搜档网
当前位置:搜档网 › 图像增强方法的研究

图像增强方法的研究

图像增强方法的研究
图像增强方法的研究

图像增强方法的研究

摘要

数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。在图像处理中,图像增强技术对于提高图像的质量起着重要的作用。本文先对图像增强的原理以及各种增强方法进行概述,然后着重对灰度变换、直方图均衡化、平滑和锐化等几种常用的增强方法进行了深入的研究,在学习数字图像的基本表示与处理方法的基础上,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的适用场合,并对其图像增强方法进行性能评价。如何选择合适的方法对图像进行增强处理,是本文的主要工作,为了突出每种增强方法的差异,本文在Matlab的GUI图形操作界面中集合了四种常用算法的程序,以达到对各种算法的对比更直观和鲜明的效果。

关键词:图像增强直方图均衡化灰度变换平滑锐化

目录

1 图像增强的基本理论 (3)

1.1 课题背景及意义 (3)

1.2 课题的主要内容 (4)

1.3 数字图像基本概念 (5)

1.3.1数字图像的表示 (5)

1.3.2 图像的灰度 (5)

1.3.3灰度直方图 (5)

1.4 图像增强概述 (6)

1.5图像增强概述 (8)

1.5.1图像增强的定义 (8)

1.5.2常用的图像增强方法 (8)

1.5.3图像增强的现状与应用 (9)

2 图像增强方法与原理 (10)

2.1 图像变换 (10)

2.1.1 离散图像变换的一般表达式 (10)

2.1.2 离散沃尔什变换 (11)

2.2 灰度变换 (12)

2.2.1 线性变换 (12)

2.2.2 分段线性变换 (13)

2.2.3 非线性变换 (13)

2.3 直方图变换 (14)

2.3.1 直方图修正基础 (14)

2.3.2 直方图均衡化 (16)

2.3.3 直方图规定化 (17)

2.4 图像平滑与锐化 (18)

2.4.1 平滑 (18)

2.4.2 锐化 (19)

3 图像增强算法与实现 (20)

3.1 灰度变换 (20)

3.2 直方图均衡化 (23)

3.3 平滑算法 (24)

3.4 锐化 (26)

274 结论 (28)

致谢 (29)

参考文献 (30)

附录源程序代码 (31)

1 图像增强的基本理论

1.1 课题背景及意义

随着电子计算机技术的进步,计算机图像处理近年来得到飞跃的发展,已经

成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用

计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,

经常运用图像增强技术以改善图像的质量。

在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示

等,经常会造成图像质量的下降。在摄影时由于光照条件不足或过度,会使图像

过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过

程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可

能存在诸多问题,这类问题不妨统称为质量问题。尽管由于目的、观点、爱好等

的不同,图像质量很难有统一的定义和标准,但是根据应用要求改善图像质量却

是一个共同的目标。图像增强是指根据特定的需要突出图像中的重要信息,同时

减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,

可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用

信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣

的区域,从而更加容易对图像中感兴趣的目标进行检测和测量[1]。处理后的图像

是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有

意识的努力重现图像的真实度。图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。

目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。如对x射线图片、CT影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用[2]。

在图像处理过程中,图像增强是十分重要的一个环节。本文的主要内容就是围绕图像增强部分的一些基本理论和算法而展开。

1.2 课题的主要内容

图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。

传统的图像增强算法在确定转换函数时常是图像变换、灰度变换、直方图变换、图像平滑与锐化、色彩增强等。常用的一些图像增强方法是学习图像增强的基础,至今它们对于改善图像质量仍发挥着重要的作用。本文着重研究了这些增强方法对图像进行增强处理,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,讨论不同的增强算法的适用场合,并对其图像增强方法进行性能评价。

全文共分四章,具体安排如下。

第一章图像增强的基本理论。介绍图像增强技术的课题背景和意义、本文的研究内容。阐述图像增强中用到的有关数字图像的一些基本概念;概述常用的一些图像增强方法及其特点,如灰度变换、直方图均衡化。

第二章图像增强方法与原理。针对图像增强过程中遇到的问题,提出相应的

解决方法。

第三章图像增强算法与实现。

第四章结论。

最后是致谢,论文的结尾附有源程序代码。

1.3 数字图像基本概念

1.3.1 数字图像的表示

图像并不能直接用计算机来处理,处理前必须先转化成数字图像。早期一般用picture代表图像,随着数字技术的发展,现在都用image代表离散化了的数字图像。

由于从外界得到的图像多是二维(2-D)的,一幅图像可以用一个2-D数组f表示。这里x和y表示二维空间XY中一个坐标点的位置,而f则代表图x

)

(y

,

像在点)

x的某种性质数值。为了能够用计算机对图像进行处理,需要坐标空

(y

,

间和性质空间都离散化。这种离散化了的图像都是数字图像,即)

f都在整

x

,

(y

数集合中取值。图像中的每个基本单元称为图像的元素,简称像素[3]。

1.3.2 图像的灰度

常用的图像一般是灰度图,这时f表示灰度值,反映了图像上对应点的亮度。亮度是观察者对所看到的物体表面反射光强的量度。作为图像灰度的量度函数x

(y

f应大于零。人们日常看到的图像一般是从目标上反射出来的光组成的,,

)

所以)

f可看成由两部分构成:入射到可见场景上光的量;场景中目标对反

x

,

(y

射光反射的比率。确切地说它们分别称为照度成分)

(y

,

r。

x

i和反射成分)

,

(y

x

,

f=)

,

(y

(y

x

,

r。

x

(y

r都成正比,可表示成)

x

i×) x

f与)

(y

,

)

x

,

(y

(y

,

i和)

x

将二维坐标位置函数)

f称为灰度。入射光照射到物体表面的能量是有

x

,

(y

限的,并且它永远为正,即0<)

i< ;反射系数为0时,表示光全部被物体

x

,

(y

吸收,反射系数为1时,表示光全部被物体反射,反射系数在全吸收和全反射之间,即0<)

,

x

r<1。因此图像的灰度值也是非负有界的。

(y

1.3.3 灰度直方图

灰度直方图是数字图像处理中一个最简单、最有用的工具,它反映了数字图像中每一灰度级与其出现频率之间的统计关系。可以有针对性地通过改变直方图的灰度分布状况,使灰度均匀地或按预期目标分布于整个灰度范围空间,从而达

到图像增强的效果。

灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,如图2.1所示,(b)为图像(a)的灰度直方图,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(像素的个数)。

(a) (b)

图2.1 a为原图像 b为a的灰度直方图

1.4 图像增强概述

随着数字技术的不断发展和应用,现实生活中的许多信息都可以用数字形式的数据进行处理和存储,数字图像就是这种以数字形式进行存储和处理的图像。利用计算机可以对它进行常现图像处理技术所不能实现的加工处理,还可以将它在网上传输,可以多次拷贝而不失真。数字图像处理亦称为计算机图像处理,指将图像信号转换成数字格式并利用计算机对其进行处理的过程。这项技术最早出现于20世纪50年代,当时的数字计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理成为一门独立的学科可追溯到20世纪60年代初期。1964年,美国喷气推进实验室利用计算机对太空船发回的月球图像信息进行处理,收到明显的效果,不久,一门称为数字图像处理的新学科便诞生了,而且很快便对通讯、电视传输、医学、印染工业、工业检测及科学研究领域产生了重大影响[4]。

数字图像处理系统主要由图像采集系统、数字计算机及输出设备组成。如图2.2所示[5]。

图1.1 数字图像处理系统

图2.2仅仅是图像处理的硬件设备构成,图中并没有显示出软件系统,在图像处理系统中软件系统同样是非常重要的。在图像获取的过程中,由于设备的不完善及光照等条件的影响,不可避免地会产生图像降质现象。影响图像质量的几个主要因素是:(1)随机噪声,主要是高斯噪声和椒盐噪声,可以是由于相机或数字化设备产生,也可以是在图像传输;(2)系统噪声,由系统产生,具有可预测性质;(3)畸变,主要是由于相机与物体相对位置、光学透镜曲率等原因造成的,可以看作是真实图像的几何变换。

