搜档网
当前位置:搜档网 › ospf-isis-bgp路由协议培训V2.0

ospf-isis-bgp路由协议培训V2.0

面对未来的挑战

我们与您携手共进ISIS OSPF BGP协议使用

------技术支援数据通信技术支援中心

概述

◆OSPF ISIS BGP协议概述◆OSPF协议常用的重要特性◆ISIS协议常用重要特性

◆BGP常用重要特性

◆OSPF和ISIS协议的使用异同◆各协议重要的调试方法命令

协议概述

OSPF(Open Shortest Path First)、IS-IS(Intermediate System-Intermediate System):都是基于链路状态计算的用于自治系统内的动态路由协议。OSPF广泛应用于大、中、小型网络的IGP协议,ISIS是一般应用于大、超大型网络的IGP协议。BGP(Border Gateway Protocol):是一种基于距离矢量应用于自治系统间的动态路由协议,它的基本功能是在自治系统间自动交换无环路的路由信息。

概述

◆OSPF ISIS BGP协议概述◆OSPF协议常用的重要特性◆ISIS协议常用重要特性

◆BGP常用重要特性

◆OSPF和ISIS协议的使用异同◆各协议重要的调试方法命令

影响OSPF组网的重要特性

?区域的划分使用

?OSPF路由选路

?路由聚合的限定

?默认路由的发布

?重要的调试信息

区域的划分使用

----分层体系结构

Area1Area0骨干域

Area2Area3

OSPF基本配置

特点:

骨干区域area0必须存在,非骨干区域可以不存在。

区域的划分使用

----四种主要域类型

Area 0骨干域

Area 2NSSA 域Area 3

STUB 域

Area 1普

通域NSSA 基本配置STUB 基本配置

NSSA:区域内所有路由都要配置为NSSA ABR 不向区域转发type5的LSA NSSA 内默认路由的发布为可选STUB :

区域内所有路由器都要配置为STUB

不向区域转发type5的LSA

ABR 自动发布默认路由

区域内不存在ASBR

OSPF 路由选路

1、区域(area)内外路由选择---域内优先

2、协议优先级先路由(ospf:10;ase:150)

2、根据cost 值进行路由选择

10.0.0.2/2410.0.0.2/241010.0.0.2/2420

10.0.0.2/2420

B

A

C

D

协议优先级

cost 值的配置

Area 1Area 0

A B

C

路由聚合

OSPF 路由聚合只能在ABR 上进行!

Area 0Area 1ABR OSPF 路由和外部路由的聚合是独立进行的:

(1)聚合OSPF 路由:

area 0.0.0.1

abr-summary 20.0.0.0

255.255.255.0advertise

(2)对外部路由进行聚合

ospf

asbr-summary 100.100.100.0

255.255.255.0

asbr-summary 不一定在ABR 上配

置。

默认路由的发布

默认路发布方式:

(1)强制发布默认路由

default-route-advertise always

I不管本地有没有默认路都会向外发布

II强制发布默认路由不接收OSPF其它邻居发布的OSPF默认路由

(2)半强制发布默认路由

default-route-advertise

只有在本地有默认路由的情况下才

会向外发布默认路由

概述

◆OSPF ISIS BGP协议概述◆OSPF协议常用的重要特性◆ISIS协议常用重要特性

◆BGP常用重要特性

◆OSPF和ISIS协议的使用异同◆各协议重要的调试方法命令

影响ISIS协议组网的重要特性?Level1/2系统的划分?区域的划分

?ISIS路由选路

?路由聚合

?默认路由的发布

Level 1/2系统的划分

根据设备发挥的作用的不同,将设备定义成为不同的角色,一种level 2,一种level1,一台设备即可具有level2功能也可同时具有level1功能。由所有具有level 2功能的设备组成的集合,我们称之为骨干区域,由所有具有level1功能的设备所组成的集合称之为非骨干区域

特点:

(1)level2/1的定义和area 没有任何关系(2)每一个设备都可根据其要发挥的作用定

义为level2、level1、level1/level2

(3)每一个接口根据其邻居的状态都可以定

义成level2、level1、level1/level2

(4)所有具有Leve2功能的设备必须至少是串联的

(5)level 1设备必须和具有level 1功能的设

备对接

配置

L1/L2L1

L2/L1

L2L2

ISIS区域的划分

区域(area)可以随便划分,便具有以下特点:

(1)要保证一个IGP内各个区域(area)的level2设备至少是串联

(2)一个区域内的level1设备必须和本区域内的具有level1功能的设备对接

(3)区域间必然是具有level2功能的路由器对接

(3)区域划分的主要原则是要适合于管理及将来网络的扩容(目前实际部署的网络使用使用level2进行部署,便于将来对网络进行扩展)

区域号的配置:

isis

network-entity49.0001.1921.6800.0009.00

(域号+system id=20个字节)

ISIS 路由选路

(1)ISIS 首先优选level 1的路由

(2)cost 值选路(基本、扩展cost)

基本cost :1-63

高级cost :1-16777215

(3)level 1设备选择距离自己最近的level

2设备作为出口,在本地升成默认路由

次优路由路由渗透

Level 2Level 1Level 1Level 1Level 1A B C D E

配置:

A B

D

C

ISIS默认路由的发布

默认路由发布的几种方式:

(1)Level会自动计算出一条指向边界

路由器的默认路由

(1)强制发布默认路由

在ISIS视图下通过default-route-

advertise命令强制发布,只有在同一级

别的路由器传播(在本地不生成默认路由)

概述

◆OSPF ISIS BGP协议概述◆OSPF协议常用的重要特性◆ISIS协议常用重要特性

◆BGP常用重要特性

◆OSPF和ISIS协议的使用异同◆各协议重要的调试方法命令

影响BGP组网应用的重要特性

1、BGP选路策略

2、BGP组网规则

3、Prefrence和MED

4、路由聚合的使用

5、As-path路径属性

6、组(group)的应用

7、路由反射器的应用

8、路由的引入

9、默认路由的发布

BGP常用选路策略

(1)如果此路由的下一跳不可达,忽略此路由;

(2)选择本地优先级数值较大的路由;

(3)选择AS路径较短的路由;

(4)依次选择起点类型为IGP,EGP,INCOMPLETE类型的路由;

(5)选择MED较低的路由;

