪酸的氧化 5酮体的生成与利用 6脂肪酸的合成 7脂肪的合成 By Wang Ziiffeng 第二部分生物能学和代谢 第十三节脂肪酸的氧化及合成 §13.1 脂肪代谢 §13.2 膜脂、类固醇血浆 脂蛋白的代谢 By Wang Z iiff eng 第二部分生物能学和代谢 第十三节脂肪酸的氧化及合成 By Dr.Wang 2008.08 By Wang Z iiff eng

历年真题讲解 一、填空题 17.糖尿病是由于胰岛素绝对不足或相对不足而导致的,从生物化学的角度来说糖原病病人血中除了血糖水平升高外,水平也升高。(07) 答案:甘油三酯 By Wang Ziiffeng 第二部分生物能学和代谢 §13.1 脂肪代谢 1脂类概述 2脂肪动员 3 甘油的氧化 4脂肪酸的氧化 5酮体的生成与利用 6脂肪酸的合成 7脂肪的合成 By Wang Ziiffeng 第二部分生物能学和代谢 甘油的氧化: ?主要部位在肝、肾、肠。 ?甘油氧化通过三步反应转化为3-磷酸甘油醛。 ?脂肪和骨骼肌组织中甘油激酶活性很低,所以不能很好地利用甘油。 By Wang Ziiffeng 第二部分生物能学和代谢 §13.1 脂肪代谢 1脂类概述 2脂肪动员 3甘油的氧化 4 脂肪酸的氧化 5酮体的生成与利用 6脂肪酸的合成 7脂肪的合成 第二部分生物能学和代谢 脂肪动员: ?指脂肪组织中脂肪在激素的调节下,被一系列脂肪酶水解为脂肪酸和甘油,然后释放进入血液,脂肪酸以与血清白蛋白非共价结合的方式运输到其它组织利用的过程。 By Wang Z iiff eng 第二部分生物能学和代谢激素敏感的脂肪酶 脂肪动员的激素调节 By Wang Ziiffeng 限 速 酶

反式脂肪酸在体内如何代谢

反式脂肪酸在体内如何代谢 1、反式脂肪酸同顺式脂肪酸一样能作为能源同样会被氧化而供能; 2、反式脂肪酸的确会导致VDL(极低密度脂蛋白)/LDL(低密度脂蛋白)的水平,它在体内的积累是因为不能通过脂合成途径合成体内其他脂质。 什么是反式脂肪酸? 反式脂肪酸是一类不饱和脂肪酸,包含至少一个反式结构的双键。 反式脂肪酸的来源于食品工业加工产生“氢化油”中以及反刍动物体内。 在食品工业中,由于天然植物油的双键是“顺式”结构,这种油抗氧化能力差,不稳定,工业上将植物油氢化,在这个过程中,部分油脂异构化产生了“反式”双键。以rans 9-Elaidic Acid(t9一C18:1)为主。 反刍动物的油脂以及牛奶中也存在反式脂肪酸,这是由于反刍动物瘤胃中的微生物将脂肪酸氢化而产生。以trans 11.Vaccenic Acid(t11一C18:1)为主,也还有顺9,反11一共轭亚油酸(c9, t11一CLA)和反10,顺12一共轭亚油酸(t10,c12一CLA)。 反式脂肪酸会增加体内VDL/LDL的水平,易导致心血管疾病、肥胖、胰岛素抗性、糖尿病等。 共轭亚油酸也是一种反式脂肪酸,但共轭亚油酸却与其他反式脂肪酸不同,它具有抗癌、降脂、抗动脉粥样硬化等功能。 反式脂肪酸在体内如何被氧化?

饱和脂肪酸的β-氧化过程大致经过4个步骤,既脱氢、加水、再脱氢和硫解这四个步骤。 由于反式脂肪酸为不饱和脂肪酸,因此先讲单不饱和脂肪酸的β-氧化过程。 体内正常的不饱和脂肪酸的双键都是顺式的,它们活化后进入β-氧化时,生成3-顺烯脂酰CoA, 此时需要顺-3反-2异构酶催化使其生成2-反烯脂酰CoA以便进一步反应。2-反烯脂酰CoA加水 后生成D-β-羟脂酰CoA,需要β-羟脂酰CoA差向异构酶催化,使其由D-构型转变成L-构型,以 便再进行脱氧反应(只有L-β-羟脂酰CoA才能作为β-羟脂酰CoA脱氢酶的底物)。 下图为多不饱和脂肪酸氧化示意图: 从不饱和脂肪酸的β-氧化过程可以看出,其“顺式”双键需要首先经过异构酶的催化变成“反式”双键才能进行 下一步氧化反应,而反式脂肪酸的氧化过程则不需要经过顺-3反-2异构酶的催化,直接完成加水、脱氢和硫解过程。 反式脂肪酸在体内的积累和对VDL/LDL水平的影响 体内的脂质作为前体能合成其他多不饱和脂肪酸,该过程需要脂肪酸去饱和酶的参与,但是该类酶 的底物为顺式双键,含有反式双键的脂肪酸则不能被延长或去饱和而被积累下来。