数字图像处理流程如图2.3所示,从一幅或是一批图像的最简单的处理,如特征增强、去噪、平滑等基本的图像处理技术,到图像的特征分析和提取,进而产生对图像的正确理解或者遥感图像的解译,最后的步骤可以是通过专家的视觉解译,也可以是在图像处理系统中通过一些知识库而产生的对图像的理解。

图1.2 图像处理流程图

数字图像处理技术起源比较早,但真正发展是在八十年代后,随着计算机技术的高速发展而迅猛发展起来。到目前为止,图像处理在图像通讯、办公自动化系统、地理信息系统、医疗设备、卫星照片传输及分析和工业自动化领域的应用越来越多。但就国内的情况而言,应用还是很不普遍,人们主要忙于从事于理论研究,诸如探索图像压缩编码等,而对于将成熟技术转化为生产力方面认识还远远不够。California大学的Tony chen教授认为,目前国际上最常用的三种图像处理框架是:基于变换的图像处理框架;基于偏微分方程(PDE)的图像处理框架;基于统计学的图像处理框架。其中基于变换的图像处理框架主要在实现图像压缩上有优势,而基于偏微分方程(PDE)的图像处理框架在图像的噪声去除、边缘提取、图像分割上有优势。事实上,除了这三种工具以外,数学形态学、神经网络等学科在图像去噪及图像分割方面也存在特有的优势。

1.5 图像增强概述

1.5.1 图像增强的定义

图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。

1.5.2 常用的图像增强方法

(1)直方图均衡化

有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节看不清楚。这时可以通过直方图均衡化将图像的灰度范围分开,并且让灰度频率较小的灰度级变大,通过调整图像灰度值的动态范围,自动地增加整个图像的对比度,使图像具有较大的反差,细节清晰。

(2)对比度增强法

有些图像的对比度比较低,从而使整个图像模糊不清。这时可以按一定的规则修改原来图像的每一个象素的灰度,从而改变图像灰度的动态范围。

(3)平滑噪声

有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平

均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。

(4)锐化

平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。

1.5.3 图像增强的现状与应用

计算机图像处理的发展历史不长,但已经引起了人们的重视。图像处理技术始20世纪60年代,由于当时图像存储成本高,处理设备造价高,因而其应用面很窄。1964年美国加州理工学院的喷气推进实验室,首次对徘徊者7号太空飞船发回的月球照片进行了处理,得到了前所未有的清晰图像,这标志着图像处理技术开始得到实际应用。70年代进入发展期,出现cr和卫星遥感图像,对图像处理的发展起到了很好的促进作用。80年代进入普及期,此时微机己经能够承担起图形图像处理的任务。VLSI的出现更使得处理速度大大提高,其造价也进一步降低,极大的促进了图像处理系统的普及和应用。90年代是图像处理技术实用化时期,图像处理的信息量巨大,对处理的速度要求极高。21世纪的图像处理技术要向高质量化方面发展,实现图像的实时处理,采用数字全息技术使图像包含最为完整和丰富的信息,实现图像的智能生成、处理、理解和识别[7]。

目前,许多新的增强算法都充分利用了周围邻域这一重要的信息,形成了很多局部处理的灰度调整算法,该方法主要利用了邻域的统计特性。其中自适应滤波器既能平滑又能保护边缘,其基本思想是滤波器的参数可根据像素所在的邻域情况而自适应选取,也可描述为加权平均滤波器,可以较好的平滑噪声区域,并能保护较显著的边缘,但对图像细节的保护较差,该算法对脉冲噪声敏感,而且模型的性能受参数的影响比较大。近年来,模糊集合理论在图像处理中得到了广泛的应用。例如Yang和Tohl采用模糊规则改进传统的中值滤波器中滤波窗口尺度的选择,改善了算法对高斯噪声的抗噪性能。Russoti提出的自适应模糊滤波算子可以较好的保护图像细节和滤除高斯噪声,其算法中窗口的大小由邻域一致性

程度决定,该一致性程度由一个模糊逻辑规则导出。图像增强中变换域增强也得到很广泛的应用,例如付傅氏变换、离散余弦变换、小波变换等,其中小波是近年来发展起来的一种新的时频分析工具,它具有时频局部化能力和多分辨率分析的能力,使得它很适合于信号处理邻域。对图像进行多尺度小波变换后,不同频率的信号出现在不同尺度的子带图像上,有了这些特性就能很好的对感兴趣的部分进行增强。图像变换的方法是多种多样的[8]。

通过采取适当的增强处理可以将原本模糊不清甚至根本无法分辨的原始图片处理成清楚、明晰的富含大量有用信息的可使用图像,因此图像增强技术在许多领域得到广泛应用。在图像处理系统中,图像增强技术作为预处理部分的基本技术,是系统中十分重要的一环。迄今为止,图像增强技术己经广泛用于军事、地质、海洋、森林、医学、遥感、微生物以及刑侦等方面川。

2 图像增强方法与原理

2.1 图像变换

人与电脑对事物的理解是不同的,对于人来说,文字信息要比图像信息抽象,但是对于电脑来说,图像信息要比文字信息抽象。因此,对于计算机来说,要对图像进行处理,并不是一件容易的事情。为了快速有效的对图像进行处理和分析,我们通常都需要对图像进行一些变换,把原来的图像信息变为另一张形式,使计算机更容易理解、处理和分析。这种变换就是所谓的图像变换。

图像变换是指图像的二维正交变换,它在图像增强、复原、编码等方面有着广泛的应运。如傅立叶变换后平均值正比于图像灰度的平均值,高频分量则表明了图像中目标边缘的强度和方向,利用这些性质可以从图像中抽取出特征;又如在变换域中,图像能量往往集中在少数项上,或者说能量主要集中在低频分量上,这时对低频成分分配较多的比特数,对高频成分分配较少的比特数,即可实现图像数据的压缩编码。

2.1.1 离散图像变换的一般表达式

对于二维离散函数

x

f x=0,1,2,…,M-1;y=0,1,2,…,N-1 (2.1)

,

(y

)

有变换对

∑∑-=-==1010),,,(),(),(N y M x v y u x g y x f v u T (2.2)

u=0,1,2,…,M-1 v =0,1,2,…,N-1

∑∑-=-==1010),,,(),(),(N v M u v y u x h v u T v u T (2.3)

x=0,1,2,…,M-1 y =0,1,2,…,N-1

变换核可分离的离散图像变换表示为:

????