(6)MED值相同,优选EBGP而不是IBGP

(7)选择RouterID较低的路由。

BGP组网规则

(1)BGP路由器全联接

从IBGP邻居来的路由不向它的IBGP邻居转发

路由反射器的替代方案

(2)BGP邻居-内部TCP可达

(3)同步和非同步:

同步要求BGP路由必须引入到IGP内

非同步要求在网络规划时保证路由的双向可达E

A B

F

C D

路由协议的分类

路由协议的分类。什么是自治域系统、IGP、EGP。 自治域(自治系统),在同一种路由协议上使用不同的自治域,可以有效的分割 路由信息,即自治域A中的路由器不会与自治域B中的路由器交换路由 信息。一个AS是一组共享相似的路由策略并在单一管理域中运行的路由器的集合。一个AS可以是一些运行单个IGP(内部网关协议)协议的路由器集合。也可以是一些运行不同路由选择协议但都属于同一个组织机构的路由器集合。不管是哪种情况,外部世界都将整个AS看作是一个实体。按照工作区域,路由协议可以分为IGP和EGP: IGP(InteriorGateway Protocols)内部网关协议 在同一个自治系统内交换路由信息,RIP、OSPF和IS—lS 都属于IGP。IGP的主要目的是发现和计算自治域内的路由信息。 EGP(Exterior Gateway Protocols)外部网关协议 用于连接不同的自治系统,在不同的自治系统之间交换路由信息,主要使用路由策略和路由过滤等控制路由信息在自治域间的传播 什么是管理距离,有什么作用。 管理距离是指一种路由协议的路由可信度。每一种路由协议按可靠性从高到低,依次分配一个信任等级,这个信任等级就叫管理距离。对于两种不同的路由协议到一个目的地的路由信息,路由器首先根据管理距离决定相信哪一个协议。 防止环路的方法有哪些? RIP:有六种防止环路的措施:设定无穷大的值(16)路由毒化水平分割毒化反转触发更新抑制计时器 OSPF有哪些状态,在每种状态下进行哪些操作?OSPF有哪三个表?为什么需要DR、BDR,如何选择。 OSPF路由器在完全邻接之前,所经过的几个状态: 1.Down:此状态还没有与其他路由器交换信息。首先从其ospf接口向外发送hello分组,还并不知道DR(若为广播网络)和任何其他路由器。发送hello分组使用组播地址224.0.0.5。 2.Attempt: 只适于NBMA网络,在NBMA网络中邻居是手动指定的,在该状态下,路由器将使用HelloInterval取代PollInterval 来发送Hello包. 3.Init: 表明在DeadInterval里收到了Hello包,但是2-Way通信仍然没有建立起来. 4.two-way: 双向会话建立,而RID彼此出现在对方的邻居列表中。(若为广播网络:例如:以太网。在这个时候应该选举DR,BDR。) 5.ExStart: 信息交换初始状态,在这个状态下,本地路由器和邻居将建立Master/Slave关系,并确定DD Sequence Number,路由器ID大的的成为Master. 6.Exchange: 信息交换状态,本地路由器和邻居交换一个或多个DBD分组(也叫DDP) 。DBD包含有关LSDB中LSA条目的摘要信息)。 7.Loading: 信息加载状态:收到DBD后,将收到的信息同LSDB中的信息进行比较。如果DBD中有更新的链路状态条目,则向对方发送一个LSR,用于请求新的LSA 。 8.Full: 完全邻接状态,邻接间的链路状态数据库同步完成,通过邻居链路状态请求列表为空且邻居状态为Loading判断。

详细分析动态路由协议原理和特点

随着路由的发展,路由协议的种类也有很多,于是我研究了一下动态路由协议的实际应用和详细的介绍,在这里拿出来和大家分享一下,希望对大家有用。顾名思义,动态路由协议是一些动态生成(或学习到)路由信息的协议。在计算机网络互联技术领域,我们可以把路由定义如下,路由是指导IP报文发送的一些路径信息。动态路由协议是网络设备如路由器(Router)学习网络中路由信息的方法之一,这些动态路由协议使路由器能动态地随着网络拓扑中产生(如某些路径的失效或新路由的产生等)的变化,更新其保存的路由表,使网络中的路由器在较短的时间内,无需网络管理员介入自动地维持一致的路由信息,使整个网络达到路由收敛状态,从而保持网络的快速收敛和高可用性。 路由器学习路由信息、生成并维护路由表的方法包括直连路由(Direct)、静态路由(Static)和动态路由(Dynamic)。直连路由是由链路层动态路由协议发现的,一般指去往路由器的接口地址所在网段的路径,该路径信息不需要网络管理员维护,也不需要路由器通过某种算法进行计算获得,只要该接口处于活动状态(Active),路由器就会把通向该网段的路由信息填写到路由表中去,直连路由无法使路由器获取与其不直接相连的路由信息。静态路由是由网络规划者根据网络拓扑,使用命令在路由器上配置的路由信息,这些静态路由信息指导报文发送,静态路由方式也不需要路由器进行计算,但是它完全依赖于网络规划者,当网络规模较大或网络拓扑经常发生改变时,网络管理员需要做的工作将会非常复杂并且容易产生错误。而动态路由的方式使路由器能够按照特定的算法自动计算新的路由信息,适应网络拓扑结构的变化。 动态路由协议的分类 按照区域(指自治系统),动态路由协议可分为内部网关协议IGP(InteriorGatewayProtocol)和外部网关协议EGP(ExteriorGatewayProtocol),按照所执行的算法,动态路由协议可分为距离向量动态路由协议(DistanceVector)、链路状态动态路由协议(LinkState),以及思科公司开发的混合型动态路由协议。 OSPF动态路由协议的特点 OSPF全称为开放最短路径优先。“开放”表明它是一个公开的协议,由标准协议组织制定,各厂商都可以得到动态路由协议的细节。“最短路径优先”是该动态路由协议在进行路由计算时执行的算法。OSPF是目前内部网关协议中使用最为广泛、性能最优的一个动态路由。 采用OSPF动态路由协议的自治系统,经过合理的规划可支持超过1000台路由器,这一性能是距离向量动态路由如RIP等无法比拟的。距离向量动态路由协议采用周期性地发送整张路由表来使网络中路由器的路由信息保持一致,这个机制浪费了网络带宽并引发了一系列的问题,下面对此将作简单的介绍。 路由变化收敛速度是衡量一个动态路由协议好坏的一个关键因素。在网络拓扑发生变化时,网络中的路由器能否在很短的时间内相互通告所产生的变化并进行路由的重新计算,是网络可用性的一个重要的表现方

