搜档网
当前位置:搜档网 › 一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法
一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法

一、文献综述

1.随机数的定义及产生方法

1).随机数的定义及性质

在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。

单位均匀分布也称为[0,1]上的均匀分布。

由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。

随机数具有非常重要的性质:对于任意自然数s,由s个随机数组成的

s维空间上的点(ξn+1,ξn+2,…ξn+s)在s维空间的单位立方体Gs上

均匀分布,即对任意的ai,如下等式成立:

其中P(·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s,由s个元素所组成的s维空间上的点(ξn+1,…ξn+s)在Gs上均匀分布,则它们是随机数序列。

由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。

2).随机数表

为了产生随机数,可以使用随机数表。随机数表是由0,1,…,9十个数字组成,每个数字以0.1的等概率出现,数字之间相互独立。这些数字序列叫作随机数字序列。如果要得到n位有效数字的随机数,只需将表中每n

个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。例如,某随机数表的第一行数字为7634258910…,要想得到三位有效数字的随机数依次为0.763,0.425,0.891。因为随机数表需在计算机中占有很大内存,

而且也难以满足蒙特卡罗方法对随机数需要量非常大的要求,因此,该方法不适于在计算机上使用。

3).物理方法

用物理方法产生随机数的基本原理是:利用某些物理现象,在计算机上增加些特殊设备,可以在计算机上直接产生随机数。这些特殊设备称为随机数发生器。用来作为随机数发生器的物理源主要有两种:一种是根据放射性物质的放射性,另一种是利用计算机的固有噪声。一般情况下,任意一个随机数在计算机内总是用二进制的数表示

的:

其中εi(i=1,2,…,m)或者为0,或者为1。

因此,利用物理方法在计算机上产生随机数,就是要产生只取0或1的随机数字序列,数字之间相互独立,每个数字取0或1的概率均为0.5。用物理方法产生的随机数序列无法重复实现,不能进行程序复算,给验证结果带来很大困难。而且,需要增加随机数发生器和电路联系等附加设备,费用昂贵。因此,该方法也不适合在计算机上使用。

2、一维正态分布随机数序列的产生方法

正态分布在数理统计中具有基础性的作用,因此产生高质量的正态分布有重要的意义。我们将介绍几种数值方法求正态分布:中心极限定理,Hasiting 有理逼近法,统计工具箱,反函数法,舍选法,R软件及一维正态随机数的检验。

二、相关知识

1、利用中心极限定理

中心极限定理:(一般n≥10),产生服从N(μ,σ2)的算法步骤:

(1)产生n个RND 随机数:r1,r2,…,rn;

(2)计算

(3)计算y=σx+μ,y是服从N(μ,σ2)分布的随机数。

原理分析:

设ζ1,ζ2,…,ζn是n个相互独立的随机变量,且ζi~

U(0,1),i=1,2,…,n,有

由中心极限定理知:

渐近服从正态分布N(0,l)。

注意:我们现在已经能产生[0,1]均匀分布的随机数了,那么我们可以利用这个定理来产生标准正态分布的随机数。

现在我们产生n个[0,1]均匀分布随机数,r1,r2,…,rn

我们有:

为方便起见,我们特别选n=12,则:

这样我们很方便地就把标准正态分布随机数计算出来了。

2、Hasiting有理逼近法

这是一种计算速度快,也能满足一定精度的算法。我们可以构造分布函数反函数的近似逼近公式,来产生标准正态分布的随机数。其计算公式为:

这里,

系数为:a0 = 2.515517,b1 = 1.432788,

a1 = 0.802853,b2 = 0.189269,

a2 = 0.010328,b3 = 0.001308。

3、利用统计工具箱

在MATLAB统计工具箱中为我们提供了大量的产生各种随机数发生器程序,我们只需要调用就可以产生我们想要的随机数。

4、反函数法

设连续型随机变量Y的概率函数为f(x),需产生给定分布的随机数。

算法:

(1)产生n个RND 随机数r1,r2,…,rn;

(2)从等式中所得yi,i=1,2, …,n即所求.

基本原理:

设随机变量Y的分布函数F(y)是连续函数,而且随机变量X~U(0,1),令Z=F -1(X)。则Z与Y有相同分布。

证明:FZ(z)=P{F-1(X)≤z}=P{X≤F(z)}=G(F(z))=F(z)因G(x)是随机变量X的分布函数:

若Y的概率密度为f(y),由Y=F-1(X)可得:

对给出定的(0, 1)上均匀分布随机数ri,则具有给定分布的随机数yi可由方程

解出。

三、应用实例

1、MATLAB算法代码及生成随机数表格

function m = zhengtaifenbu(miu,sigma)

%UNTITLED2 Summary of this function goes here

%Detailed explanation goes here

n=zeros(1,1200);

m=n;

figure(1)

for i=1:1200

r=rand(1,12);

n(i)= (sum(r)-6);

end

m=sigma*n+miu;

subplot(1,2,1)

cdfplot(m)

subplot(1,2,2)

ksdensity(m);

End

2、用Box-Muller方法:

先假设。随机抽出两个从均匀分布的数字和。

然后,那和都是正态分布的。另外使用反函数,先随机抽出一个从均匀分布的数字,然后那是正态分布的。

3、Python实现:

importnumpy as np

fromscipy.special import erfinv

defboxmullersampling(mu=0, sigma=1, size=1):

u = np.random.uniform(size=size)

v = np.random.uniform(size=size)

z = np.sqrt(-2*np.log(u))*np.cos(2*np.pi*v)

returnmu+z*sigma

definverfsampling(mu=0, sigma=1, size=1):

z = np.sqrt(2)*erfinv(2*np.random.uniform(size=size)-1)

return mu+z*sigma

四、总结感受

一维正态分布随机数序列的产生可以产生高质量的正态分布,在数理统计中具有基础性的重要作用。我觉得数学学习中归纳总结和拓展延伸很重要,我们应当学会举一反三。从问题中总结规律,找到最优方法,从而达到快速解题的目的。在大量练习中更要注意归纳总结,寻找一般方法,便于进行深入研究,在以后解决此类问题的过程中节省时间。

数学软件的使用在随机数的产生方法中尤为重要,可以帮助我们在数据较多的情况下利用这些数据产生更加准确的分布。

五、文献列表

MAAB产生各种分布的随机数

MATLAB产生各种分布的随机数 1,均匀分布U(a,b): 产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b) 2,0-1分布U(0,1) 产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n) 产生一个[0,1]均匀分布的随机数:rand 4,二类分布binornd(N,P,mm,nn)如binornd(10,,mm,nn) 即产生mm*nn均值为N*P的矩阵 binornd(N,p)则产生一个。而binornd(10,,mm)则产生mm*mm的方阵,军阵为N*p。5,产生m*n阶离散均匀分布的随机数矩阵: unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵 6,产生mm nn阶期望值为的指数分布的随机数矩阵: exprnd( ,mm, nn) 此外,常用逆累积分布函数表?

函数名调用格式函数注释? norminvX=norminv(P,mu,sigma)正态逆累积分布函数? expinvX=expinv(P,mu)指数逆累积分布函数? weibinvX=weibinv(P,A,B)威布尔逆累积分布函数? logninvX=logninv(P,mu,sigma)对数正态逆累积分布函数? Chi2invX=chi2inv(P,A,B)卡方逆累积分布函数? BetainvX=betainv(P,A,B)β分布逆累积分布函数 随机数的产生 4.1.1 二项分布的随机数据的产生 命令参数为N,P的二项随机数据 函数 binornd 格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。 R = binornd(N,P,m) %m指定随机数的个数,与R同维数。 R = binornd(N,P,m,n) %m,n分别表示R的行数和列数 例4-1

临床试验中的随机分组方法

临床试验中的随机分组方法 时间:2009-10-23 22:17:46 来源:admin 万霞1,刘建平2 (1.中国医学科学院基础医学研究所/中国协和医科大学基础医学院流行病学教研室,北京市东单三5号, 100005; 2.北京中医药大学循证医学中心) 【摘要】成功地实施随机分配依赖于两个相关的步骤:(1)产生随机分配序列用于试验组和对照组的分配; (2)随机分配方案在随机分组实施过程中的隐匿。随机分组方法有: 简单随机化、区组随机化分段(或分层)随机化、分层区组随机化及动态随机化等;随机分配方案隐匿的方法有按顺序编码、不透光、密封的信封, 中心随机系统, 编号或编码的瓶子或容器, 中心药房准备的药物等。科研工作者在临床研究中需要根据设计方法, 正确选择随机分组及随机分配方案隐匿的方法。 【关键词】随机分配; 随机分组; 随机方案; 隐匿 随机分配方法确保对比组之间基线均衡可比,被认为是减少两组患者选择偏倚的最佳方法[1]。因此,有学者认为正是由于随机分配方法,使得随机对照试验在提高医疗卫生服务中起着至关重要的作用[2]。在临床研究中,正确地实施真正的随机分配是临床试验的关键。成功地实施随机分配依赖于两个相关的步骤[3]:(1)产生随机分配序列并用于随机分配到试验组和 对照组; (2) 随机分配方案在随机分组中的隐匿(allocation concealment)。没有随机隐匿的随机临床试验也称为开放式的随机对照试验。 有试验研究表明[4],如果用不适当的分组和双盲方法, 即使是随机临床试验,其干预效果也 会被显着地高估(在一项研究中干预效果平均被夸大约50% )。遗憾的是90%以上的随机临床试验随机分组不恰当[5]。对卫生系统重大科研课题的终审标书进行的系统评价发现,部分治疗性研究存在假的随机分组[6]。有学者分层随机选择综合性国家级中医药学术期刊4种、省级和中医学院(大学)学报类中医药学术期刊各10种, 专业杂志(如针灸) 4种, 共计28种, 从1996 年12月开始回溯20年, 从中选取所有中医药疗效评价的文章逐一评阅。研究结果发现, 83%的文章未描述随机分组方法,操作是否恰当难以判断[7]。