生物化学习题-第八章:脂质代谢

第八章脂质代谢 一、知识要点 (一)脂肪的生物功能: 脂类是一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂的物质。通常按不同的组成将脂类分为五类,即(1)单纯脂、(2)复合脂、(3)萜类、类固醇及其衍生物、(4)衍生脂类以及(5)结合脂类。 脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。 脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质,如维生素A、D、E、K、胆酸及固醇类激素,都具有营养、代谢及调节的功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别、种特异性和组织免疫等生理过程关系密切。 (二)脂肪的降解 在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经过磷酸化及脱氢反应,转变成磷酸二羟丙酮,进入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上的肉毒碱-脂酰CoA转移酶系统的帮助下进入线粒体基质,经β-氧化降解成乙酰CoA,再通过三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解这四个步骤,每进行一次β-氧化,可以生成1分子FADH2、1分子NADH+H+、1分子乙酰CoA以及1分子比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α?羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。 萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,作为糖异生和其它生物合成代谢的碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶,前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者则催化乙醛酸与乙酰CoA缩合生成苹果酸。 (三)脂肪的生物合成 脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、

实验九脂肪酸β-氧化

实验九脂肪酸β-氧化 目的要求: (1)了解脂肪酸的β-氧化作用。 (2) 掌握测定β-氧化作用的方法和原理。 实验原理: 在肝脏中,脂肪酸经β-氧化作用生成乙酰辅酶A。2分子乙酰辅酶A可缩合生成乙酰乙酸。乙酰乙酸可脱羧生成丙酮,也可还原生成β-羟丁酸。乙酰乙酸、β-羟丁酸和丙酮总称为酮体。 本实验用新鲜肝糜与丁酸保温,生成的丙酮在碱性条件下,与碘生成碘仿。反应式如下: 2NaOH +I2─→NaOI +NaI +H2O CH3COCH3 +3NaOI ─→CHI3(碘仿)+CH3COONa +2NaOH 剩余的碘,可以用标准硫代硫酸钠滴定。 NaOI +NaI +2HCl ─→I2 +2NaCl +2H2O I2 +2Na2S2O3─→Na2S4O6 +2NaI 根据滴定样品与滴定对照所消耗的硫代硫酸钠溶液体积之差,可以计算由丁酸氧化生成丙酮的量。 试剂和器材 一、试剂 0.1%淀粉溶液;0.9%氯化钠溶液;15%三氯乙酸溶液;10%氢氧化钠溶液。 10%盐酸溶液:浓盐酸一般浓度35%~37%,取浓盐酸277.8 mL定容到1000 mL。 0.5mol/L丁酸溶液:取5 mL丁酸溶于100 mL0.5mol/L氢氧化钠溶液中。 0.1mol/L碘溶液:称取12.7g碘和约25g碘化钾溶于水中,稀释到1000 mL,混匀,用标准0.05mol/L硫代硫酸钠溶液标定。 标准0.01mol/L硫代硫酸钠溶液:临用时将已标定的0.05mol/L硫代硫酸钠溶液稀释成0.01mol/L。 1/15mol/L pH7.6磷酸盐缓冲液:1/15mol/L磷酸氢二钠溶液86.8mL与1/15mol/L磷酸二氢钠溶液13.2mL混合。 二、材料