?????-=-==-=-==∑∑∑∑-=-=-=-=1,2,1,01,2,1,0),(),(),(),(1,2,1,01,2,1,0)

,(),(),(),(102110102110N y M x v y h v u T u x h y x f N v M u v y g y x f y x g v u T N v M u N y M x (2.4) 如此,二维离散变换就可以用两次一维变换实现。

2.1.2 离散沃尔什变换

由于傅立叶变换的变换核由正弦余弦函数组成,运算速度受影响。要找另一种正交变换,要运算简单且变换核矩阵产生方便。Walsh Transform 矩阵简单,只有1和-1,矩阵容易产生,有快速算法[1]。

一维离散沃尔什变换

假如N=2n ,则离散 f(x) ( x=0,1, 2,…,N-1)的沃尔什变换

∑-=---=∑-=10

)(110)()1)((1)(N x u b b i n n i x i x f N u W u=0,1,2,…,N-1 (2.5)

∑-=---=∑-=10)()(110)1)((1)(N u u b x b i n n i i u W N x f x=0,1,2,…,N-1 (2.6)

二维离散沃尔什变换

∑∑-=-==1

010),,,(),(),(N y M X v y u x g y x f v u W (2.7)

(u=0,1,2…,M-1 v=0,1,2…,N-1)

∑∑-=-==1010),,,(),(),(N v M u v y u x h v u W y x f (2.8)

(x=0,1,2…,M-1 y=0,1,2…,N-1)

这里假定了M=2m ,N =2n

从上式可知,反正变换核具有可分离性,即 ),(),(),(),(),,,(),,,(2121v y h u x h v y g u x g v y u x h v y u x g ===

)]()([)]()([11

111

1

)1(1)1(1

v b x b u b x b j n n i j i m m i i N M ---+---+∑-∑-= (2.9) 所以,二维离散沃尔什变换可由两次变换来实现。

2.2 灰度变换

灰度变换可使图像动态范围增大,对比度得到扩展,使图像清晰、特征明显,是图像增强的重要手段之一。它主要利用点运算来修正像素灰度,由输入像素点的灰度值确定相应输出点的灰度值,是一种基于图像变换的操作。灰度变换不改变图像内的空间关系,除了灰度级的改变是根据某种特定的灰度变换函数进行之外,可以看作是“从像素到像素”的复制操作。基于点运算的灰度变换可表示为

[1]:

)],([),(y x f T y x g = (2.10)

其中T 被称为灰度变换函数,它描述了输入灰度值和输出灰度值之间的转换关系。一旦灰度变换函数确定,该灰度变换就被完全确定下来。

灰度变换包含的方法很多,如逆反处理、阈值变换、灰度拉伸、灰度切分、灰度级修正、动态范围调整等。虽然它们对图像的处理效果不同,但处理过程中都运用了点运算,通常可分为线性变换、分段线性变换、非线性变换。

2.2.1 线性变换

假定原图像f(x,y)的灰度范围为[a,b],变换后的图像g(x,y)的灰度范围线

性的扩展至[c,d],如图3 .11所示。则对于图像中的任一点的灰度值P(x,y),变换后为g(x,y),其数学表达式如下所示[1]。

c

a y x f y x g a

b

c

d +-?=--]),([),( (2.11) 若图像中大部分像素的灰度级分布在区间[a,b]内,max f 为原图的最大灰度级,只有很小一部分的灰度级超过了此区间,则为了改善增强效果,可以令

??

???≤≤≤≤+-?≤≤=--f y x f b d b y x f a c a y x f a y x f o c y x g a b c d max ),(,),(]),([),(),( (2.12) 在曝光不足或过度的情况下,图像的灰度可能会局限在一个很小的范围内,这时得到的图像可能是一个模糊不清、似乎没有灰度层次的图像。采用线性变换对图像中每一个像素灰度作线性拉伸,将有效改善图像视觉效果。

2.2.2 分段线性变换

为了突出图像中感兴趣的目标或灰度区间,相对抑制不感兴趣的灰度区间,可采用分段线性变换,它将图像灰度区间分成两段乃至多段分别作线性变换。进行变换时,把0-255整个灰度值区间分为若干线段,每一个直线段都对应一个局部的线性变换关系。如图2.1所示,为二段线性变换,(a)为高值区拉伸,(b)为低值区拉伸[9]。

图2.1 二段线性变换

2.2.3 非线性变换

非线性变换就是利用非线性变换函数对图像进行灰度变换,主要有指数变换、对数变换等。

指数变换,是指输出图像的像素点的灰度值与对应的输入图像的像素灰度值之间满足指数关系,其一般公式为[1]:

y)f(x,),(b y x g = (2.13)

其中b 为底数。为了增加变换的动态范围,在上述一般公式中可以加入一些调制参数,以改变变换曲线的初始位置和曲线的变化速率。这时的变换公式为:

1),(]),([-=-?a y x f c b y x g (2.14)

式中a ,b ,c 都是可以选择的参数,当f(x,y)=a 时,g(x,y)=0,此时指数曲线交于X 轴,由此可见参数a 决定了指数变换曲线的初始位置参数c 决定了变换曲线的陡度,即决定曲线的变化速率。指数变换用于扩展高灰度区,一般适于过亮的图像。

对数变换,是指输出图像的像素点的灰度值与对应的输入图像的像素灰度值之间为对数关系,其一般公式为:

)],(lg[),(y x f y x g = (2.15)

其中lg 表示以10为底,也可以选用自然对数ln 。为了增加变换的动态范围,在上述一般公式中可以加入一些调制参数,这时的变换公式为:

c

b y x f a y x g ln ]1),(ln[),(?++= (2.16) 式中a ,b ,

c 都是可以选择的参数,式中f(x,y)+1是为了避免对0求对数,确保0]1),(ln[≥+y x f 。当f(x,y)=0时,0]1),(ln[=+y x f ,则y=a ,则a 为Y 轴上的截距,确定了变换曲线的初始位置的变换关系,b 、c 两个参数确定变换曲线的变化速率。对数变换用于扩展低灰度区,一般适用于过暗的图像。

2.3 直方图变换

2.3.1 直方图修正基础

图像的灰度直方图是反映一幅图像的灰度级与出现这种灰度级的概率之间的关系的图形。

灰度级为[0,L-1]范围的数字图像的直方图是离散函数h(k r )=k n ,这里k r 是第k 级灰度,k n 是图像中灰度级为k r 的像素个数。通常以图像中像素数目的总和n

去除他的每一个值,以得到归一化的直方图,公示如下:

n n r P k k /)(= k=0,1,2,…,L-1 (2.17)

且∑-==1

11)(L K k r P

因此)(k r P 给出了灰度级为k r 发生的概率估计值。归纳起来,直方图主要有一下几点性质:

(1)直方图中不包含位置信息。直方图只是反应了图像灰度分布的特性,和灰度所在的位置没有关系,不同的图像可能具有相近或者完全相同的直方图分布。

(2)直方图反应了图像的整体灰度。直方图反应了图像的整体灰度分布情况,对于暗色图像,直方图的组成集中在灰度级低(暗)的一侧,相反,明亮图像的直方图则倾向于灰度级高的一侧。直观上讲,可以得出这样的结论,若一幅图像其像素占有全部可能的灰度级并且分布均匀,这样的图像有高对比度和多变的灰度色调。

(3)直方图的可叠加性。一幅图像的直方图等于它各个部分直方图的和。

(4)直方图具有统计特性。从直方图的定义可知,连续图像的直方图是一位连续函数,它具有统计特征,例如矩、绝对矩、中心矩、绝对中心矩、熵。

(5)直方图的动态范围。直方图的动态范围是由计算机图像处理系统的模数转换器的灰度级决定。

由于图像的视觉效果不好或者特殊需要,常常要对图像的灰度进行修正,以达到理想的效果,即对原始图像的直方图进行转换(修正):

一幅给定的图像的灰度级分布在0≤r ≤1范围内。可以对[0,1]区间内的任何一个r 进行如下的变换:

s=T(r) (2.18)

变换函数T 应满足以下条件:

a.在0≤r ≤1区间内,)(r T 单值单调增加;

b.对于0≤r ≤1,有0≤)(r T ≤1。

这里的第一个条件保证了图像的灰度级从白到黑的次序不变。第二个条件则保证了映射变换后的像素灰度值在允许的范围内。满足这两个条件,就保证了转换函数的可逆。

2.3.2 直方图均衡化

直方图均衡化方法是图像增强中最常用、最重要的方法之一。直方图均衡化是把原图像的直方图通过灰度变换函数修正为灰度均匀分布的直方图,然后按均衡直方图修正原图像。它以概率论为基础,运用灰度点运算来实现,从而达到增强的目的。它的变换函数取决于图像灰度直方图的累积分布函数。概括的说,就是把一已知灰度概率分布的图像,经过一种变换,使之演变成一幅具有均匀概率分布的新图像。有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节看不清楚。这时可以将图像的灰度范围分开,并且让灰度频率较小的灰度级变大。当图像的直方图为一均匀分布时,图像的信息熵最大,此时图像包含的信息量最大,图像看起来就显得清晰[10]。