正态分布随机数生成算法

概率论与数理统计课程设计 题目:正态分布随机数生成算法 要编程得到服从均匀分布的伪随机数是容易的。C语言、Java语言等都提供了相应的函

数。但是要想生成服从正态分布的随机数就没那么容易了。 得到服从正态分布的随机数的基本思想是先得到服从均匀分布的随机数,再将服从均匀分布的随机数转变为服从正态分布。接下来就先分析三个从均匀分布到正态分布转变的方法。然后编程实现其中的两个方法并对程序实现运作的效果进行统计分析。 1、 方法分析 (1) 利用分布函数的反函数 若要得到分布函数为F(x)的随机变量Y 。 可令1()Y F u -=, 其中u 是服从均匀分布的随机变量,有 1 ()(())() P Y y P U F y F y -≤=≤= 因而,对于任意的分布函数,只要求出它的反函数,就可以由服从均匀分布的随机变量实例来生成服从该分布函数的随机变量实例。 现在来看正态分布的分布函数,对于2 ~(,)X N μσ,其分布函数为: 2 2()21 ()t x F x e μσ ---∞ = ? 显然,要想求其反函数是相当困难的,同时要想编程实现也很复杂。可见,用此种方法来生成服从正态分布的随机变量实例并不可取。 (2) 利用中心极限定理 第二种方法利用林德伯格—莱维(Lindeberg —Levi)中心极限定理:如果随机变量序列 12,,,,n X X X 独立同分布,并且具有有限的数学期望和方差 ()()2 ,0(1,2,),i i E X D X i μσ ==>= 则对一切x R ∈有 2 2 1lim t n x i n i P X n x dt μ- -∞ →∞ =? ?? -≤= ????? ∑? 因此,对于服从均匀分布的随机变量i X ,只要n 充分大, 11 n i i X n μ=? -? ?∑就服从()0,1N 。我们将实现这一方法。 (3) 使用Box Muller 方法 先证明2 2 2x e dx π-∞-∞ =? : 令2 2 x I e dx -∞-∞ = ? ,则

随机数生成方法、随机数生成法比较以及检验生成的随机序列的随机性的方法讲义

摘要 摘要 本文着重讨论了随机数生成方法、随机数生成法比较以及检验生成的随机序列的随机性的方法。 在随机序列生成方面,本文讨论了平方取中法、斐波那契法、滞后斐波那契法、移位法、线性同余法、非线性同余法、取小数法等,并比较了各方法的优劣性。 在统计检验方面,介绍了统计检验的方法,并用其检验几种随机数生成器生成的随机数的随机性。 最后介绍了两种新的随机数生成法,并统计检验了生成随机序列的随机性。关键词:随机数,随机数生成法,统计检验 I

ABSTRACT ABSTRACT This article focuses on methods of random number generator, random number generation method comparison and test the randomness of the generated random sequence method. In random sequence generation, the article discusses the square method, Fibonacci method, lagged Fibonacci method, the shift method, linear congruential method, linear congruence method, taking minority law, and Comparison of advantages and disadvantages of each method. In statistical test, the introduction of the statistical test method, and used to test some random number generator random random numbers generated. Finally, two new random number generation method, and statistical tests of randomness to generate a random sequence. Key Words: random number,random number generator,statistical test II

各种分布的随机数生成算法

各型分布随机数的产生算法 随机序列主要用概率密度函数(PDF〃Probability Density Function)来描述。 一、均匀分布U(a,b) ?1x∈[a,b]? PDF为f(x)=?b?a?0〃其他? 生成算法:x=a+(b?a)u〃式中u为[0,1]区间均匀分布的随机数(下同)。 二、指数分布e(β) x?1?exp(?x∈[0,∞)βPDF为f(x)=?β ?0〃其他? 生成算法:x=?βln(1?u)或x=?βln(u)。由于(1?u)与u同为[0,1]均匀分布〃所以可用u 替换(1?u)。下面凡涉及到(1?u)的地方均可用u替换。 三、瑞利分布R(μ) ?xx2 exp[?x≥0?回波振幅的PDF为f(x)=?μ2 2μ2 ?0〃其他? 生成算法:x=?2μ2ln(1?u)。 四、韦布尔分布Weibull(α,β) xα??αα?1?αβxexp[?(]x∈(0,∞)βPDF为f(x)=? ?0〃其他? 生成算法:x=β[?ln(1?u)]1/α 五、高斯(正态)分布N(μ,σ2) ?1(x?μ)2 exp[?]x∈?2PDF为f(x)=?2πσ 2σ ?0〃其他? 生成算法: 1?y=?2lnu1sin(2πu2)生成标准正态分布N(0,1)〃式中u1和u2是相互独立的[0,1]区间

均匀分布的随机序列。 2?x=μ+σy产生N(μ,σ2)分布随机序列。 六、对数正态分布Ln(μ,σ2) ?1(lnx?μ)2 exp[?x>0PDF为f(x)=?2πσx 2σ2 ?0〃其他? 生成算法: 1?产生高斯随机序列y=N(μ,σ2)。 2?由于y=g(x)=lnx〃所以x=g?1(y)=exp(y)。 七、斯威林(Swerling)分布 7.1 SwerlingⅠ、Ⅱ型 7.1.1 截面积起伏 σ?1?exp[σ≥0?σ0截面积的PDF为f(σ)=?σ0〃【指数分布e(σ0)】 ?0〃其他? 生成算法:σ=?σ0ln(1?u)。 7.1.2 回波振幅起伏 ?AA2 ?exp[?2]A≥0〃式中A2=σ〃2A02=σ0。回波振幅的PDF为f(A)=?A02【瑞利分布R(A0)】2A0?0〃其他? 生成算法:A=?2A02ln(1?u)=σ0ln(1?u)。也可由A2=σ得A==?0ln(1?u) 7.2 SwerlingⅢ、Ⅳ型 7.2.1 截面积起伏 2σ?4σ]σ≥0?2exp[?σσ截面积的PDF为f(σ)=?0〃 0?0〃其他? 生成算法:σ=?式中u1和u2是相互独立的[0,1]区间均匀分布随机序列。 [ln(1?u1)+ln(1?u2)]〃2