底层路由协议

底层路由协议 1底层路由协议介绍 1.1为何要设置底层路由 OSPF、EIGRP是三层协议,就是我们常说的IGP,而BGP是架设在3层上的,BGP的邻居是靠TCP连接建立起来的,这个TCP连接就是靠OSPF/EIGRP 来通的。 1.2 EIGRP的介绍 EIGRP(高级距离矢量路由协议)是cisco私有的路由协议,采用DUAL(扩散更新算法),是在IGRP基础,增强开发出来的,IGRP目前已被淘汰 优点: 支持等价/不等价的负载均衡的内部网关路由协议 支持VLSM(可变长子网掩码)、CIDR,手工汇总 支持apple talk IPX IP等多种网络协议,但是目前商业网络使用的IP 协议,因此,研究仅限于IP网络协议下 管理距离:90 快速收敛:促发增量更新的方式,在选择最优路由的同时,就选好次优路径提供备份 缺点: EIGRP没有区域的概念,所以适用于网络规模相对较小的网络,这也是矢量距离路由算法的局限所在? 运行EIGRP的路由器之间必须通过定时发送HELLO报文来维持邻居关系,这种邻居关系即使在拨号网络上,也需要定时发送HELLO报文,这样在按需拨号的网络上,无法定位这是有用的业务报文还是EIGRP发送的定时探询报文,从而可能误触发按需拨号网络发起连接。EIGRP的无环路计算和收敛速度是基于分布式的DUAL算法的,这种算法实际上是将不确定的路由信息散播,得到所有邻居的确认后再收敛的过程,邻居在不确定该路由信息可靠性的情况下又会重复这种散播,因此某些情况下可能会出现该路由信息一直处于活动状态。 快速收敛: 收敛--拓扑中结构发生变化,从变化开始直至拓扑中所有佘恩波均知道,并且稳定的工作的过程。 1、触发式增量更新:当拓扑发生变化,立即向外发出通告,仅将变化的部分发生出去 2、选择一个最佳路径同时,会备份好次优路径 Eigrp四个组件: 网络层协议无关模块IP \ IPX \ APPLE TALK,只研究IP下的eigrp

表驱动路由协议端到端延时好于按需驱动路由协议

表驱动路由协议端到端延时好于按需驱动路由协议, 按需驱动路由协议在数据报文交付率和路由负荷方面好于表驱动路由协议。 在对网络延时要求较高的环境下,一般选用表驱动路由协议 DSDV 依赖于路由消息的周期性广播,在高速移动的 Ad Hoc 网络中不宜使用 对数据包完整性和带宽要求严格的场合应尽量选择按需驱动路由协议[ 面向应用的如时延和吞吐量之类的性能指标,在比较宽松(即节点较少或移动性较弱)的环境中,DSR 协议优于 AODV 协议;但是在较苛刻的环境中则 AODV 优于 DSR 协议,环境变得越来越苛刻(即载荷变得越重,移动性变得越强),AODV 协议相对于 DSR 协议的性能优势越来越明显 表驱动路由协议 (DSDV) 的平均时延要小于按需路由协议(AODV,DSR) 分组投递率、路由开销和能量消耗等性能不如按需路由 AODV 协议具有较强地适应能力,适用于网络拓扑变化频繁的环境;DSR 适用于节点较少网络变化较小且对时延要求不高的环境;DSDV 协议更适用于网络节点移动速度较小的环境 AODV一旦路由建立后,数据包的延时要明显优于DSDV。实际上,随着移动节点数目和节点移动速度的增加,AODV的优势将更加明显。 在节点高速移动,网络拓扑变化频繁时,AODV 和DSR 的包投递率要比DSDV 好。但是在节点慢速移动时,DSDV 的端到端平均时延要好于AODV 和DSR。这 LAR路由协议适合于节点以中低速移动 ,节点平均密度稍高但网络负载不宜 过高 ,报文发送率中高的环境 簇内节点采用表驱动路由,CBRP算法适合于节点多,速度受限的MANET。在节点移动速度相当快的 MANET 中 CBRP 算法导致网络开销迅速增大,严重影响网络性能 GPSR协议与采用Flooding算法的协议相比降低了网络负载,提高了投递成功率,缩短了路由跳数,所以它更适用于较大规模的网络。AODV,DSR,GPSR DsDv协议的应用非常受限,无法支持网络规模较大,拓扑变化相对频繁的网络环境。AoDv 和DSR可以很好地支持中小规模的网络,而对于大规模的网络需要通过分 簇算法来扩展。AoDv协议对带宽利用率高,能够及时相应网络拓扑变化,同时能避免路由环路 现象。 AODv协议也存在一些问题。由于在路由请求报文的广播过程中建立了反向路由,用于回送路由应答报文,所以要求传输信道是双向的,因此AODv仅适用于双向传输信道的网络;路由表仅维护一条到指定目的节点的路由;AODv的前向路由生存时间定时器会删除生存时长内未使用的路由,即使相应路由是有效地。 OLSR 和DSDV协议的时延整体上小于其他三种协议. DSDV协议的分组传送率低于其他协议; 路由开销方面, TORA协议的最大, DSR 最小, OLSR 的开销也较小, DSDV的开销基本不随节点的移动性而改变; DSDV 的平均跳数最少, 其次是OLSR。