直方图均衡化变换函数如图2.2所示,设r,s分别表示原图像和增强后图像的灰度。为了简单,假定所有像素的灰度已被归一化。当r=s=0时,表示黑色;当r=s=1时,表示白色;当r,s在[0,1]之间时,表示像素灰度在黑白之间变化。灰度变换函数为:s=T(r)。

图2.2 直方图均衡化变换函数

实际上,由于直方图是近似的概率密度函数,用离散灰度级作变换时很少能够得到完全平坦的结果,而且,变换后往往会出现灰度级减少的现象,这种现象被称为“简并”现象。这是像素灰度有限的必然结果。由于上述原因,数字图像的直方图均衡只能是近似的。直方图均衡化处理可大大改善图像灰度的动态范围。减少简并现象通常可采用两种方法:一种简单的方法是增加像素的比特数。

比如,通常用8比特来代表一个像素,而现在用12比特来表示一个像素,这样就可以减少简并现象发生的机会,从而减少灰度层次的损失。另外,采用灰度

间隔放大理论的直方图修正方法也可以减少简并现象。这种灰度间隔放大可以按照眼睛的对比度灵敏特性和成像系统的动态范围进行放大。一般实现方法采用如下几步:

(1)统计原始图像的直方图;

(2)根据给定的成像系统的最大动态范围和原始图像的灰度级来确定处理后的灰度级间隔;

(3)根据求得的步长来求变换后的新灰度;

(4)用处理后的新灰度代替处理前的灰度。

2.3.3 直方图规定化

直方图均衡化是以累计分布函数变换法为基础的直方图修正技术,使得变换后的灰度概率密度函数是均匀分布的,因此,它不能控制变换后的直方图而交互性差。这样,在很多特殊的情况下,需要变换后图像的直方图具有某种特定的曲线,例如对数和指数等,直方图规定化可以解决这一问题。

直方图规定化方法如下:假设)(k r P 是原始图像分布的概率密度函数,)(z p z 是希望得到的图像的概率密度函数。

先对原始图像进行直方图均衡化处理,即:

?==r r dv v p r T s 0

)()( (2.19) 假定已经得到了所希望的图像,并且它的概率密度函数是)(z p z 。对该图像也做均衡化处理,即:

?==z z dv v p z G u 0

)()( (2.20) 由于对于这两幅图像,同样作了均衡化处理,所以他们具有同样的均匀密度。其中(2.9)的逆过程为)(1U G z -=,则如果用从原始图像中得到的均匀灰度级S 来代替逆过程中的u ,其结果灰度级将是所要求的概率密度函数)(z p z 的灰度级:

)()(11s G u G z --== (2.21)

根据以上思路,可以总结出直方图规定化增强处理的步骤如下:

(1)将原始图像进行均衡化处理;

(2)规定希望的灰度概率密度函数,用(2.22)式计算它的累计分布函数G(z);

(3)将逆变换函数)(1s G z -=用到步骤(1)中所得的灰度级。

上述三步得到了原始图像的一种处理方法,只要求G(s)是可逆的即可进行。但是,对于离散图像,由于G(s)是一个离散的阶梯函数,不可能有逆函数存在,对此,只能进行截断处理,必将不可避免的导致变换后图像的直方图一般不能与目标直方图严格的匹配。

2.4 图像平滑与锐化

2.4.1 平滑

获得的图像可能会因为各种原因而被污染,产生噪声。常见的图像噪声主要有加性噪声、乘性噪声和量化噪声等。噪声并不仅限于人眼所见的失真,有些噪声只针对某些具体的图像处理过程产生影响。图像中的噪声往往和正常信号交织在一起,尤其是乘性噪声,如果处理不当,就会破坏图像本身的细节,如会使线条、边界等变得模糊不清。有些图像是通过扫描仪扫描输入或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声。如何既平滑掉噪声又尽量保持图像细节,是图像平滑的主要研究任务。这些噪声的存在直接影响着后续的处理过程,使图像失真。这时可以采用线性滤波和中值滤波的方法。

(1) 线性滤波

线性滤波一般采用的是领域平均法。对于给定的图像f(x ,y)中的每一个点(m ,n ),取其领域s 。设s 含有M 个像素,取其平均值作为处理后所得图像像素点(m ,n )处的灰度。设S 是3*3的正方形邻域,点(m ,n )位于S 中心,则:

∑∑-=-=++=1

11

1

),(91),(y x n y x m f n m f (2.22) (2) 中值滤波 中值滤波就是输出图像的某点象素等于该象素邻域中各象素灰度的中间值。给定的图像f(x,y)中的每一个点(m,n ),取其领域s 。设s 含有M 个像素{a1,a2,?,aM},将其按大小排序,若M 是奇数时,则位于中间的那个象素值就是修改后图像g(x,y)在点f(m,n)处的像素值;若M 是偶数则取中间两个象素的平均值作为修改后图像g(x,y)在点(m,n )处的像素值。

2.4.2 锐化

图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像边缘变得清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。为了要把图像中间任何方向伸展的边缘和轮廓变得清晰,我们希望对图像的某种运算是各向同性的。

(1) 梯度法

梯度是图像处理中最常用的一种一阶微分方法。对图像函数F(j,k),其在点(j,k )上的梯度定义为矢量:

????????????????=k F j F K J F G )],([

(2.23)

从梯度的性质可知,梯度的方向确定了图像F(j,k)的最大变化率的方向,G[F(j,k)]的幅度为下式:

2122)],([??????????? ????+???? ????=k F j F K J F G

(2.24)

对于数字图像,用差分来近似微分。为了便于编程和提高运算速度,可以如下进行绝对值的运算: {}

21

2

2),1(),(),1(),()],([K J F K J F K J F K J F K J F G +-++-≈

(2.25) 一旦计算梯度的算法确立之后,就可以有很多方法来使图像轮廓突出。最简单的方法就是令(x,y )点上锐化后的图像函f(x,y)数值等于原始图像在该点上的梯度值,即:

)],([),(K J F G y x g =

(2.26)

此法的缺点是处理后的图像仅显示出轮廓,灰度平缓变化的部分由于梯度值较小而显得很黑。

(2) 拉普拉斯算子

拉普拉斯算子是线性二阶微分算子,与梯度算子一样,具有旋转不变性,从而满足不同走向的图像边界的锐化要求。拉普拉斯算子对图像中的噪声非常敏感,为了减少噪声的影响,在做增强处理之前,先将待处理的图像进行平滑,再做拉普拉斯运算。

相对于梯度算子,拉普拉斯算子具有增强的边缘精确定位的优点。因为梯度一阶微分算子会在较大范围内形成梯度值,差分的结果不适合精确定位。然后,二阶差分算子的过零特性,可以使边缘增强后精确定位。

(3) 高通滤波

图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,从而达到图像锐化的目的。建立在离散卷积基础上的空间域高通滤波关系式如下:

)1,1(),(),(2211212121+-+-=∑∑n m n m H n n F m m g n n

(2.27)

式中),(21m m g 为锐化输出;

),(21n n F 为输入图像;

)1,1(2211+-+-n m n m H 为冲击响应阵列(卷积阵列)。

3 图像增强算法与实现

3.1 灰度变换

为了突出图像中感兴趣的目标或灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换,把0-255整个灰度值区间分为若干线段,每一个直线段都对应一个局部的线性变换关系,常用的是三段线性变换方法,如图3.1所示。

数字图像处理(频域增强)

数字图像处理(频域增强)

数字图像处理图像频域增强方法的研究 姓名: 班级: 学号:

目录一.频域增强的原理 二.频域增强的定义及步骤三.高通滤波 四. MATLAB程序实现 五.程序代码 六.小结

一.频域图像的原理 在进行图像处理的过程中,获取原始图像后,首先需要对图像进行预处理,因为在获取图像的过程中,往往会发生图像失真,使所得图像与原图像有某种程度上的差别。在许多情况下,人们难以确切了解引起图像降质的具体物理过程及 其数学模型,但却能估计出使图像降质的一些可能原因,针对这些原因采取简单易行的方法,改善图像质量。图像增强一般不能增加原图像信息,只能针对一些成像条件,把弱信号突出出来,使一些信息更容易分辨。图像增强的方法分为频域法和空域法,空域法主要是对图像中的各像素点进行操作;而频域法是在图像的某个变换域内,修改变换后的系数,例如傅立叶变换、DCT 变换等的系数,对 图像进行操作,然后再进行反变换得到处理后的图像。 MATLAB矩阵实验室(Matrix Laboratory)的简称,具有方便的数据可视化功能,可用于科学计算和工程绘图。它不仅在一般数据可视化软件都具有的功能方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。它具有功能丰富的工具箱,不但能够进行信号处理、语音处理、数值运算,而且能够完成各种图像处理功能。本文利用MATLAB工具来研究图像频域增强技术。图像增强是为了获得更好质量的图像,通过各种方法对图像进行处理,例如图像边缘检测、分割以及特征提取等技术。图像增强的方法有频域处理法与空域处理法,本文主要研究了频域处理方法中的滤波技术。从低通滤波、高通滤波、同态滤波三个方面比较了图像增强的效果。文章首先分析了它们的原理,然后通过MATLAB软件分别用这三种方法对图像进行处理,处理后使图像的对比度得到了明显的改善,增强了图像的视觉效果。

图像增强方法的研究

图像增强方法的研究 摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。在图像处理中,图像增强技术对于提高图像的质量起着重要的作用。本文先对图像增强的原理以及各种增强方法进行概述,然后着重对灰度变换、直方图均衡化、平滑和锐化等几种常用的增强方法进行了深入的研究,在学习数字图像的基本表示与处理方法的基础上,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的适用场合,并对其图像增强方法进行性能评价。如何选择合适的方法对图像进行增强处理,是本文的主要工作,为了突出每种增强方法的差异,本文在Matlab的GUI图形操作界面中集合了四种常用算法的程序,以达到对各种算法的对比更直观和鲜明的效果。 关键词:图像增强直方图均衡化灰度变换平滑锐化

目录 1 图像增强的基本理论 (3) 1.1 课题背景及意义 (3) 1.2 课题的主要内容 (4) 1.3 数字图像基本概念 (5) 1.3.1数字图像的表示 (5) 1.3.2 图像的灰度 (5) 1.3.3灰度直方图 (5) 1.4 图像增强概述 (6) 1.5图像增强概述 (8) 1.5.1图像增强的定义 (8) 1.5.2常用的图像增强方法 (8) 1.5.3图像增强的现状与应用 (9) 2 图像增强方法与原理 (10) 2.1 图像变换 (10) 2.1.1 离散图像变换的一般表达式 (10) 2.1.2 离散沃尔什变换 (11) 2.2 灰度变换 (12) 2.2.1 线性变换 (12) 2.2.2 分段线性变换 (13) 2.2.3 非线性变换 (13) 2.3 直方图变换 (14) 2.3.1 直方图修正基础 (14) 2.3.2 直方图均衡化 (16) 2.3.3 直方图规定化 (17) 2.4 图像平滑与锐化 (18) 2.4.1 平滑 (18) 2.4.2 锐化 (19)

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.sodocs.net/doc/3a13654230.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

指纹增强算法的研究

本科毕业设计(论文) 学生姓名: 专 业: 指导教师完成日期

诚信承诺书 本人承诺:所呈交的论文是本人在导师指导下进行的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已发表或撰写过的研究成果。参与同一工作的其他同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 本论文使用授权说明 本人完全了解南通大学有关保留、使用学位论文的规定,即:学校有权保留论文及送交论文复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容。 (保密的论文在解密后应遵守此规定) 学生签名:指导教师签名:日期:

指纹在生物识别应用中的形式最为广泛,具有唯一性和不变性。指纹增强的主要任务 Gabor 滤波器在指纹增强技术中的应用,并且在此基础上提出了改进算法。仿真显示Gabor 滤波法在指纹增强技术中具有很好的带通特性,也具有很好的方向和频率选择特性。因此,用 滤波法的缺陷,改善指纹图像的滤 摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。其要素一般包括:①目的——研究、研制、调查等的前提、目的和任务,所涉及的主要范围;②方法——所用的原理、理论、条件、对象、材料、工艺、结构、手段、装备、程序等;③结果——实验的、研究的结果,数据,被确定的关系,观察结果,得到的效果,性能等;④结论——结果的分析、研究、比较、评价、应用,提出的问题,今后的课题,假设,启发,建议,预测等; 写摘要时不得简单地重复题名中已有的信息,要排除在本学科领域中已成常识的内容,要用第三人称的写法。应采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法,不使用“本文”、“作者”等作为主语。摘要的第一句不要与题目重复;取消或减少背景信息,只表示新情况、新内容;不说空洞的词句,如“本文所讨论的工作是对过去×××的一个极大地改进”、“本工作首次实现了……”、“经检索尚未发现与本文类似的工作”等;此外,作者的打算及未来的计划不能纳入摘要。

MATLAB常用图像增强方法(精)

数字图像处理 实验报告 实验名称:常用图像增强方法 专业班级: 07级电子信息工程2班 姓名:王超 学号: 20077427 一、实验目的 1、熟悉并掌握MATLAB图像处理工具箱的使用; 2、理解并掌握常用的图像的增强技术。 二、实验步骤 1、显示图像直方图 选择一幅图像,转化为灰度图像后显示其直方图,建立M文件程序如下:a=imread('f:\chuan.jpg';

b=rgb2gray(a; subplot(1,2,1; imshow(b; subplot(1,2,2; imhist(b 结果如图: 2、直方图均衡化 建立M文件,程序如下:a=imread('f:\chuan.jpg'; b=rgb2gray(a; subplot(1,3,1;imshow(b; subplot(1,3,2;imhist(b;

c=histeq(b,64; [c,T]=histeq(b; subplot(1,3,3;imhist(c 结果如图: 3、采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像滤波,窗口分别采用3*3,5*5,7*7 建立M文件程序如下: a=imread('f:\chuan1.jpg'; x=rgb2gray(a; b=imnoise(x,'salt & pepper', 0.04; subplot(2,2,1;imshow(b; c=medfilt2(b,[3 3]; subplot(2,2,2;imshow(c;

d=medfilt2(b,[5 5]; subplot(2,2,3;imshow(d; e=medfilt2(b,[7 7]; subplot(2,2,4;imshow(e 结果如图:1图为加噪图像,2、3、4图分别为窗口采用3*3、5*5、7*7的滤波后的图像 4、采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 建立M文件程序如下: a=imread('f:\chuan1.jpg'; b=rgb2gray(a; subplot(1,2,1;imshow(b; h=[1,2,1;0,0,0;-1,-2,-1]; c=filter2(h,b;

图像增强研究现状

在借鉴国外相对成熟理论体系与技术应用体系的条件下,国内的增强技术与应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期与应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别就是出现了CT与卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理与分析遥感图像,以有效地进行资源与矿藏的勘探、调查、农业与城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像与生物切片显微图像等进行处理,提高图像的清晰度与分辨率。在工业与工程方面,主要应用于无损探伤、质量检测与过程自动控制等方面。在公共安全方面,人像、指纹及其她痕迹的处理与识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强就是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入与发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择与亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时她们也考虑太阳位置与月球环境的影响,最终成功地绘制出了月球表面地图。随后她们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究与设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末与20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测与天文学等领域。X射线就是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N、Hounsfield先生与Allan M、Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理就是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备与分析处理三维图像的系统已经研制成功了,图像处理技术