随机数的产生和特性曲线

《概率论与随机信号分析》实验报告 实验名称:随机数的产生和特性曲线指导教师: 张正明 成绩: 姓名:陈新班级:10通信A班学号:67 一、实验目的与任务 1.了解随机数的产生方法; 2.了解常用随机数的概率分布函数、分布律和概率密度函数。 二、实验原理 随机数的产生有好多方法,可以利用乘积法和同余法产生【0,1】之间的均匀分布,然后利用函数变换法产生所需不同分布的随机数。可以按照所产生的随机数,对落在不同区间的数据进行统计,从而画出所产生的随机数的统计特性。所有这些工作我们可以自己动手用matlab,VC 或VB等语言进行编程实现。 在现代系统仿真中,大量地使用matlab工具,而且它也提供了非常丰富的函数来产生经常使用的分布的随机数,比如rand,randn就是用来产生均匀分布随机数和高斯分布随机数的。 本实验充分利用matlab提供的工具来产生随机数,验证和观察其统计特性。 1.disttool:分布函数和密度函数的可视化工具 分布函数和密度函数的工具能够产生22种常用分布的概率分布曲线和概率密度曲线,并通过图形方式显示。我们还可以通过修改参数产生同一种分布不同参数的概率分布曲线和概率密度曲线。 2.randtool:随机变量模拟工具 随机变量模拟工具能够模拟产生22种常用分布的随机数,并可以通过修改它们的参数产生同一种分布不同参数的随机数,并通过图形方式显示它们的概率密度统计。 三、实验内容与结果 1.绘制正态分布密度函数曲线 建立normal.m脚本文件,并运行 x=-10:0.1:10; u=0,c2=4; c1=sqrt(c2); f=1/(sqrt(2*pi)*d)*exp(-(x-u)^2/2/c2);正态概率密度

正态分布随机数

数学模型: 设连续型随机变量X 的高斯分布的概率密度为 ( )22 ()2,x f x μσ-= -∞<x <+∞ (3-1) 其中μ,σ(σ>0)为常数,则称X 服从参数为μ,σ的正态分布或高斯(Gauss)分布,记为X ~N (μ,2σ)。均值和方差的计算见公式3-2和公式3-3所示,可得到正态分布随机变量X 的均值E(X)=μ和方差D(X)=2σ。 ()()E X xf x dx +∞ -∞ =? (3-2) 2()()D X x f x dx +∞ -∞ =? (3-3) ()()E X xf x dx +∞ -∞ =? 22 ()2x dx μσ-- +∞ -∞ =? 令 x t μ σ -=,则 2 2()()t E X t dt σμσ+∞ --∞ =+?? 2 2 22t t dt dt σ μ+∞ +∞---∞ -∞ =+?? ? 0μμ=+= 根据方差的定义可知: 2 (){[()]} D X E X E X =- 所以,2 (){[()]}D X E X E X =- 2()22()x x dt μσμ-- +∞ -∞ = -? 2222 t t dt σσ+∞ --∞ =?? 2 22 2t t dt σ+∞ --∞ =?

2 σ= 即知正态分布的两个参数分别是该分布的数学期望和方差。 中心极限定理: 设随机变量12,,,n X X X ???相互独立,服从同一分布,且具有相同的均值和方差:()k E X μ=,2()0(1,2,,)k D X k n σ=≠=???,则随机变量 () n n n k k k n X E X X n Y μ --= = ∑∑∑ (3-4) 的分布函数()n F x 对于任意x 都满足 2 2 lim ()lim }n t k x n n n X n F x P x dt μ →∞ →∞ -=≤=∑? (3-5) 即当n 趋向于无穷大时,随机变量n Y 近似的服从标准正态分布N(0,l)。在实际应用中当。大于等于30时,可以把1n i i Y X ==∑当作服从均值为n μ,方差为n 2σ的 正态分布,那么变量'Y = 近似服从标准正态分布N ~(0,l)。 Box-Muller 变换法: 变换法是通过一个变换将一个分布的随机数变换成一个不同分布的随机数。高斯分布的密度函数见公式3-1所示,通过Box-Muller 变换,它可以产生精确的正态分布的随机变量。其变换式如下 : 1)y v π (3-6) 2)y v π (3-7) 式中u ,v 是在区间[0,1]上服从均匀分布,且相互独立的随机变量,所以得到的随机变量1y ,2y 也应该是相互独立的,且服从N ~(0,1)的标准正态分布。 Box-Muller 变换的推导过程如下: 由公式3-6和公式3-7可得: 221212 2 1 ,()2y y y u e v arctg y π+- == (3-8)

