搜档网
当前位置:搜档网 › fluent湍流设置

fluent湍流设置

fluent湍流设置
fluent湍流设置

湍流边界条件设置

在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。

大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边

界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置

往往导致错误的计算结果,甚至使计算发散而无法进行下去。

在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:

(1)湍流强度(Turbulence Intensity)

湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg(8-1)

上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。

湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。

内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的:

I=u’/u_avg=0.16*Re_DH^-0.125 (8-2)

其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。

(2)湍流的长度尺度与水力直径

湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为:

l = 0.07L (8-3)

式中的比例因子0.07 是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形时,L可以取为管道的水力直径。

流的特征长取决于对湍流发展具有决定性影响的几何尺度。在上面的讨论中,管道直径是决定湍流发展过程的唯一长度量。如果在流动中还存在其他对流动影响更大

的物体,比如在管道中存在一个障碍物,而障碍物对湍流的发生和发展过程起着重要的干扰

作用。在这种情况下,湍流特征长就应该取为障碍物的特征长度。

从上面的分析可知,虽然式(8-2)对于大多数管道流动是适用的,但并不是普遍适用的,在某些情况下可以进行调整。

在FLUENT 中选择特征长L或湍流长度尺度l的方法如下:

1)对于充分发展的内流,可以用Intensity and Hydraulic Diameter(湍流强度与水力直径)方法定义湍流,其中湍流特征长度就是Hydraulic Diameter(水力直径)HD。

2)对于导向叶片或分流板下游的流场,可以用Intensity and Hydraulic Diameter(湍流强度与水力直径)定义湍流,并在Hydraulic Diameter(水力直径)中将导向叶片或分流板的开口部分的长度L 定义为特征长度。

3)如果进口处的流动为受到壁面限制且带有湍流边界层的流动,可以在Intensity and Length Scale 面板中用边界层厚度delta_99 通过公式l=0.4*delta_99计算得到湍流长度尺度l。最后在Turbulence Length Scale(湍流长度尺度)中输入l的值。

(3)湍流粘度比

湍流粘度比mu_t/mu与湍流雷诺数Re_t成正比。湍流雷诺数的定义为:

Re_t=k*k/(Epsilon*nu) ( 8-4)

在高雷诺数边界层、剪切层和充分发展的管道流动中的数值较大,其量级大约在100 到1000 之间。而在大多数外部流动的自由流边界上,湍流粘度比的值很小。在典型情况下,其值在1 到10 之间。

(4)推导湍流变量时采用的关系式

为了从前面讲到的湍流强度I,湍流长度尺度L和湍流粘度比mu_t/mu 求出其他湍流变量,必须采用几个经验关系式。在FLUENT 中使用的经验关系式主要包括下面几种:

1)从湍流强度和长度尺度求出修正的湍流粘度

在使用Spalart-Allmaras 模型时,可以用湍流强度I和长度尺度l求出修正的湍流粘度,具体公式如下:

nu~=Sqrt(1.5)*u_avg*I*L (8-5)

在使用FLUENT 时,如果在Spalart-Allmaras 模型中选择Intensity and Hydraulic Diameter(湍流强度与水力直径)选项,则修正的湍流粘度就用这个公式求出。其中的长度尺度l则用式(8-3)求出。

2)用湍流强度求出湍流动能

湍流动能k与湍流强度I的关系如下:

k=1.5*(u_avg*I)^2

(8-6)

如果在使用FLUENT 时没有直接输入湍流动能k和湍流耗散率Epsilon的值,则可以使用Intensity and Hydraulic Diameter(湍流强度与水力直径)、Intensity and Length Scale(湍流强度与长度尺度)或Intensity and Viscosity Ratio(湍流强度与粘度比)等方法确定湍流动能,而确定的办法就是使用上面的公式(8-6)。

3)用长度尺度求出湍流耗散率

长度尺度l与湍流耗散率之间的关系为:

epsilon=C_mu^0.75*k^1.5/l (8-7)

式中C_mu为湍流模型中的一个经验常数,其值约等于0.09。

在没有直接输入湍流动能k和湍流耗散率epsilon的情况下,可以用Intensity and Hydraulic

Diameter(湍流强度与水力直径)或Intensity and Length Scale(湍流强度与长度尺度)等办法,利用上述公式确定湍流耗散率epsilon。