图像增强理论简述

图像增强方法研究 一、图像增强研究现状 图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。 二、图像增强所要借助的软件MATLAB MATLAB 是MATrix LABoratory(“矩阵实验室”)的缩写,是由美国MathWorks 公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。是国际公认的优秀数学应用软件之一。 三、图像增强方法分类 1、频域图像增强方法 2、小波域图像增强方法 3、空域图像增强方法 (一)频域图像增强方法 频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。其原理如下图所示: 频域图像增强原理图 1、平滑噪声 有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。 2、锐化 平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。 (二)小波域图像增强方法 小波是近几年发展起来的一种时频分析工具,它同时具有时频局部化能力和多分辨率分析的能力,因此它更适用于信号处理领域。 之前的图像降噪大多采用低通滤波器直接滤除高频信息,因此使得在去除噪声的同时,也去掉了一些有用的高频信息,损失了图像的细节。而采用小波进行去噪,由于其多分辨率特性,它用不同中心频率的带通滤波器对信号进行滤波,把主要反映噪声频率的尺度系数去掉,再

面向低质量指纹的图像增强算法研究优秀毕业论文

西南政法大学硕士学位论文 面向低质量指纹的图像增强算法研究 导师:贾治辉副教授 作者:向锐 中国·重庆 二零零八年四月

中文摘要 指纹是手指末端正面皮肤上由乳头凸起的摩擦脊线形成的花纹,具有各人各指不同、终身稳定不变的特性。指纹因其蕴涵大量的人身个体信息,而具有很高的人身识别价值。近百年来,人们通过对指纹不懈的研究和探索,逐步对指纹的特征体系有了清晰的认识,并基于此对指纹特征进行了分类,提出了指纹鉴定的科学依据和程序。 目前,指纹识别技术已经在现代生物识别技术中占有相当重要的位置。从实用性和可行性角度看,指纹识别技术能够高效、快捷、方便的自动完成指纹的纹形分类、特征提取、图像的存储、检索以及比对、细节特征匹配等一系列工作,具有方便、高效、客观、安全等诸多优点,优于其它生物识别技术,已被认为是一种理想的身份认证技术。 从20世纪60年代起,计算机技术进入指纹识别、鉴定领域,英国、美国、法国、日本等计算机发达的国家先后研制出各具特色的指纹自动识别系统,为指纹鉴定开辟了新的途径。目前,计算机指纹识别技术已经在司法、金融安全、数字加密、电子商务等各个领域得到了广泛的应用,在我们未来的生活中发挥越来越重要的作用。 近年来,由于数字图象处理学以及硬件技术的迅速发展,指纹识别技术获得相当大的进展,但仍然不能满足社会发展的需要,以指纹识别广泛代替其它识别技术(如印鉴,钥匙,密码,签字)是面向二十一世纪的具有深远意义的课题,有关指纹自动识别技术的研究己成为模式识别、图象处理以及计算机视觉等领域中极为关注的热点。 指纹识别技术通常使用指纹的一般特征来进行种类识别,在种类识别的基础上再对指纹的细节特征进行系统性的比较,然后作出是否同一的判断。它一般都由以下模块组成:指纹图像采集模块;指纹图像预处理模块;特征提取模块;特征匹配模块。其中,指纹图像预处理模块又包括:图像质量评估,图像分割、图像增强、细化、二值化等步骤。 指纹识别技术中,图像增强技术是其中一个非常重要的步骤。如果指纹图像得不到准确、显著的增强,指纹特征就难以被准确提取。许多学者对指纹图像增强方法进行了探讨,其中,Coetzee等使用Marr-Hildreth边缘算子得到指纹灰度图的脊边缘图,提出了采用卷积

图像增强研究现状

在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X 射线图像、超声图像和生物切片显微图像等进行处理,提高图像的清晰度和分辨率。在工业和工程方面,主要应用于无损探伤、质量检测和过程自动控制等方面。在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时他们也考虑太阳位置和月球环境的影响,最终成功地绘制出了月球表面地图。随后他们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究和设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末和20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测和天文学等领域。X射线是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N. Hounsfield先生和Allan M. Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20

数字图像的频域增强论文

数字图像处理结课作业 --数字图像频域增强方法 及在matlab中的实现数字图像的频域增强

摘要:图像增强处理技术是图像处理领域中一项基本的,也是很重要的技术,一直是图像处理领域中不可回避的研究课题。因为一幅图像总是可能受到各种因素的干扰影响,造成图像质量的下降。图像增强包含两个方面内容:一是消除噪声,二是增强(或保护)图像特征。对图像恰当增强,能使图像去噪的同时特征得到较好保护,使图像更加清晰明显,从而提供给我们准确的信息。常用的图像增强技术各有其特点和效果。 论文在介绍图像频域增强原理的基础上,在频域内通过对Butterworth低通滤波器增强方法进了研究,介绍了相关的理论和数学模型,并给利用MATLAB工具进行实现。通过各种滤波后图像比较,实验证明在质量较差的图像中,选择不同的滤波算法对图像的增强在准确性上均有不同。 关键词:图像增强;Butterworth低通滤波器;MATLAB

1.频域图像增强的目的、意义及主要内容 1.1频域图像增强技术的目的: 分析几种频域图像增强方法,并能够用频域法进行图像增强,通过形态学方法进行图像特征抽取和分析。熟练的运用MATLAB,掌握修改图像的傅里叶变换来实现图像的增强技术。 1.2频域图形增强技术的意义: 图像增强是图像处理中用来消除原始图像边缘模糊、对比度差等缺点的常用技术,它需要解决的问题包括边缘增强、噪声的滤除、高斯噪声的平滑和细节的保护等等。本论文主要是针对整体偏暗图像而提出的图像增强的方法。对于整体偏暗的图像,我们可以用直方图均衡化来调节图像的灰度分布,使图像变亮。此外,为了进一步提高图像的视觉效果,即解决包括边缘增强、噪声滤除等问题,我们还可以用频域图像增强方法(高通滤波器和低通滤波器)来处理,因为高通滤波器可以突出图像边缘,增强有用信息,使图像更加清晰,而低通滤波器可以平滑去噪,抑制无用信息,从而提高图像成分的可分辨性。 1.3主要内容