MATLAB产生各种分布的随机数

M A T L A B产生各种分布 的随机数 The final revision was on November 23, 2020

MATLAB产生各种分布的随机数 1,均匀分布U(a,b): 产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b) 2,0-1分布U(0,1) 产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n) 产生一个[0,1]均匀分布的随机数:rand 4,二类分布binornd(N,P,mm,nn)如binornd(10,,mm,nn) 即产生mm*nn均值为N*P的矩阵 binornd(N,p)则产生一个。而binornd(10,,mm)则产生mm*mm的方阵,军阵为N*p。 5,产生m*n阶离散均匀分布的随机数矩阵: unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵 6,产生mm nn阶期望值为的指数分布的随机数矩阵: exprnd( ,mm, nn) 此外,常用逆累积分布函数表 函数名调用格式函数注释 norminv X=norminv(P,mu,sigma) 正态逆累积分布函数 expinv X=expinv(P,mu) 指数逆累积分布函数 weibinv X=weibinv(P,A,B) 威布尔逆累积分布函数 logninv X=logninv(P,mu,sigma) 对数正态逆累积分布函数

Chi2inv X=chi2inv(P,A,B) 卡方逆累积分布函数 Betainv X=betainv(P,A,B) β分布逆累积分布函数 随机数的产生 4.1.1 二项分布的随机数据的产生 命令参数为N,P的二项随机数据 函数 binornd 格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。 R = binornd(N,P,m) %m指定随机数的个数,与R同维数。 R = binornd(N,P,m,n) %m,n分别表示R的行数和列数 例4-1 >> R=binornd(10, R = 3 >> R=binornd(10,,1,6) R = 8 1 3 7 6 4 >> R=binornd(10,,[1,10]) R = 6 8 4 6 7 5 3 5 6 2 >> R=binornd(10,,[2,3]) R = 7 5 8 6 5 6 >>n = 10:10:60; >>r1 = binornd(n,1./n) r1 = 2 1 0 1 1 2 >>r2 = binornd(n,1./n,[1 6]) r2 = 0 1 2 1 3 1 4.1.2 正态分布的随机数据的产生

一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法 一、文献综述 1.随机数的定义及产生方法 1).随机数的定义及性质 在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。 单位均匀分布也称为[0,1]上的均匀分布。 由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 随机数具有非常重要的性质:对于任意自然数s,由s个随机数组成的 s维空间上的点(ξn+1,ξn+2,…ξn+s)在s维空间的单位立方体Gs上 均匀分布,即对任意的ai,如下等式成立: 其中P(·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s,由s个元素所组成的s维空间上的点(ξn+1,…ξn+s)在Gs上均匀分布,则它们是随机数序列。 由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。 2).随机数表 为了产生随机数,可以使用随机数表。随机数表是由0,1,…,9十个数字组成,每个数字以0.1的等概率出现,数字之间相互独立。这些数字序列叫作随机数字序列。如果要得到n位有效数字的随机数,只需将表中每n 个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。例如,某随机数表的第一行数字为7634258910…,要想得到三位有效数字的随机数依次为0.763,0.425,0.891。因为随机数表需在计算机中占有很大内存, 而且也难以满足蒙特卡罗方法对随机数需要量非常大的要求,因此,该方法不适于在计算机上使用。 3).物理方法

正态分布随机数的产生

四院四队 正态分布随机数的产生 实验报告 2014年5月26日

正态分布随机数的产生 一、 实验简述 通过matlab 实现正态分布N(0,1)随机数的产生。 二、 历史背景 正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre 于1733年首次提出的,但由于德国数学家Gauss 率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(G.Hagen )在一篇论文中正式提出了这个学说。 其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理论把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义。 三、 实验步骤 设U 1,U 2相互独立同服从U(0,1),令 1 2 112(2lnU )cos(2U )X π=-

实验一随机序列的产生及数字特征估计

实验一随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。(0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n?1mod N(1.1) x n=y n N 序列x n为产生的(0,1)均匀分布随机数。 下面给出了(1.1)式的3 组常用参数: ①N = 1010,k = 7,周期≈5*10^7; ②(IBM随机数发生器)N = 2^31,k = 2^16 + 3,周期≈5*10^8;

③(ran0)N = 2^31 - 1,k = 7^5,周期≈2*10^9; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X具有连续分布函数F X(X),而R为(0,1)均匀分布随机变量,则有 X=F X?1(R)(1.2) 由这一定理可知,分布函数为F X(X)的随机数可以由(0,1)均匀分布随机数按(1.2)式进行变换得到。 2、MATLAB 中产生随机序列的函数 (1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m×n的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。(3)其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,表1.1 列出了部分函数。

编写一个产生符合高斯分布的随机数函数

编写一个产生符合高斯分布的随机数函数信号检测与估计课程作业作业要求 1、利用计算机内部函数产生高斯分布的随机数,分别画出500,10000,100000点的波形,并进行统计分析(分别画出概率密度曲线,计算均值与方差) 2、利用计算机自己编写一个产生符合高斯分布的随机数函数,画出100000点的波形,并进行统计分析(同一) 提示:这一问分两步做,第一步先产生一个均匀分布的随机数序列(乘同余法、混合同余法等,可以用自己的方法),第二步通过适当变换得到符合高斯分布概率模型的随机数列 3、对随机数产生函数和高斯分布进行性能分析,并写出自己对于此次作业和上课的学习体会 一、利用内部函数产生高斯分布 首先利用matlab自带的内部函数randn()就可以方便的生成所需要的高斯分布随机数,然后画出概率密度曲线并计算出均值与方差即可。程序代码如下: A=randn(500,1); B=randn(10000,1);