能量换算

能量的转化与传递 1 总的情况食物从食入到排出的流程,可用图1-1表示。 每一环节都牵连能的收支与传递,而营养物质被吸收到营养库后的能量转化,实质上是组织内细胞水平的能量转化。主要包括糖酵解循环、三羧酸循环和氧化磷酸化循环三个垂直循环,以及由氨基酸组成的蛋白质合成、降解与周转和由脂肪酸、甘油组成的脂肪循环两个旁支构成的养分和能量代谢系统。简示如图1-2。 2. 能量的转化 在体内可供能量转化的基质有:葡萄糖、糖原、脂肪酸、甘油、氨基酸和发酵产生的乙酸、丙酸与丁酸。 2. 1 葡萄糖:葡萄糖在机体内的氧化供能分为两个阶段,即无氧条件下的糖酵 图1-1 食物从食入到排出的流程

糖原 图1-2 细胞水平代谢循环 A.葡萄糖经磷酸化成为葡萄糖-6-磷酸,消耗1分子ATP B.葡萄糖-6磷酸的异构体转化为果糖-6-磷酸,又消耗1分子ATP。 C.在由1,3-二磷酸甘油向3-磷酸甘油酸转化,以及由磷酸烯醇式丙酮酸向丙酮酸转化 的过程中,共产生4分子ATP。 D.NAD还原为NADH + H+参与氧化磷酸化循环,产生3分子ATP。但NADH + H+从胞液进 入线粒体要耗用1分子ATP,故净产生2分子ATP。因为1mol葡萄糖分解为2mol甘油醛,所以共得4molATP。这样,葡萄糖在糖酵解循环中实际产生6molATP(-1-1+4+4=6)。在糖酵解阶段,1摩尔的葡萄糖分解为2摩尔丙酮酸。其中,能量转化的具体过程是:1mol丙酮酸在三羧酸循环中的能量得失:有4次NAD还原为NADH+ H+,每 ,产生2分子ATP和1次ADP氧化次产生3分子ATP;有1次FAD还原为FADH 2 为ATP。按1mol葡萄糖计算,共30molATP,连同糖酵解的6分子ATP,1mol葡萄糖总共产出36分子ATP。以每摩尔供能7.3kcal计,共计262.8kcal。据测定

生物化学计算题

生物化学计算题: 1、 计算赖氨酸的+-3NH ε 20%被解离时的溶液pH 。 解答: 80% ±Lys 20% -Lys 9.94 1lg 53.10][][lg 3.510][][lg =+=+=+=±-lys lys pKa pH 质子供体质子受体 2、计算谷氨酸的COOH -γ三分之二被解离时的溶液pH 。 解答: ±Glu - Glu 1 2 6.41 2lg 25.4][lg =+=+=±-Glu Glu pKa pH 3、向1 L 1 mol/L 的处于等电点的甘氨酸溶液加入0.3 mol HCl , 问所得溶液的pH 值是多少?如果加入0.3 mol NaOH 以代替HCl 时,pH 将是多少? 解答:(1) 1-0.3 0.3 0.3 71.23 .07.0lg 34.2][][lg 1=+=+=+±Gly Gly pKa pH (2)

0.7 ±Gly 0..3 -Gly 4、计算0.25 mol/L 的组氨酸溶液在pH 6.4时各种离子形式的浓度(mol/L )。 解答: ][][lg 21+++=His His pKa pH 同理得: 4)82.14.6(221080.310][][][][lg 82.14.6?==→+=--++++His His His His 51.210] [][][][lg 00.64.6)0.64.6(==→+=--+±+±His His His His 3)17.94.6(107.110] [][][][lg 17.94.6---±-±-?==→+=His His His His 25.0][][][][2=+++-±++His His His His 设x His =±][解上述方程得: 组氨酸主要以+±His His 和形式存在。 5、分别计算谷氨酸、精氨酸和丙氨酸的等电点。 解答: (1)根据谷氨酸的解离曲线,其pI 应该是它的-α羧基和侧链羧基的pKa 之和的算术平均 值。即:pI=(2.19 + 4.25)/2 =3.22; (2)精氨酸pI 应该是它的-α氨基和侧链胍基的pKa 之和的算术平均值,即 pI=(9.04 + 12.48)/2 =10.76; (3)丙氨酸pI 应该是它的-α氨基和-α羧基pKa 值之和的算术平均值,即 pI=(2.34 + 9.69)/2 =6.02; 6、计算下列肽的等电点。 (1)天冬氨酰甘氨酸 ,—末端10.2=COOHpK ,07.93=-+pK NH 末端53.4=-COOHpK β (2)谷胱甘肽 62 .9,66.8,53.3,12.23=-=-=-=-+SHpK pK NH COOHpK Gly COOHpK Glu 末端末端α(3)丙氨酰丙氨酰赖氨酰丙氨酸 末端—COOH pK=3.58,末端+3NH —pK=8.01,+-3NH εpK=10.58 解答: (1)Asp-Gly 二肽的解离情况如下: 两性离子