医学图像增强方法研究

医学图像增强方法研究 摘要:简要介绍医学图像增强的概念和主要目的。从传统图像增强方法、基于区域的增强方法和基于小波变换的增强方法三方面对医学图像增强方法进行讨论。最后介绍图像增强效果的评价方案。 关键词:图像增强,算法,区域,小波变换,评价 图像增强根据图像的模糊情况采用了各种特殊的技术突出图像整体或局部特征,常用的图像增强技术有灰度变换、直方图处理、平滑滤波(高斯平滑),中值滤波、梯度增强、拉普拉斯增强以及频率域的高通低通滤波等,然而,这些算法运算量大、算法复杂、处理速度低。 目前,图像增强没有统一的标准,医学图像增强的主要目的是满足医生诊断的临床应用需要。因此,如何提高医学图像质量,是图像处理的一个重要课题。 图像增强可归纳为两方面[2]:(1)消除噪声;(2)边缘增强和结构信息的保护。(图像增强方法的研究) 图像增强方法主要分为频域法、空域法两大类[2]。频域法通常计算量大,变换参数的选取需要较多的人工干预;空域法主要包括直方图均衡化、直方图变换、灰度拉伸、局部对比度增强、平滑滤波和反锐化掩模[4~ 6]等。直方图均衡化是最常见的图像增强方法,其主要缺点是图像易出现不平滑灰度过渡。当图像直方图含多个波峰时,会出现过度增强,不仅丢失了部分图像细节信息,而且会明显放大噪声,影响图像增强的效果。平滑滤波可去除一定噪声,但会使图像模糊,对比度增强不明显。反锐化掩模可以增强图像的边缘和细节,但同时也会增强噪声。此外,图像的高频细节区域相对低频区域增强显著,易出现过增强现象。利用这些空间域图像增强算法处理医学图像,存在对噪声敏感且易陷入欠增强或过增强等不足。(基于量子概率统计的医学图像增强算法研究) 图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的【3]。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。 目前,许多新的增强算法都充分利用了周围邻域这一重要的信息,形成了很多局部处理的灰度调整算法,该方法主要利用了邻域的统计特性【4]。自适应增强的研究主要集中在以下三大类增强算法: 1.既能平滑又能保护边缘的自适应滤波器。自适应滤波的基本思想是滤波器的参数可根据像素所在的邻域情况而自适应选取,也可描述为加权平均滤波器。(1)在提高算法的抗噪性能方面,文献〔5]【6〕介绍了几种方法。这些方法可以较好的平滑噪声区域,并能保护较显著的边缘,但对图像细节的保护较差。(2)在提高算法的细节保护能力方面,Saint一Marc【7】利用梯度来决定权值,建立了指数形式的权函数,较好的保护了图像细节。但该算法对脉冲噪声敏感,而且模型的性能受参数的影响比较大。另外,文献【8〕【9]还提出了各向异性扩散思想的改进方法,需要求解热传导方程。这些改进算法多数集中在权值的自适应选取上,但是由于自适应调整的参数较少,仍然不能很好的解决细节保护的问题。 2.基于图像建模和估计理论的增强算法。这类算法的基本思想是提出一个图像的模型,如果这个模型的参数由一种估计方法估计出来,则窗口中心的灰度值可由估计出来的参数计算得到。最简单的例子就是中值滤波器,对脉冲型噪声有很好的效果。但是,这类算法由于是以估计理论为基础,所以所采用的估计方法的鲁棒性对算法的性能有很大的影响。估计方

基于matlab的数字图像增强算法研究与实现

基于matlab的数字图像增强算法研究与实现 摘要图像在获取和传输过程中,会受到各种噪声的干扰,使图像退化质量下降,对分析图像不利。图像的平滑或去噪一直是数字图像处理技术中的一项重要工作。为此,论述了在空间域中的各种数字图像平滑技术方法。 关键字:数字图像;图像增强;平滑处理

目录 第一章、概述 2 1.1 图像平滑意义 2 1.2图像平滑应用 2 1.3噪声模 型 (3) 第二章 、图像平滑方法 5 2.1 空域低通滤波 5 2.1.1 均值滤波器 6 2.1.2 中值滤波器 6 2.2 频域低通滤波 7 第三章、图像平滑处理与调试 9 3.1 模拟噪声图像 9 3.2均值滤波法 11 3.3 中值滤波法 14 3.4 频域低通滤波法 17 第四章、总结与体会 19 参考文献 20 第一章、概述 1.1图像平滑意义 图像平滑(S m o o t h i n g)的主要目的是减少图像噪声。图像噪声来自于多方面,有来自于系统外部的干扰(如电磁波或经

电源窜进系统内部的外部噪声),也有来自于系统内部的干扰(如摄像机的热噪声,电器机械运动而产生的抖动噪声内部噪声)。实际获得的图像都因受到干扰而有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或在频率域处理。在空间域中进行时,基本方法就是求像素的平均值或中值;在频域中则运用低通滤波技术。 图像中的噪声往往是和信号交织在一起的,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓,线条等模糊不清,从而使图像降质。图像平滑总是要以一定的细节模糊为代价的,因此如何尽量平滑掉图像的噪声,又尽量保持图像的细节,是图像平滑研究的主要问题之一。 1.2图像平滑应用 图像平滑主要是为了消除被污染图像中的噪声,这是遥感图像处理研究的最基本内容之一,被广泛应用于图像显示、传 输、分析、动画制作、媒体合成等多个方面。该技术是出于人类视觉系统的生理接受特点而设计的一种改善图像质量的方法。处理对象是在图像生成、传输、处理、显示等过程中受到多种因素扰动形成的加噪图像。在图像处理体系中,图像平滑是图像复原技术针对“一幅图像中唯一存在的退化是噪声”时的特例。 1.3噪声模型 1.3.1噪声来源 一幅图像可能会受到各种噪声的干扰,而数字图像的实质就是光电信息,因此图像噪声主要可能来源于以下几个方面:光电传感器噪声、大气层电磁暴、闪电等引起的强脉冲干扰、

图像增强

实验二图像增强 一、实验目的 1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。 2、学会对图像直方图的分析。 3、掌握直接灰度变换的图像增强方法。 4、掌握直方图均衡化。 5、采用均值滤波、中值滤波实现图像平滑。 6、采用梯度方法、拉普拉斯算子、Sobel 算子和 Prewitt 算子实现图像锐化。 二、实验原理及知识点 图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。图像增强技术主要有直接灰度尺度变换、直方图修改处理、图像平滑化处理、图像尖锐化处理等。 1、灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。

在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理。若假定原图像f(x, y)的灰度范围为[a, b],希望变换后图像 g(x, y)的灰度范围扩展至[c, d],则线性变换可表示为: g(x,y)=[ f (x, y)? a]+ c 2、直方图变换 直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 依据定义,在离散形式下,用r k代表离散灰度级,用p r(r k)代表p r(r),并且有下式成立: 式 中 :n k为图像中出现r k级灰度的像素数,n是图像像素总数,而n k/n即为频数。 n j s k= T (r k)=∑ =∑ p r(r j) 0≤ r j≤1 k = 0,1,...,l ?1 n P r(r k) =n k 0 ≤ r k≤ 1 k = 0,1,2,...,l?1 n a b c d - -

根据matlab的指纹图像增强方法

课程设计报告 设计题目:指纹图像的增强 学院:电子工程学院 专业:电子信息工程 班级: 学号: 姓名: 电子邮件: 日期: 2013 年 9 月 成绩: 指导教师:

一、设计概述 1.课程设计题目:指纹图像的增强方法 2.基本要求:读取初始指纹图像,设计程序,实现指纹图像的增强,使指纹的 纹理更加清晰,便于识别。 3.指纹图像增强的意义: 指纹是人类手指末端指腹上由凹凸的皮肤所形成的纹路。指纹能使手在接触物件时增加摩擦力,从而更容易发力及抓紧物件。是人类进化过程式中自然形成的。目前尚未发现有不同的人拥有相同的指纹,所以每个人的指纹也是独一无二。由于指纹是每个人独有的标记,近几百年来,罪犯在犯案现场留下的指纹,均成为警方追捕疑犯的重要线索,使得指纹识别技术得到了飞快的发展,指纹图像的识别也就变得非常具有意义,但是通过传感器等方式获取到的指纹图像往往是比较模糊的,识别率相对较低,此时,指纹图像增强就孕育而生,通过对指纹图像的增强处理,得出了具有较清晰的图像,是识别率更高。 二.设计思路:指纹图像增强的主要步骤及方法 ①读取指纹图像 ②指纹图像灰度化处理 ③指纹图像平滑处理 ④指纹图像的腐蚀处理 ⑤指纹图像的锐化处理 ⑥指纹图像二值化

⑦指纹图像纹理的细化处理 三.具体的处理流程及其分析 1.指纹图像的读取 将通过传感器或者别的方式获取到的指纹图像读取到matlab中;如 .bmp .jpg 等格式的图片文件。 通过matlab实现: I=imread(‘文件路径+图像名.jpg'); 2. 指纹图像灰度化处理 数字图像可分为灰度图像和彩色图像。通过灰度化处理和伪彩色处理,可以使伪彩色图像与灰度图像相互转化;灰度化就是使彩色的R,G,B分量值相等的过程 I=rbg2gray(I) 3.指纹图像平滑处理(此处我们使用的是中值滤波的方法处理) 图像平滑的主要目的是减少图像噪声。图像噪声来自于多方面,有来自于系统外部的干扰(如电磁波或经电源窜进系统内部的外部噪声),也有来自于系统内部的干扰(如摄像机的热噪声、电器机械运动而产生的抖动噪声等内部噪声)。实际获得的图像都因受到干扰而含有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或频率域处理。在空间域中进行时,基本方法就是求像素的平均值或中值;在频率域中则运用低通滤波技术。