C=randn(100000,1); subplot(2,3,1); bar(A); subplot(2,3,2); bar(B); subplot(2,3,3); bar(C); [f1,x1]=ksdensity(A); subplot(2,3,4); plot(x1,f1); title('500点高斯分布概率密度函数'); [f2,x2]=ksdensity(B); subplot(2,3,5); plot(x2,f2); title('10000点高斯分布概率密度函数'); [f3,x3]=ksdensity(C); subplot(2,3,6); plot(x3,f3); title('100000点高斯分布概率密度函数'); JZ500=mean(A) JZ1000=mean(B) JZ100000=mean(C) FC500=var(A) FC10000=var(B)

随机信号分析实验:随机序列的产生及数字特征估计

实验一 随机序列的产生及数字特征估计 实验目的 1. 学习和掌握随机数的产生方法。 2. 实现随机序列的数字特征估计。 实验原理 1.随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: N y x N ky y y n n n n = ==-) (mod ,110 (1.1) 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了(1.1)式的3组常用参数: ① 1010=N ,7=k ,周期7 105?≈; ②(IBM 随机数发生器)312=N ,3216+=k ,周期8 105?≈; ③(ran0)1231 -=N ,5 7=k ,周期9 102?≈; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X 具有连续分布函数)(x F X ,而R 为(0,1)均匀分布随机变量,则有 )(1 R F X X -= (1.2) 由这一定理可知,分布函数为)(x F X 的随机数可以由(0,1)均匀分布随机数按(1.2)式进行变换得到。 2.MATLAB 中产生随机序列的函数 (1)(0,1)均匀分布的随机序列

均匀分布的随机数

随机数的产生 摘要 本文研究了连续型随机数列的产生,先给出了均匀分布的随机数的产生算法,在通过均匀分布的随机数变换得到其他连续型随机数的产生算法.在vc 环境下,我们给出了产生均匀分布随机数的算法,然后探讨了同余法的理论原理.通过均匀随机数产生其他分布的随机数,我们列举了几种通用算法,并讨论各个算法的优缺点,最后以正态分布为例验证高效舍选法的优势. 正文 一、 随机数与伪随机数 随机变量η的抽样序列12,,n ηηη ,…称为随机数列. 如果随机变量η是均匀分布的,则η的抽样序列12,,n ηηη ,…称为均匀随机数列;如果随机变量η是正态分布的随机变量则称其抽样序列为正态随机数列. 比如在掷一枚骰子的随机试验中出现的点数x 是一个随机变量,该随机变量就服从离散型均匀分布,x 取值为1,2,3,4,5,6,取每个数的概率相等均为1/6.如何得到x 的随机数?通过重复进行掷骰子的试验得到的一组观测结果12,,,n x x x 就是x 的随机数.要产生取值为0,1,2,…,9的离散型均匀分布的随机数,通常的操作方法是把10个完全相同的乒乓球分别标上0,1,2,…,9,然后放在一个不透明的袋中,搅拦均匀后从中摸出一球记号码1x 后放回袋中,接着仍将袋中的球搅拌均匀后从袋中再摸出一球记下号码2x 后再放回袋中,依次下去,就得到随机序列12,,,n x x x .通常称类似这种摸球的方法产生的随机数为真正的随机数.但是,当我们需要大量的随机数时,这种实际操作方法需要花费大量的时间,通常不能满足模拟试验的需要,比如教师不可能在课堂上做10000次掷硬币的试验,来观察出现正面的频率.计算机可以帮助人们在很短时间产生大量的随机数以满足模拟的需要,那么计算机产生的随机数是用类似摸球方法产生的吗?不是.计算机是用某种数学方法产生的随机数,实际上是按照一定的计算方法得到的一串数,它们具有类似随机数的性质,但是它们是依照确定算法产生的,便不可能是真正的随机数,所以称计算机产生的随机数为伪随机数.在模拟计算中通常使用伪随机数.对这些伪随机数,只要通过统计检验符合一些统计要求,如均匀性、随机性

概率论与数理统计小报告 正态随机数的产生方法

概率论与数理统计小报告(二)_________正态随机数的产生方法 学院数理学院 专业信息与计算科学 班级 姓名 学号

依据中心极限定理产生正态分布随机数 摘要:由中心极限定理可知,当n很大时,具有期望μ,方差σ2的分布近似为标准正态分布,故可据此产生标准正态分布。并利用Matlab自带的函数对结果进行检验。 关键字:正态分布中心极限定理随机数 正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。 若随机变量服从一个位置参数为、尺度参数为的概率分布,记为: 则其概率密度函数为 正态分布的数学期望值或期望值等于位置参数,决定了分布的位置;其方差的开平方或标准差等于

clc,clear for i=1:1000 R=rand(1,12); X(i)=sum(R)-6; end X=X'; m=mean(X) v=var(X) subplot(1,2,1),cdfplot(X) %绘制经验累计分布函数图,显示了一维向量X的累计概率分布F(x)的图形subplot(1,2,2),histfit(X) %绘制分组数据的柱状分布函数图,即频数图 h=kstest(X, [X normcdf(X, 0,1)])% H = kstest(X)执行Kolmogorov-Smirnov检验标准正态分布比较数据向量x的值。零假设是x为标准的正态分布;另一种假设是x不是标准正态分布。在5%显著水平进行检验,若结果h为1,则说明零假设不成立,拒绝零假设。否则,结果为0,零假设成立,即原分布为标准正态分布 运行结果如下: h = 0 (检验表明分布为标准正态分布) R = (产生的一组12个【0,1】上均匀分布的随机数) Columns 1 through 4 0.5700 0.4027 0.3702 0.0801 Columns 5 through 8