03 动态路由协议简介

03 动态路由协议简介 3.1 协议介绍及其优点 3.1.1 前景和背景知识 1、动态路由协议的发展历程 2、认识动态路由协议: 路由协议是用于路由器之间交换路由信息的协议。通过路由协议,路由器可以动态共享有关远程网络的信息,并自动将信息添加到各自的路由表中。 3.1.2网络发现和路由表的维护 1、路由协议的用途如下: 1)发现远程网络 2)维护最新路由信息 3)选择通往目的网络的最佳路径 4)当前路径无法使用时找出新的最佳路径 2、路由协议由哪些部分组成? 1)数据结构(Data structures)-某些路由协议使用路由表和/或数据库来完成路由过程。 此类信息保存在内存中。 2)算法(Algorithm)-算法是指用于完成某个任务的一定数量的步骤。路由协议使用 算法来路由信息并确定最佳路径。 3)路由协议消息(Routing protocol messages)-路由协议使用各种消息找出邻近的路由 器,交换路由信息,并通过其它一些任务来获取和维护准确的网络信息。 3、动态路由协议的运行过程如下: 1)路由器通过其接口发送和接收路由消息。 2)路由器与使用同一路由协议的其它路由器共享路由消息和路由信息。 3)路由器通过交换路由信息来了解远程网络。 4)如果路由器检测到网络拓扑结构的变化,路由协议可以将这一变化告知其它路由器。 3.1.3动态路由协议的优点 1、静态路由的优点: 1)占用的CPU 处理时间少。 2)便于管理员了解路由。 3)易于配置。 2、静态路由的缺点: 1)配置和维护耗费时间。 2)配置容易出错,尤其对于大型网络。 3)需要管理员维护变化的路由信息。 4)不能随着网络的增长而扩展;维护会越来越麻烦。 5)需要完全了解整个网络的情况才能进行操作。 3、动态路由的优点: 1)增加或删除网络时,管理员维护路由配置的工作量较少。 2)网络拓扑结构发生变化时,协议可以自动做出调整。 3)配置不容易出错。 4)扩展性好,网络增长时不会出现问题。 4、动态路由的缺点:

BGP路由协议学习指引

第一章概述说明:本合同资料适用于约定双方经过谈判、协商而共同承认、共同遵守的责任与

随着数据通信技术的不断融合与网络建设的不断扩展,在各个行业都有网络融 合的趋势,大型网络的组建不可避免的要考虑到BGP协议的应用,同时也在不断引入更先进的数据通信技术,比如Multicast , QoS, MPLS, MPLS-VPN等,这些技术有一个共同的特点,就是需要边界网关路由协议(BGP)的支持,利用BGP丰富的属性来传递自己的信息。 这些技术目前来说是如火如荼,各行业的用户都表现出了很大的热情,目前我们自主开发的路由器已经可以支持BGP我们也完全有必要跟随市场,来给用户提供全 套的解决方案,因此必须尽快的熟悉这个协议。 当然,在不熟悉动态路由协议,学习好BG呦议是不可能的,为了帮助读者尽快的了解和掌握动态路由协议,尤其是BGP协议,写了这篇文章,该文章使用一种比 较通俗的方式来讲述BGP,目标是让有一定路由基础而又对BGP不熟悉的读者,在最 快的时间内掌握BGP。 在阅读本文的时候,建议读者有耐心并有信心,相信大多数有耐心的读者读完 本文后,都会明白BGP到底是怎么一回事,而且从根本上了解了BGP的运行原理和使用场合。本文对BGP的介绍不是局限在传统的BGP4路由协议上,在介绍BGP4路由 协议的基础上,同时也介绍了BGP扩展(MBGP ),这正是在MPLS-VPN , Multicast 等技术中大量使用的协议。 第二章GP协议基础

标题 从本章开始,我们从一系列实际需求出发来介绍一些基础的概念,在本文中, 我们没有介绍BGP,而是根据实际需求对RIP协议逐步进行改造,在完成本文的叙述后,RIP 就被我们改造成了BGP协议。所以,只要读者掌握了本文介绍的每个实际需求及根据该需求的改造结果,就已经掌握了BGP的一个特性。 2.1需求之一一路由传播 现在我们提出一个需求:两个ISP通过一条高速链路连接起来,这两个ISP想 把各自的路由通知给对方。如下图所示: 图中ISP1的路由器RT1知道ISP1的所有路由,而ISP2的边界路由器RT2知

第五章 路由协议

第五章路由协议 路由协议主要负责建立源节点与目的节点之间的一条消息传输路径,即实现路由功能。路由协议包含了两个方面功能:寻找源节点-目的节点间的最优路径,并将数据分组沿该路径正确转发。传统的Ad hoc网络、无线局域网等网络的首要目标是提高服务质量和公平高效地利用网络带宽资源。这些网络路由协议的优化目标通常是网络延时最小化,而能量问题通常不作为一个最主要的优化目标。而在陆地无线传感器网络中,由于节点能量有限,因此路由协议需要高效利用能量,同时,由于传感器网络规模一般较大,节点通常不具有全网拓扑信息,因此传感器网络的路由协议需要在已知局部网络信息的基础上选择合适的路径。但是,当前陆地网络的路由协议由于受到种种方面的限制,均不能有效地直接应用于水下网络中,复杂的水下环境给网络层路由协议的设计带来了全新的挑战。 水下传感器节点通信半径和覆盖面积相对于整个网络的规模较小,同时由于水声链路的高度时空动态特性,事先在源节点和目的节点之间建立一条完整且固定的通信路径是不现实的,因此水下传感器网络一方面主要采用多跳传输的路由机制,另一方面路由表需要以一定的频率更新以适应网络的动态变化。多跳传输方式需要借助中继节点转发信息,该方式要求多个节点共同协作完成消息从源节点到目的节点的传输,这就涉及中间节点选择的问题,如何选择中间节点从而有效降低传输延迟、提高数据传输率是路由协议主要解决的问题。此外,水下後感器显络迪路由协议还要具备以下特性:①可扩展性,由于水下传感器网络中的节点受部署环境的影响造成部分节点或部分链路失效,因此能有效地检测和处理节点失效或移动造成的链路中断,适应不断变化的网络柘朴是水下一隹感器网络路由协议需要解决的一个主要问题;②节能性,在水下传感器网络中,节点大都是以电池供电的,电量十分有限,且电池的更换耗时耗力,同时水声信号发射功率相对较大,因此,提高能量效率是对水下传感器网络设计的另一主要目标;③容错性和鲁棒性,在水下感器网络中,节点的失效是很难避免的,造成节点失效的原因主要包括环境因素,此外,水声信道的通信质量也很难保证,这就要求路由协议具有较好的鲁棒性,能有效避免部分节点的失效或链路的中断给整个网络造成影响;④快速收敛特性,由于水下传感器网络的拓扑结构动态变化,节点能量和水声频谱带宽资源严重受限,因此要求路由算法可以做到快速收敛,以适应网络拓扑结构的动态变化,减小通信协议开销,提高信息传输效率。

HCDP实验:BFD检测动态路由协议(OSPF BGP)