脂肪的分解代谢及脂肪酸氧化障碍

脂肪的分解代谢 1.脂肪的动员: 在脂肪酶作用下,甘油三酯被逐步水解为游离脂肪酸和甘油,并释放入血液供其它组织氧化利用的过程。 甘油三酯———→ 脂肪酸 + 甘油二酯 ———→ 脂肪酸 + 甘油一酯 ———→ 脂肪酸 + 甘油 2.甘油的分解 甘油 甘油磷酸激酶 ——————→ 3-磷酸甘油 磷酸甘油脱氢酶 ——————→ 磷酸二羟丙酮———→糖酵解 3.脂肪酸的氧化分解(β-氧化) A、脂肪酸的活化——脂酰CoA的生成 长链脂肪酸氧化前必须进行活化,活化在线粒体外进行。脂肪酸活化生成脂酰CoA。 R-CH2CH2COOH+CoASH+ATP 脂酰CoA合成酶 ————————→ Mg2+ R-CH2CH2CO~SCoA+AMP+PPi 脂肪酸活化后产生高能硫脂键,增加了代谢活性。PPi(焦磷酸)立即被细胞内的焦磷酸酶水解,阻止了逆向反应 B、脂酰CoA进入线粒体 催化脂肪酸氧化的酶系在线粒体基质内,因此活化的脂酰CoA必须进入线粒体才能代谢。——————————————————————————————— 线粒体外膜长链脂酰CoA+肉碱(CT) │ │ ↓ 肉碱脂酰转移酶Ⅰ(CPTⅠ) ———————长链脂酰肉碱+CoA ————————————— 线粒体内膜│ │ ↓ 肉碱-脂酰肉碱移位酶(CACT) ——————————————————————————————— 线粒体基质长链脂酰肉碱 │ │ ↓ 肉碱脂酰转移酶Ⅱ(CPTⅡ) 长链脂酰CoA+肉碱 C、脂肪酸的β氧化 (1)脱氢 脂酰CoA 脂酰CoA脱氢酶 ——————————→ FAD △2反烯脂酰CoA 脂酰CoA脱氢酶缺乏症:VLCAD,LCAD,MCAD,SCAD (2)加水(水合反应) △2反烯脂酰CoA △2反烯脂酰CoA水合酶————————————→ FAD L-β-羟酰基CoA

脂肪酸的分解代谢

第28章脂肪酸的分解代谢 28.1 本章主要内容 1)脂肪酸代谢的主要途径 2)脂肪酸代谢中的能量变化 3)酮体的代谢 28.2 教学目的和要求 通过本章学习,使学生掌握饱和脂肪酸的β-氧化途径和能量变化以及酮体的代谢,了解代谢障碍引起的疾病的发病机制与防治。 28.3 重点难点 1. 脂肪酸的β-氧化途径和能量变化 2. 酮体的代谢 28.4 教学方法与手段 讲授与交流互动相结合,采用多媒体教学。 28.5授课内容 一、脂类的消化和吸收 1.脂类的消化(主要在十二指肠中) 食物中的脂类主要是甘油三酯80-90%,还有少量的磷脂6-10%,胆固醇2-3%。 胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3至小肠(碱性)。脂肪间接刺激胆汁及胰液的分泌。胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。 胰腺分泌的脂类水解酶如下: ①三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两 个游离的脂肪酸。胰脏分泌的脂肪酶原要在小肠中激活。) ②磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸)。 ③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)。 ④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)。 2.脂类的吸收 脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成

更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。 小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。 3.脂类转运和脂蛋白的作用 甘油三脂和胆固醇脂在体内由脂蛋白转运。 脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。 载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。 4.脂蛋白的分类及功能 1)皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。 2)血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。 二、甘油三酯的水解 甘油三酯的水解由脂肪酶催化。组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。 分解甘油三酯的三种酶是: 脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶) 甘油二酯脂肪酶 甘油单酯脂肪酶 1.甘油代谢 在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷酸甘油,再经磷酸甘油脱氢酶氧化成磷酸二羟丙酮,进入糖酵解途径或糖异生途径。 2.脂肪酸的氧化