频域图像增强方法研究

摘要:图像增强处理技术是图像处理领域中一项基本的,也是很重要的技术,一直是图像处理领域中不可回避的研究课题。因为一幅图像总是可能受到各种因素的干扰影响,造成图像质量的下降。图像增强包含两个方面内容:一是消除噪声,二是增强(或保护)图像特征。对图像恰当增强,能使图像去噪的同时特征得到较好保护,使图像更加清晰明显,从而提供给我们准确的信息。常用的图像增强技术各有其特点和效果。 论文在介绍图像频域增强原理的基础上,在频域内通过对Butterworth低通滤波器增强方法进了研究,介绍了相关的理论和数学模型,并给利用MATLAB工具进行实现。通过各种滤波后图像比较,实验证明在质量较差的图像中,选择不同的滤波算法对图像的增强在准确性上均有不同。 关键词:图像增强;Butterworth低通滤波器;MATLAB

Abstract:I mage enhancement in image processing technology is a basic and very important technology, the field of image processing has been a research topic can not be avoided. Because an image is always possible interference by various factors, resulting in a decline in image quality. Image enhancement includes two aspects: First, eliminate the noise, the second is enhanced (or protected) image features. Appropriate image enhancement, image denoising can be well protected at the same time features, to make the image more clearly evident, thus providing us with accurate information. Commonly used image enhancement techniques have their own characteristics and effects. Paper, introducing the principle of image enhancement based on frequency domain, in the frequency domain through the Butterworth low-pass filter enhancement into the study, describes the relevant theoretical and mathematical models and tools to use MATLAB implementation. After filtering through a variety of image comparison, real proof of poor image quality, choose a different algorithm for image enhancement filter of accuracy are different. Key words:Image enhancement; Butterworth low-pass filter; MA TLAB.

指纹图像对比度模糊增强算法

指纹图像对比度模糊增强算法 指纹图像对比度模糊增强算法 引言指纹识别是指指尖表面纹路的脊谷分布模式识别,这种脊谷分布模式是由皮肤表面细胞死亡、角化及其在皮肤表面积累形成的。人的指纹特征是与生俱来的,在胎儿时期就已经决定了。人类使用指纹作为身份识别的手段已经有很长历史,使用指纹识别身份的合法性也己得到广泛的认可。自动指纹识别系统通过比对指纹脊线和谷线结构以及有关特征,如纹线的端点和分歧点等来实现个人身份认证。然而,要从原始指纹图像上准确地提取特征信息,这是十分困难的,在很大程度上特征提取的精确性依赖于图像质量。因此,在指纹特征提取和匹配之前有必要对指纹图像进行增强处理。指纹图像增强就是对指纹图像采用一定算法进行处理,使其纹理结构清晰化,尽量突出和保留固有的指纹特征信息,并消除噪声,避免产生虚假特征。其目的是保持特征信息提取的准确性和可靠性,在自动指纹识别系统中具有十分重要的作用和地位。由于曝光不足等因素的影响,图像的亮度分布会发生非线性失真,常常表现为对比度不强,图像的整体感觉较暗等。目前,已经有很多基于灰度直方图的方法来增强对比度,从而改善图像的质量。近年来,人们对基于模糊的图像处理技术进行了研究。模糊集合理论已能够成功地应用于图像处理领域,并表现出优于传统方法的处理效果。根本原因在于:图像所具有的不确定性往往是因模糊性引起的。图像增强的模糊方法,有些类似于空域处理方法,它是在图像的模糊特征域上修改像素的。基于模糊的图像处理技术,是一种值得重视的研究方向,应用模糊方法往往能取得优

于传统方法的处理效果。很多时候基于模糊的增强图像对比度方法能够更好地增强图像的对比度,尤其是对于对比度很差,一般的增强算法无法对其增强的图像,它的优势突显。本文结合模糊逻辑技术,研究了基于模糊特征平面的增强算法和基于GFO算子(广义模糊算子)的图像增强算法,并将其应用于指纹图像对比度的增强。1模糊特征平面增强算法1.1模糊特征平面从模糊集的概念来看,一幅具有L个灰度级的M×N元图像,可以看作为一个模糊集,集内的每一个元素具有相对于某个特定灰度级的隶属函数。该模糊集称为图像等效模糊集,亦即图像的模糊特征平面,对应的模糊矩阵记为F,有:式中:矩阵的元素μmn/Xmn表示图像像素(m,n)的灰度级Xmn相对于某个特定的灰度级l′的隶属度,通常l′取最大灰度级K-1。1.2算法实现首先采用图像分割中的阈值选取方法(本文中采用Ot su方法)来确定阈值参数X T,显然X T将整个图像的直方图分为2个部分。低灰度部分和高灰度部分;对于具有典型双峰分布的直方图来说,它们分别对应目标和背景这两部分。然后定义新的隶属函数形式,再进行模糊增强运算,在低灰度区域进行衰减运算,从而使属于该区域像素的灰度值更低,而在高灰度区域则进行增强运算,从而使属于该区域像素的灰度值更高。因而,经过模糊增强后直方图上阈值X T两侧的灰度对比增强,图像区域之间的层次将更加清楚。整个算法过程如下:(1)首先根据Ot su选取阈值的方法确定阈值参数XT。显然对于双峰分布的直方图阈值参数XT将位于双峰之间的谷底附近。然后定义新的隶属度函数为:对于迭代次数r的选择,仿真结果表明,当r较小时,模糊增强不够充分;随着r的逐渐加大,图像的增强效果会越来越明显,当达

基于matlab的图像增强方法研究 开题报告

毕业设计(论文)开题报告 学生姓名:学号: 专业: 设计(论文)题目:基于matlab的图像增强方法研究 指导教师: 年月日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在系审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于10篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2002年4月26日”或“2002-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 1.1课题研究的目的和意义 图像作为自然界景物的客观反映,是人类感知世界的视觉基础,也是人类获取信息、表达信息和传递信息的重要手段。据统计,人类获得的信息大约75%是以图像的形式,通过视觉系统获得的。图像时人类重要的信息源,“百闻不如一见”、“眼见为实”即时图像对于人类重要性的简明概括。[1] 图像是物体透射或反射的光信息,通过人的视觉系统接受后,在大脑中形成的印象或认识,是自然景物的客观反映。一般来说,凡是能为人类视觉系统所感知的有形信息,或人们心目中的有形想象都统称为图像。图像作为一种有效的信息载体,是人类获取和交换信息的主要来源。实践表明,人类感知的外界信息,80%以上是通过视觉得到的。 然而,在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。所谓图像处理,就是通过某些数学运算对图像信息进行加工和处理,以满足人的视觉心理和实际应用需求[2]。图像增强是图像处理的一个重要环节,在整个图像处理过程中起着承前启后的重要作用。 随着图像处理设备性能的不断提高以及图像数字化和图像显示设备的普及化和低价化,人们对图像质量的要求越来越高。而图像质量的含义[3]包括两个方面的内容,即图像的保真度(Fidelity)和理解度(Intelligibility)。保真度是指被评价图像与标准图像的偏离程度,两者属于同一个映像,只是由于传输和处理等原因造成了偏差,因此保真度往往指的是图像细节方面的差异。理解度表示图像能向人或机器提供信息的能力,其中主要包括清晰度和美感等,因此,理解度通常指的是图像整体和细节的总体概念。

相关主题