一、实验拓扑 和上个实验《使用BFD备份静态路由》的拓扑一样,编址一样。 二、基础配置 R1的基础配置 # sysname AR1 # interface Vlanif1 ip address 192.168.10.1 255.255.255.0 # interface GigabitEthernet0/0/0 ip address 12.1.1.1 255.255.255.0 ospf cost 5 # interface GigabitEthernet0/0/1 ip address 102.1.1.1 255.255.255.0 # interface LoopBack0 ip address 1.1.1.1 255.255.255.255 # bgp 100

network 12.1.1.2 0.0.0.0 network 102.1.1.2 0.0.0.0 # 三、观查现况(未使能BFD) 在PC上发50个ping包,并同时中断HUB2 和HUB3之间的链路,观察OSPF和BGP的收敛,及PC的丢包 PC>ping 192.168.20.20 -c 50 Ping 192.168.20.20: 32 data bytes, Press Ctrl_C to break From 192.168.20.20: bytes=32 seq=1 ttl=126 time=16 ms From 192.168.20.20: bytes=32 seq=2 ttl=126 time=16 ms From 192.168.20.20: bytes=32 seq=3 ttl=126 time=16 ms From 192.168.20.20: bytes=32 seq=4 ttl=126 time=31 ms From 192.168.20.20: bytes=32 seq=5 ttl=126 time=16 ms Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! Request timeout! From 192.168.20.20: bytes=32 seq=25 ttl=126 time=15 ms From 192.168.20.20: bytes=32 seq=26 ttl=126 time=15 ms From 192.168.20.20: bytes=32 seq=27 ttl=126 time=31 ms From 192.168.20.20: bytes=32 seq=28 ttl=126 time=16 ms --- 192.168.20.20 ping statistics --- 28 packet(s) transmitted 9 packet(s) received 67.86% packet loss round-trip min/avg/max = 15/19/31 ms

AODV相关路由协议学习

AODV相关路由协议学习 1:AODV路由协议工作原理 AODV路由协议是一种经典的按需路由协议,它只在两个节点需要进行通信且源节点没有到达目的节点的路由时,才会进行路由发现过程。AODV采用的是广播式路由发现机制,当源节点想与另一节点进行通信时,源节点会首先查询自己的路由表中是否存在有到达目的节点的路由有效信息。如果包含有目的节点的有效信息,则源节点就会将数据包传送到目的节点的下一跳节点;如果缺失目的节点的有效的信息,则源节点会启动路径请求程序,同时广播RREQ控制包。 而下一跳节点在接收到RREQ报文时,如果该节点是目的节点,又或者该节点路由表中存放有到达目的节点的可行路径信息,则会向源节点回复路由响应报文CRREP。否则就记录相关信息,用于建立一个反向路径,让目的节点的RREP遵循此路径返回源节点,同时将RREQ报文中的跳数字段值加1,并向该节点的邻居节点转发RREQ 报文。这样经过若干中间节点转发最后到达目的节点,确认路由建立。 路由表项建立以后,路由中的每个节点都要执行路由维持和管理路由表的任务。如果由于中间节点的移动而导致路由失效,则检测到路由断链的节点就会向上游节点发送路由出错报文RRER,而收到出错报文RRER的节点则会直接发出RREQ来进行路径请求,如果能在规定好的时间内找到目的节点的路径,则表示路由成功 1.2存在的问题 传统的AODV采用基本的路由发现算法来建立从源节点到目的

节点的路由时,路由选择是选择最短路径路由,即选择最小跳数的路由,这样就忽略了每两点之间的传输能力,从而导致产生整条链路吞吐量低、路由不稳定、线路拥塞、延迟甚至数据丢失等严重问题。2最大路由速率的AODV协议的提出【基于最大路由速率的AODV 协议优化研究与实现---罗泽、吴谨绎、吴舒辞】 2.1基本思想 针对传统AODV路由协存在的问题,提出了一种基于最大传输速率(路由速率=路由速率之和/路由跳数)的改进方案,其基本思想是:用户确定一个期望速率,源节点在进行路由发现时比较收到的各条路由的实测速率,选择一条速率最大的路由作为路由,在源节点使用当前路由发送数据的过程中,源节点每隔一段时间发出RREQ 报文,以便查找到可能存在的更好的路由,如果发现一条速率更高的路由且该路由速率大于期望速率,则执行路由切换,改用新路由。

3种动态路由协议

RIP EIGRP和OSPF重分布 Cisco默认的几种路由协议的AD如下: 1.直连接口:0 2.静态路由:1(例外:使用接口来代替下1跳地址的时候它会被认为是直连接口) 3.EIGRP汇总路由:5 4.External(外部) BGP:20 5.EIGRP:90 6.IGRP:100 7.OSPF:110 8.IS-IS:115 9.RIP:120 10.EGP:140 11.External(外部) EIGRP:170 12.Internal(内部) BGP:200 13.未知:255 做重分布时的各路由协议的默认metric值 1、往RIP里做时,metric值默认infinity.所以要人工指定metric值,注意不要超过RIP中最大16跳. 2、往OSPF里做时,metric值默认是20,metric-type 是2默认不发布子网. 3、往EIGRP里做时,metric值默认是infinity,人工指metric值时包括:带宽,延迟,可靠度,负载,MTU.(注:可靠度=255时最大,负载=1时最小,MTU=1500,一般来说这三个值都设成这样.而且在配置metric值时的顺序就是这样的顺序.) 如:Paige(config-router)#redistribute ospf 1 metric 10000 100 255 1 1500 4、往IS-IS里做时,Router的默认类型是level-2的,并且metric值为0,在做重分布时,如果网络中只有一个IS-IS进程时,可以不写IS-IS的tag,而其他的路由协议,如EIGRP后面必须跟上进程号. 注:metric-type类型为由于OSPF的外部路由分为 类型1:--外部路径成本+数据包在OSPF网络所经过各链路成本 类型2:--外部路径成本,即ASBR上的默认设置 问题:在向EIGRP中重分布时,必须指定默认管理距离吗?为何只在OSPF向EIGRP重分布时distance eigrp 90 150?? 答:在默认时EIGRP的内部管理距离是90,外部路由管理距离是170,命令“distance eigrp 90 150”只是修改了外部管理距离 R1(config)#int loo0 R1(config-if)#ip add 1.1.1.1 255.255.255.0 R1(config-if)#int s2/0 R1(config-if)#ip add 192.168.12.1 255.255.255.0 R1(config-if)#no sh