脂肪酸的β氧化

脂肪酸的β-氧化 肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。此过程可分为活化,转移,β-氧化共三个阶段。 1活化 脂肪酸活化和葡萄糖一样,脂肪酸参加代谢前也先要活化。其活化形式是硫酯——脂肪酰CoA, 催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反应。 ( 脂酰CoA合成酶:又称硫激酶,分布在胞浆中、线粒体膜和内质网膜上。胞浆中的硫激酶催化中短链脂肪酸活化;内质网膜上的酶活化长链脂肪酸,生成脂酰CoA,然后进入内质网用于甘油三酯合成;而线粒体膜上的酶活化的长链脂酰CoA,进入线粒体进入β-氧化) 2脂酰CoA进入线粒体 催化脂肪酸β-氧化的酶系在线粒体基质中,但活化生成的长链脂酰CoA不能自由通过线粒体内膜,要进入线粒体基质就需要载体( 肉毒碱(carnitine),即3-羟-4-三甲氨基丁酸) 转运。 脂酰CoA转运过程:长链脂肪酰CoA和肉毒碱反应,脂肪酰基与肉毒碱的3-羟基通过酯键相连接,生成辅酶A和脂酰肉毒碱。催化此反应的酶为肉毒碱脂酰转移酶(carnitine acyl transferase)。线粒体内膜的内外两侧均有此酶,系同工酶,分别称为肉毒碱脂酰转移酶I和肉毒碱脂酰转移酶Ⅱ。酶Ⅰ使胞浆的脂酰CoA转化为辅酶A和脂肪酰肉毒碱,后者进入线粒体内膜。位于线粒体内膜内侧的酶Ⅱ又使脂肪酰肉毒碱转化成肉毒碱和脂酰CoA,肉毒碱重新发挥其载体功能,脂酰CoA最终由线粒体外进入线粒体基质,成为脂肪酸β-氧化酶系的底物。 长链脂酰CoA进入线粒体的速度受到肉毒碱脂酰转移酶Ⅰ和酶Ⅱ的调节,酶Ⅰ受丙二酰CoA抑制,酶Ⅱ受胰岛素抑制。丙二酰CoA是合成脂肪酸的原料,胰岛素通过诱导乙酰CoA羧化酶的合成使丙二酰CoA浓度增加,进而抑制酶Ⅰ。可以看出胰岛素对肉毒碱脂酰转移酶Ⅰ和酶Ⅱ有间接或直接抑制作用。饥饿或禁食时胰岛素分泌减少,肉毒碱脂酰转移酶Ⅰ和酶Ⅱ活性增高,转移的长链脂肪酸进入线粒体氧化供能。

脂肪体内代谢过程

一、人体脂肪来源 脂肪又称三脂酰甘油或甘油三酯,由一分子甘油和三个脂肪酸缩合而成。体内脂肪酸来源有二:一是机体自身合成,二是食物供给,某些不饱和脂肪酸,机体不能合成,要靠食物供给,称必需脂肪酸,主要有两种,一种是ω-3系列的α-亚麻酸,在含有油脂类的植物食物中含量高,如亚麻籽、白苏籽、紫苏籽、火麻仁、核桃等,还有深绿色的植物如螺旋藻及深海微藻中。动物食品中只有蚕蛹、深海鱼等极少数的食物中含有。一种是ω-6系列的亚油酸,主要存在于豆油、玉米油和葵花油中。 二、脂肪体内合成代谢 1.合成场所 肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强(注意:肝细胞能合成脂肪,但不能储存脂肪)。合成后要与载体蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。若肝合成的甘油三酯不能及时转运,会形成脂肪肝。脂肪细胞是机体合成及储存脂肪的仓库。 合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。 2.合成基本过程 (1)甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。 (2)甘油二酯途径:肝细胞和脂肪细胞的合成途径。 脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。脂肪的合成代谢过程:见下图。