一维连续型随机数序列的产生方法

随机数序列的产生方法 一维连续型随机数序列的产生方法 一.综述 由具有已知分布的总体中抽取简单子样,在蒙特卡罗方法中占有非常重要的地位。总体和子样的关系,属于一般和个别的关系,或者说属于共性和个性的关系。由具有已知分布的总体中产生简单子样,就是由简单子样中若干个性近似地反映总体的共性。 随机数是实现由已知分布抽样的基本量,在由已知分布的抽样过程中,将随机数作为已知量,用适当的数学方法可以由它产生具有任意已知分布的简单子样。 二.随机数的定义及性质 在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。单位均匀分布也称为[0,1]上的均匀分布,其分布密度函数为: 分布函数为: 其中P (·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s ,由s 个元素所组成的s 维空间上的点(ξ n+1 ,…ξ n+s )在G s 上均匀分布,则它们是随机数序列。 由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由 1, 01()0, x f x ≤≤?=? ?其他 0,0(), 011,1 x F x x x x ?

具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别 三.连续型随机数的模拟产生 最常用、最基础的随机数是在(0,1)区间内均匀分布的随机数(简记为RND)。一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到.通常是利用递推公式: 给定k 个初始值ξ1,ξ2,…,ξk , 利用递推公式递推出一系列随机数ξ1,ξ2,…,ξn ,…. 利用在(0 , 1) 区间上均匀分布的随机数来模拟具有给定分布的连续型随机数. 1.反函数法 设连续型随机变量Y 的概率函数为 f (x ), 需产生给定分布的随机数. (1)算法:1)产生n 个RND 随机数r 1,r 2,…,r n ; 所得y i ,i =1,2, …,n 即所求。 (2)基本原理: 设随机变量Y 的分布函数F (y )是连续函数,而且随机变量X ~ U (0,1),令Z =F -1(X ),则Z 与Y 有相同分布. 证明:F Z (z )= P {F -1(X ) ≤ z }= P {X ≤F (z )}=G (F (z )) = F (z ) 因G (x )是随机变量X 的分布函数: 12(,,,) n n n n k f ξξξξ---= ; )()2i y i y dy y f r i 中解出从等式?∞ -= ?? ? ??≤<≤<=. 1,1;10, ;0, 0)(x x x x x G

生成高斯分布的matlab程序

clear all; close all; clc; randn('seed',0); %%一维高斯函数 mu=0; sigma=1; x=-6:0.1:6; y=normpdf(x,mu,sigma); plot(x,y); figure; %%二维或多维高斯函数 mu=[00]; sigma=[0.30;00.35]; [x y]=meshgrid(linspace(-8,8,80)',linspace(-8,8,80)'); X=[x(:) y(:)]; z=mvnpdf(X,mu,sigma); surf(x,y,reshape(z,80,80)); hold on; %再生成一个 mu=[40]; sigma=[1.20;0 1.85]; [x y]=meshgrid(linspace(-8,8,80)',linspace(-8,8,80)'); X=[x(:) y(:)]; z=mvnpdf(X,mu,sigma); surf(x,y,reshape(z,80,80)); Matlab 的随机函数(高斯分布均匀分布其它分布) Matlab中随机数生成器主要有: betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布的随机数生成器 frnd f分布的随机数生成器 gamrnd 伽玛分布的随机数生成器 geornd 几何分布的随机数生成器 hygernd 超几何分布的随机数生成器 lognrnd 对数正态分布的随机数生成器 nbinrnd 负二项分布的随机数生成器 ncfrnd 非中心f分布的随机数生成器

MATL新编产生各种分布的随机数

M A T L新编产生各种分布 的随机数 Revised as of 23 November 2020

MATLAB产生各种分布的随机数 1,均匀分布U(a,b): 产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b) 2,0-1分布U(0,1) 产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n) 产生一个[0,1]均匀分布的随机数:rand 4,二类分布binornd(N,P,mm,nn)如binornd(10,,mm,nn) 即产生mm*nn均值为N*P的矩阵 binornd(N,p)则产生一个。而binornd(10,,mm)则产生mm*mm的方阵,军阵为N*p。 5,产生m*n阶离散均匀分布的随机数矩阵: unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵 6,产生mm nn阶期望值为的指数分布的随机数矩阵: exprnd( ,mm, nn) 此外,常用逆累积分布函数表 函数名调用格式函数注释 norminvX=norminv(P,mu,sigma)正态逆累积分布函数 expinvX=expinv(P,mu)指数逆累积分布函数 weibinvX=weibinv(P,A,B)威布尔逆累积分布函数 logninvX=logninv(P,mu,sigma)对数正态逆累积分布函数