动态路由协议:RIP与OSPF

动态路由协议:RIP 与OSPF 1. 动态路由特点:减少管理任务、增加网络带宽。 2. 动态路由协议概述:路由器之间用来交换信息的语言。 3. 度量值:带宽、跳数、负载、时延、可靠性、成本。 4. 收敛:使所有路由表都达到一致状态的过程 动态路由分类: 自治系统(AS ) 内部网关协议(EIGRP 、RIP 、OSPF 、IGP ) 外部网关协议(EGP ) 按照路由执行的算法分类: 距离矢量路由协议(RIP ) 链路状态路由协议(OSPF ) 两种结合(EIFRP ) RIP : RIP 是距离矢量路由协议。 RIP 基本概念:定期更新(30秒)、邻居、广播更新、全路由表更新 RIP 最大跳数为15跳,16跳为不可达 RIP 使用水平分割,防止路由环路:从一个接口学习到的路由信息,不再从这个接口发出去 RIPv1:有类路由、RIPv2:无类路由 OSPF : OSPF 是链路状态路由协议。 Router ID 是OSPF 区域内唯一标识路由器的IP 地址。 Router ID 选取规则:先选取路由器lookback 接口上最高的IP 地址,如果没有lookback 接口,就选取物理接口上的最高IP 地址。也可以使用Router-id 命令手动指定。 OSPF 有三张表:邻接关系表、链路状态数据库、路由表》》首先建立邻接关系,然后建立链路数据库,最后通过SPF 算法算出最短路径树,最终形成路由表 OSPF 的度量值为COST (代价):COST=10^8/BW 接口类型 代价(108/BW ) Fast Ethernet 1 Ethernet 10 56K 1785 OSPF 和RIP 的比较: OSPF RIP v1 RIP v2 链路状态路由协议 距离矢量路由协议 没有跳数的限制 RIP 的15跳限制,超过15跳的路由被认为不可 达 支持可变长子网掩码 (VLSM ) 不支持可变长子网掩码(VLSM ) 支持可变长子网掩码(VLSM ) 收敛速度快 收敛速度慢 使用组播发送链路状态更新,在链路状态变化时使用触发更新,提高了带宽的利 周期性广播整个路由表,在低速链路及广域网中应用将产生很大问题

动态路由协议培训教材

目录 1. 路由协议 (3) 1.1. 静态的与动态的部路由 (3) 1.2. 选路信息协议(RIP) (5) 1.2.1. 慢收敛问题的解决 (7) 1.2.2. RIP报文格式 (8) 1.2.3. RIP编址约定 (9) 1.2.4. RIP报文的发送 (10) 1.3. OSPF (10) 1.3.1. 概述 (10) 1.3.2. 数据包格式 (10) 1.3.3. OSPF基本算法 (11) 1.3.4. OSPF路由协议的基本特征 (12) 1.3.5. 区域及域间路由 (13) 1.3.6. OSPF协议路由器及链路状态数据包分类 (16) 1.3.7. OSPF协议工作过程 (18) 1.3.8. OSPF路由协议验证 (21) 1.3.9. 小结 (21) 1.4. HELLO协议 (22) 1.5. 将RIP,HELLO和EGP组合起来 (23) 1.6. 边界网关协议第4版(BGP4) (24) 1.7. EGP (27) 1.7.1. 给体系结构模型增加复杂性 (27) 1.7.2. 一个其本思想:额外跳 (28) 1.7.3. 自治系统的概念 (30) 1.7.4. 外部网关协议(EGP) (31) 1.7.5. EGP报文首部 (32) 1.7.6. EGP邻站获取报文 (33) 1.7.7. EGP邻站可达性报文 (34) 1.7.8. EGP轮询请求报文 (34) 1.7.9. EGP选路更新报文 (35) 1.7.10. 从接收者的角度来度量 (37) 1.7.11. EGP的主要限制 (38) 2. CISCO 路由器产品介绍 (40) 2.1. C ISCO 2500 (40) 2.2. C ISCO 4500-M (40) 2.3. C ISCO 7200 (41) 2.4. C ISCO 7513/7507 (43) 3. 路由器的基本配置 (43) 参数设置 (43)

典型单路径路由协议

典型单路径路由协议 无线传感器网络和Adhoc网络一样,是无线自组织网络的一种,因此,它的路由协议也可以从无线Adhoc网络得到一些启发。本节首先对无线Adhoc网络的路由协议AODV进行研究,详细介绍其路由实现原理。然后详细介绍北京交通大学下一代互联网互联设备国家工程实验室代写计算机职称论文自行研制和开发的路由协议MSRP,MSRP借鉴了AODV的思想,但是又做了很大的简化。本论文所设计的多径路由机制是在MS即的基础上做了创新和改进。本节评价了它的优点和缺点,指出了需要改进的地方。 1.AODV路由协议AODVI’jj(AdhoeOndemandDistanceVectorRouting)是一种按需驱动的路由协议,它能够在移动节点之间建立动态多跳路由并维护一个Adhoc网络。AODV能让节点快速建立到新目的节点的路由,而且不需要节点维护处于非活动状态路径的路由。在链路损坏或者网络拓扑发生变化时,网络中多个移动节点能够及时做出反应,网络能够快速自愈。当网络链路出现断裂时,AODV能够通知所有受影响的节点,让它们及时删除使用该链路的路由。AODV一个很重要的创新点是对每一条路由使用了一个目的序列号,任何一个路由表项必须包含到目的节点的最新的序代写计算机硕士论文列号信息。目的节点序列号由目的节点产生。每一个目的节点在它发送给请求节点的任何路由信息中都会包含这个序列号,使用目的序列号可以保证路由无环路,也利于编程实现。当出现两条路由到达目标节点时,请求节点会选择序列号比较大的路由。节点收到任何有关报文,只要其中有关于目的序列号的信息,该目的节点的序列号就会更新。网络中的节点各自保存和维护自己的序列号。一个目的节点在下列两种情况下产生自己的序列号:1、在建立一个路由发现之前,它产代写计算机毕业论文生自己的序列号,避免与以前建立的到无线传感器网络路由协议的研究该源节点的反向路由冲突;2、在产生一个RREP回复双EQ之前,将自己节的序列号更新为目前节点的序列号和路由请求中该节点序列号两者的最大值。下一跳链路丢失时,序列号不再更新。这时候,对于使用该下一跳的每一条路由,节点都将其目的序列号加一,并将该路由标计为失效。只有再次收到“足够新”路由信息时(序列号等于或大于该记录的序列号),该节点才会将路由表中相应信息更新。AoDv定义了三种报文类型:路由请求(RREQs)、路由回复(RREPs)、路错误(计算机专业职称论文RERRs)。这些消息包装在uDP报文中,端口654,并使用通常的IP报头,请求节点使用自己的IP地址作为路由消息中的“源IP地址”字段。对于广播消息,使用IP广播地址255.255.255.255。这意味着这些消息不会被盲目的转发。但是,AODV确实需要某些报文(例如路由请求消息)能够大范围甚至在整个网络中洪,IP报文的TTL字段可以用来限定传播范围。只要通信的两个端有到对方的有效路由,那么AODV就不参与。当节点需一个到新目的节点的路由时,该节点会广播路由请求进行寻找。当该路由请求达目的节点,或者一个中间节点具有一个到目的节点的“足够新,,的路由时,这条路由便可以确定下来。每一个收到路由请求的节点都会缓存一个到源节点的反路由,这样,“路由回复”便会从最终目的节点或者满足请求条件的中间节点顺利递到源节点。节点会监测有效路由下一条链路的状态。当监测到有链路发生断裂时,节会发送路由错误消息来通知其他节点:链路已经丢失,需要重新寻找路由。“路错误”消息用来表明一些节点通过该断裂的链路己经不可达。为了采用这种错误告的机制,所有节点保存一个“前驱列表”,前驱列表包含一些邻居的IP地址,些邻居节点可能使用本节点作为到达目的地的下一跳。前驱列表的信息可以很易的在路由回复的时候获取,因为从定义上来说,“路由回复”就是要发送给前歹J表中的节点的。AODv是个路由协议,因此它有自己的路由表管理机制。即使是暂时的路信息(例如到路由请求源节点的暂时的反向路由),也需要在路由表中保存。AOD的路由表有以下几个组成部分:目的IP地址、目的序列号、有效目的序列号标以及其他的标志(如有效、无效、可修复、正在修复中)、网络接口、跳数、下跳、前驱列表、生命期(路由表的失效或删除时间)。 1AODV路由建立过程当一个节点发现自己需要路由却不存在路由信息的时候,它发起路由