三、脂肪体内分解代谢 脂肪在人体合成代谢过程不用详细描述,吃是第一大来源了喔。看看脂肪在人体的分解代谢过程,脂肪分解分为三个阶段: 1、脂肪动员阶段 甘油三酯在脂肪酶(anslim含)的作用下,分解为甘油和脂肪酸。 2、甘油的氧化 甘油在甘油磷酸激酶的作用下,分解为3-磷酸甘油,然后在磷酸甘油脱氢酶的催化下,脱去2个氢形成磷酸二羟丙酮;再经糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。 3、脂肪酸的β-氧化 A.脂肪酸活化 胞浆和线粒体外膜上的脂酰CoA合成酶在ATP、CoASH、Mg2+存在条件下(食用anslim 植物可以自然体内产生),催化脂肪酸活化,生成脂酰CoA。帮助代谢脂肪中间产物,完成体内代谢脂肪过程。 B.脂酰CoA进入线粒体 因为脂肪酸的β-氧化在线粒体中进行。这一步需要肉碱的转运。肉碱脂酰转移酶I是脂酸β-氧化的限速酶,脂酰CoA进入线粒体是脂酸β-氧化的主要限速步骤,如饥饿时,糖供不足,此酶活性增强,脂肪酸氧化增强,机体靠脂肪酸来供能。 4、CH3Co~SCoA彻底氧化 乙酰CoA经三羧酸循环循环,最终氧化成CO2和H2O,生成的CO2经呼吸排出体外,H2O 则通过排汗和排尿排出体外。 总结: 了解这些脂肪在人体代谢过程后,妞们应该明白减肥要选择科学健康的方式。科学减肥重在脂肪合成代谢过程中注意防止身体合成过多身体不需要的脂肪,同时加速脂肪在人体的分解代谢过程,减少脂肪在身体储存量,从而维持骨感和健康的体质。

第九章脂代谢

第九章脂代谢 脂类的生理功能 a. 生物膜的骨架成分磷脂、糖脂 b. 能量贮存形式甘油三酯 c. 参与信号识别、免疫糖脂 d. 激素、维生素的前体固醇类激素,维生素D、A、K、E e. 生物体表保温防护 脂肪贮存量大,热值高,39KJ。 70kg人体,贮存的脂肪可产生:2008320kJ 蛋白质105000kJ 糖原2520kJ Glc 168kJ 脂肪的热值:1g脂肪产生的热量,是等量蛋白质或糖的2.3倍。 第一节脂类的消化、吸收和转运 一、脂类的消化和吸收 1、脂类的消化(主要在十二指肠中) 食物中的脂类主要是甘油三酯80-90% 还有少量的磷脂6-10% 胆固醇2-3% 胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3至小肠(碱性)。脂肪间接刺激胆汁及胰液的分泌。胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。 胰腺分泌的脂类水解酶: ①三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两个游离的脂肪酸。胰脏分泌 的脂肪酶原要在小肠中激活) ②磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸) ③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸) ④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原) 2、脂类的吸收 脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。被吸收的脂类,在

柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。 小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。 二、脂类转运和脂蛋白的作用 甘油三脂和胆固醇脂在体内由脂蛋白转运。 脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。 载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。 脂蛋白的分类及功能: P151表15-1各种脂蛋白的组成、理化性质、生理功能 三、贮脂的动用 皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。 血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。 贮脂的降解受激素调节。 促进:肾上腺素、胰高血糖素、肾上腺皮质激素 抑制:胰岛素 植物种子发芽时,脂肪酶活性升高,能利用脂肪的微生物也能产生脂肪酶。 第二节脂肪酸和甘油三酯的分解代谢 一、甘油三酯的水解 甘油三酯的水解由脂肪酶催化。 组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。 这三种酶是: 脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶) 甘油二酯脂肪酶 甘油单酯脂肪酶 肾上腺素、胰高血糖素、肾上腺皮质激素都可以激活腺苷酸环化酶,使cAMP浓度升高,促使依赖cAMP 的蛋白激酶活化,后者使无活性的脂肪酶磷酸化,转变成有活性的脂肪酶,加速脂解作用。 胰岛素、前列腺素E1作用相反,可抗脂解。 油料种子萌发早期,脂肪酶活性急剧增高,脂肪迅速水解。

生物化学习题-脂类代谢

第七讲脂类代谢 一、知识要点 (一)脂肪的生物功能: 脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。 脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。 脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。 (二)脂肪的降解 在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。 萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 (三)脂肪的生物合成 脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP 作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。 3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。 (四)磷脂的生成 磷脂酸是最简单的磷脂,也是其他甘油磷脂的前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应的磷脂。磷脂酸水解成二酰甘油,再与CDP-胆碱或CDP-乙醇胺反应,分别生成磷脂酰胆碱和磷脂酰乙醇胺。 二、习题 (一)名词解释 1.1.必需脂肪酸(essential fatty acid) 2.2.脂肪酸的α-氧化(α- oxidation) 3.3.脂肪酸的β-氧化(β- oxidation)

相关主题