Chi2invX=chi2inv(P,A,B)卡方逆累积分布函数 BetainvX=betainv(P,A,B)β分布逆累积分布函数 随机数的产生 4.1.1 二项分布的随机数据的产生 命令参数为N,P的二项随机数据 函数 binornd 格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。 R = binornd(N,P,m) %m指定随机数的个数,与R同维数。 R = binornd(N,P,m,n) %m,n分别表示R的行数和列数 例4-1 >> R=binornd(10, R = 3 >> R=binornd(10,,1,6) R = 8 1 3 7 6 4 >> R=binornd(10,,[1,10]) R = 6 8 4 6 7 5 3 5 6 2 >> R=binornd(10,,[2,3]) R = 7 5 8 6 5 6 >>n = 10:10:60; >>r1 = binornd(n,1./n) r1 = 2 1 0 1 1 2 >>r2 = binornd(n,1./n,[1 6]) r2 = 0 1 2 1 3 1 4.1.2 正态分布的随机数据的产生

一种实用的随机序列生成方法

Computer Knowledge and Technology 电脑知识与技术网络通讯及安全本栏目责任编辑:冯蕾第7卷第9期(2011年3月)一种实用的随机序列生成方法 倪安胜1,汤池2 (1.西安通信学院一系陕西西安710106;2.第四军医大学生物医学工程系,陕西西安710032) 摘要:采用PC 声卡随机噪声作为随机源,使用安全散列算法(SHA-256)对采集到的随机源序列进行处理,形成一种随机序列产生方法。依照FIPS14022标准对产生的随机序列进行测试,结果表明该随机序列的生成方法可行、实用。 关键词:PC ;随机序列;密码生成 中图分类号:TP311文献标识码:A 文章编号:1009-3044(2011)09-1991-02 A Practical Method of Random Sequences Producing NI An-sheng 1,TANG Chi 2 (1.Xi'an Communications Instutute,Xi'an 710106,China;2.The Fourth Military Medical University,Xi'an 710032,China) Abstract:Utilizing the noise of PC soundcard as random resource to obtain random sequences,which was then processed by the secure hash algorithm SHA-256.Thus a method of random sequences producinging was made.The random sequences were tested according to American standard FIPS14022.It shows that the method is feasible and practical with the testing results. Key words:PC;random sequences;password generator 随机数在密码学中发挥重要作用,如密钥管理、加密解密、数字签名、身份认证等都需要用到随机数,密码系统的安全性一般依赖于随机数的生成[1]。理想情况下,密钥应当是真正随机的。随机数是通过随机二进制序列组合而成的,目前用于产生随机二进制序列的方法主要有两类[2]:一种是通过一定的算法由软件或电路生成随机序列,称为伪随机序列,是可以重复产生的;另一种是通过物理现象,如振荡器的频率不稳定性、放射性衰减期间粒子散发的时间间隔、电阻器热噪声、混沌现象等生成随机序列,这类序列具有不可预测性,不可重复,在密码学意义上是安全的。 通过算法不能实现真正的随机数,因此一般通过使用硬件随机数生成器的方法来获取真随机数。但是这种方法增加了成本,不适合低成本应用程序开发和小型项目应用。PC 上有许多可供利用的随机源,如:硬盘磁道寻道时间、鼠标键盘响应时间、网络数据包校验码、缓冲区数据等。有关研究表明[3-4],利用PC 附带的随机源生成随机数,可以满足低成本应用程序和小型项目开发的要求。目前,PC 声卡早已经成为标准的配置,绝大部分主板都内置了声卡。因此,选用声卡噪声作为随机数发生源无需额外增加开发成本,具有较强的代表性。本文以麦克风和声卡作为随机信号的采集设备,以DirectX 中的Sound API 函数进行信号获取,采用Microsoft Visual C++.net 2005完成软件设计。 1基本原理 PC 在使用中,麦克风采集到的声音信号含有随机噪声,声卡将该信号采样后传送给主机,一般情况下采样频率为44.1KHz ,采样精度为16bits ,采样数据末若干位将由于含有噪声信号表现出随机性。因此,可以用采样信号的末若干位(一般少于等于2位)来初步组合随机序列。当随机序列达到一定长度时,使用美国国家标准和技术协会(NIST) 公布的安全散列标准算法SHA-256,对其进行散列变换,增强序列的随机性,形成一个 256位的随机序列。根据要求的随机序列长度,进行多次随机序列生成组合。随机序列 生成组合过程如图1所示。 2测试及结果 2.1测试标准 对随机序列的统计学测试方法有许多种,这些方法虽能从各个侧面统计序列的均 匀行和独立性,但没有统一的参数指标进行比较。美国NIST 在FIPS 14022中提出了基 于密码系统的安全标准[5],其中包括随机序列发生器的测试方法和合格标准,测试方法 主要有:monobit 测试、poker 测试、runs 测试及long runs 测试。要求从产生的随机序列 中选取20000位连续的0-1比特流进行实验。该测试简化了统计检验标准,更具操作性与比对性。2.1.1monobit 测试 计算比特流中1的个数。当1的个数在9725~10275范围之内时表示随机数发生器通过monobit 测试。 2.1.2poker 测试 将20000位的比特流每4位分1组共5000组,每组有16种可能取值i (i =0,1,…15),计算5000组中每组可能取值的数量f 收稿日期:2011-01-08 作者简介:倪安胜(1976-),男,安徽无为人,讲师,主要研究方向为网络信息安全。 图1随机序列生成组合示意图 E-mail:info@https://www.sodocs.net/doc/3b1454934.html, https://www.sodocs.net/doc/3b1454934.html, Tel:+86-551-56909635690964ISSN 1009-3044 Computer Knowledge and Technology 电脑知识与技术Vol.7,No.9,March 2011,pp.1991-19921991

相关主题