基于动态路由协议RIP的网络的分析论文

目录 摘要 (2) Abstract (3) 第一章绪论 (4) 1.1局域网发展 (4) 1.2研究意义 (4) 1.3本章小结 (7) 第二章路由 (7) 2.1路由协议简介 (7) 2.1.1 RIP协议 (9) 2.2 路由环路及解决 (10) 2.3 本章小结 (16) 第三章本设计组网 (17) 3.1 需求分析 (17) 3.2 设备介绍 (17) 3.3 组网实现 (17) 3.4 本章小结 (24) 第四章网络分析 (25) 4.1网络分析总体描述 (25) 4.2 对网络进行流量的监控 (25) 4.2.1 流量监控软件 (25) 4.2.2 流量监控实现 (26)

摘要 随着社会经济的发展,越来越多的公司、工厂、学校的出现,人们对于小型局域网的需求越来越大,越来越多。而局域网的组成路由协议是不可或缺的一部分,在路由协议中RIP协议有着举足轻重的地位。考虑到小型局域网的要求及各种路由协议的优缺点,因此在这里我们将会用RIP协议来进行组网。 本文中主要针对石家庄某大型公司的内部网络进行设计和分析,更会对其中可能会出现的各种问题进行讨论及进行解决。对RIP协议的局限性进行研究、分析,对比其他路由协议查找本协议的缺点和不足之处。对该公司的局域网进行分析、讨论。 关键词:RIP 小型局域网网络分析

Abstract With the development of social economy, more and more companies, factories and schools are becoming more and more.. And the local area network routing protocol is an indispensable part, in the routing protocol RIP protocol has a pivotal position. Considering the requirements of small local area network and the advantages and disadvantages of various routing protocols, we will use RIP protocol to make a network.. This paper mainly for the internal network of a large company in Shijiazhuang of design and analysis, will discuss and solve the problems which may occur. Research and analyze thelimitations of RIP protocol, disadvantages and shortcomings compared to other routing protocols for this agreement.The company's local area network is analyzed and discussed. Keywords: RIP LAN Network analysis

OSPFv3路由协议学习

OSPFv3路由协议学习 OSPFv3 VS OSPFv2 OSPF是一种链路状态路由协议。它具有标准开放、收敛迅速、无环路、便于层级化设计等众多优点。IPv4网络中广泛使用的OSPFv2协议由于在报文内容、运行机制等方面与IPv4地址联系得过于紧密,大大制约了它的可扩展性和适应性。在IPv6环境中,为了使OSPF更好的应用,同时 保留原有的众多优点,因此,在OSPFv2的基础上作了多方面的修改后产生了OSPFv3协议。 OSPFv3相比OSPFv2作出的改进可以分为几个方面来描述。 1.OSPFv3独立于网络协议1)OSPFv3基于链路运行OSPFv2协议是基于子网运行的,邻居之间形成邻接关系的必要条件之一就是两端的IP地址属于同一网段而且掩码相同。而OSPFv3协议基于链路运行,与具体的IPv6地址、前缀分离开,即使同一链路上的不同节点具有不同网段的IPv6地址时,协议也可以正常运行。IPV6网络中,将接口地址都看成叶子,只有链路本身是树干。 2)编址性语义的取消在OSPFv2中,协议分组和LSA中的许多字段都是来自于网络上的某个IP地址、掩码或某个IP子网号。报文的数据内容决定了OSPFv2的多种机制必须基于IPv4来进行,包括邻居路由器标识、邻居建立等等。 在OSPFv3中取消了这些编址性语义,而只保留协议运行必须的核心内容。比如,Router-LSA和Network-LSA中不再包含网络地址,而只用于传递拓扑信息;LSA的Link State ID依然保留32位长度的IPv4地址格式,但只是一个编号,不再包含地址信息;邻居路由器,包括DR和BDR,都是用Router ID来标识。这些保证了OSPFv3协议能够独立于网络协议运行。 3)链路本地地址的使用OSPFv2协议要求,每一个运行OSPF的接口都必须有一个IPv4地址,即使是在网络中仅仅用于传输转发的中间节点也必须如此,协议的运行和路由的计算都依赖于这个地址。而在IPv6中,每个接口都会分配本地链路地址(link-local address),这个地址只在本地链路有效,并不会在整个网络中传播。OSPFv3使用这个本地链路地址作为协议分组发送的源地址(虚连接除外)和路由的下一跳,在网络规划时就不需要在大量的中间节点规划子网,同样也不需要专门配置IPv6地址。这样,一方面可以节省大量的全局地址,另一方面可以说协议的运行独立于IPv6,可以方便的对协议进行扩展,实现组播选路等其他的功能。 4)使用专门的LSA来发布路由前缀信息OSPFv2通过Router-LSA和Network-LSA来发布区域内的路由信息和计算拓扑,所以OSPFv2的拓扑结构与IPv4网络信息是密不可分的。为了改变这种状况,在OSPFv3中,Router-LSA和Network-LSA中仅保留拓扑信息;同时增加了Intra-Area-Prefix-LSA和Link-LSA,分别用于传递区域内路由前缀和传递链路范围内的IPv6前缀。拓扑信息与前缀信息的分离,使得OSPFv3的运行更加独立于网络协议。 2. OSPFv3的结构更加清晰1)OSPFv3取消了协议报文的验证字段在OSPFv2中使用了专门的验证字段。而在OSPFv3中使用IPv6标准的验证方式(IP AH和IP ESP)来保证信息传递的安全性,这样一来,既减轻了协议开销,也在一定程度上简化了协议处理流程。 2)OSPFv3更加明确了LSA泛洪范围在OSPFv3中,明确了LSA泛洪的三种范围:本地链路范围(Link-local scope)、区域范围(Area scope)、AS范围(AS scope),并且在LS_Type中增加了专门的字段进行说明。因此,OSPFv3协议在处理LSA泛洪时不再像OSPFv2中需要根据不同的LSA类型来判断LSA泛洪的范围,而是直接根据专门的字段进行处理就可以了。 3. OSPFv3的可扩展性和适应性更佳1)OSPFv3支持多实例OSPFv2协议规定,不同的实例必须运行在不同的链路上。OSPFv3协议则提供了对多实例的明确支持,通过在协议报文中增加“instance ID”字段,同时规定,接收报文时对该字段进行判断,只有实例号匹配的报文才会处理,否则丢弃。这样,即使是在同一链路上也可以运行多个OSPF实例了,而且独立运行不会互相影响。 2)对未知类型LSA的处理在OSPFv2中,当路由器收到自己不支持的LSA时,仅仅是作简单的丢弃处理。这样,当能力不同的路由器混合组网时,整个网络的处理能力就会受限于能力最低的路由器。最为突

主动路由协议

对于目前所提出的众多MANET路由协议,协议性能的分析和比较重点集中在DSDv,AODV,DSR和ToRA等几种路由算法上,通过报文发送率、路由开销、路径最优性、吞吐量、平均端到端时延等参数对路由协议的性能进行评估和比较。根据国内外公布的MANET路由协议仿真实验结果进行研究,可以得出这样的结论:各种不同情况的比较下,如不同的数据源数目,不同的节点移动性,不同的自组织网络模型以及不同的网络负载等等,反应式路由协议的性能明显优于先应式路由协议。 根据路由建立时机与数据发送的关系可以把路由协议分为三种:主动路由 协议、按需路由协议、混合路由协议。主动路由协议是事先给定所有路径,并不考虑实际中是否用到具体的路径。这种方式路由的建立、维护的开销都很大,资源要求高,不适合于传感器网络。按需路由协议是在传输中需要路径时才按需要去计算合适的路径,这种方式会产生较大的时延。混合路由协议是综合利用前面两者的一个结合体。由于无线传感器网络中节点能量有限,且只具有局部网络信息,一般都是采用按需路由或者是混合路由协议。 根据路由过程中节点的通信模式可以把路由协议分为以下几种:单跳协议,传感器节点把采集到的数据直接发送给基站节点。在这种方式中,如果网络规模较大,则节点的能量会很快耗尽;随着节点数目的增加,网络中的数据冲突也会变得更加严重。洪泛式路由协议,这是一种简单的协议,它不需要维护网络的拓扑结构和路由计算。接收到数据的节点以广播的方式转发给所有邻居节点。虽然这种方式的路由协议实现很直接,但它有严重的缺陷,会带来网络内信息的内爆和交叠。而且对资源有很大的浪费。 平面型路由协议,网络中所有节点都是地位平等的。当一个节点需要发送数据给基站节点时,可以通过其它节点作为中间节点进行转发,最后到达基站节点。也是一种多跳的传输数据的方式。一般来说,在基站节点附近的节点参于数据中转的概率要大于远离基站节点的传感器节点。因此,基站节点附件的传感器节点由于频繁的参于数据转发而会很快的耗尽能源。平面型路由协议实现简单,健壮性好:但建立、维护路由的开销较大,数据传输的跳数多,一般适用于规模小的网络。 层次型路由协议,基本思想是把传感器节点分成不同的簇,簇内部的通信工作由簇头节点完成,同时簇头节点完成数据聚集和融合;少通信的数据量,最后簇头节点还要负责把处理后的数据发送给基站节点。这种路由协议可以很好的满足传感器网络的可扩展性,适用于大规模的网络。但是簇的维护开销较大,簇头节点是路由的关键节点,其产生和维护都很重要,一旦失效会对路由造成较大影响。 从不同的应用性能角度出发可以将路由协议分为多种类型。 基于查询的路由协议,在环境监测、战场评估等应用中,需要不断查询传感器节点采集的数据;基站节点发出查询任务,传感器节点向查询节点报告采集的数据。在这类应用中,通信流量主要是查询节点和传感器节点之间的命令和数据传输,同时传感器节点的采集信息在传输路径上通常要进行数据融合,通过减少通信流量来节省能量。 地理位置路由协议,它利用节点的地理位置信息,把查询或者数据转发给特定的区域,从而缩小了数据的传输范围。在一些目标跟踪类应用中,往往需要唤醒距离跟踪目标最近的传感器节点,以得到关于目标的更精确位置等相关信息。在这类应用中,通常需要知道目的节点的精确或者大致的地理位置。把节点的位置信息作为路由选择的依据,可以对节点进行域的化分,从而缩小数据发送的范围,还可以帮助完成节点的路由功能,并降低系统专门维护路由协议的能耗。 以数据为中心的路由协议,它提出对传感器网络中的数据用特定的描述方式命名,数据传输

相关主题