4)用湍流粘度比求出湍流耗散率

湍流耗散率epsilon与湍流粘度比mu_t/mu 和湍流动能k的关系如下:

epsilon=rho* C_mu*k^2/mu*(mu_t/mu)^-1 (8-8)

式中C_mu为湍流模型中的一个经验常数,其值约等于0.09。

在没有直接输入湍流动能k 和湍流耗散率epsilon的情况下,可以用Intensity and Viscosity Ratio(湍流强度与粘度比)定义湍流变量,实际上就是利用上述公式算出湍流耗散率epsilon。5)湍流衰减过程中湍流耗散率的计算

如果计算风洞阻尼网下游试验段中的流场,可以用下式求出湍流耗散率Epsilon:

epsilon=delta_k*U_farfield/L_farfield (8-9)

式中delta_k是湍流动能k 的衰减量,比如可以设为入口处k 值的10%,U_farfield是自由流速度,L_farfield是自由流区域的长度。(8-9)式是对高雷诺数各向同性湍流衰减指数律的线性近似,其理论基础是衰减湍流中湍流动能k的方程:

U*(partial derivative of U with respect to x)= -epsilon (8-10)

如果用这种方法计算epsilon,还需要用(8-8)式检验计算结果,以保证湍流粘度比mu_t/mu 不过大。虽然这种方法在FLUENT 中没有使用,但是可以用这种方法估算出自由流中的湍流耗散率epsilon,然后再用(8-6)式确定k,最后在Turbulence Specification Method(湍流定义方法)下拉列表中选择K and Epsilon(k 和Epsilon )并k和Epsilon的计算结果输入到相应的栏目中。

6)用长度尺度计算比耗散率

如果知道湍流长度尺度l,可以用下式确定omega:

omega=k^0.5/(C_mu^0.25*l) (8-11)

式中C_mu和长度尺度l的取法与前面段落中所述相同。在使用Intensity and Hydraulic Diameter(湍流强度与水力直径)或Intensity and Length Scale(湍流强度与长度尺度)定义湍流时,FLUENT 用的就是这种方法。

7)用湍流粘度比计算比耗散率

omega的值还可以用mu_t/mu 和k通过下式计算得出:

omega=rho*k/mu*(mu_t/mu)^-1 (8-12)

在使用Intensity and Viscosity Ratio(湍流强度与粘度比)方法定义湍流时,FLUENT就是使用上述关系式对湍流进行定义的。

8)用湍流动能定义雷诺应力分量

在使用RSM(雷诺应力模型)时,如果用户没有在Reynolds-Stess Specification Method(雷诺应力定义方法)的Reynolds-Stress Components(雷诺应力分量)选项中直接定义雷诺应力的值,则雷诺应力的值将由给定的k值计算得出。假定湍流是各向同性的,即:

Average(u’_i* u’_j)=0(8-13)

且:Average(u’_aphla* u’_aphla)=2k/3(8-14)

如果用户在Reynolds-Stress Specification Method(雷诺应力定义方法)下拉列表中选择K or Turbulence Intensity(k或湍流强度I)时,FLUENT就用这种方法定义湍流。

(5)在大涡模拟方法(LES)中定义进口湍流

在使用速度进口条件时,可以将湍流强度作为对LES 进口速度场的扰动定义在边界条件中。在实际计算中,根据湍流强度求出的随机扰动速度分量与速度场叠加后形成LES 算法边界上的、随机变化的速度场。

在FLUENT 中选择特征长L或湍流长度尺度l的方法如下:

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

fluent湍流设置

湍流边界条件设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

紊流参数的确定

决定湍流参数 在入口、出口或远场边界流入流域的流动,FLUENT需要指定输运标量的值。本节描述了对于特定模型需要哪些量,并且该如何指定它们。也为确定流入边界值最为合适的方法提供了指导方针。 使用轮廓指定湍流参量 在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。一旦你创建了轮廓函数,你就可以使用如下的方法: ●Spalart-Allmaras模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性 比之后的下拉菜单中选择适当的轮廓名。通过将m_t/m和密度与分子粘性的适当结合,FLUENT为修改后的湍流粘性计算边界值。 ●k-e模型:在湍流指定方法下拉菜单中选择K和Epsilon并在湍动能(Turb. Kinetic Energy)和湍流扩散速度(Turb. Dissipation Rate)之后的下拉菜单中选择适当的轮廓名。 ●雷诺应力模型:在湍流指定方法下拉菜单中选择K和Epsilon并在湍动能(Turb. Kinetic Energy)和湍流扩散速度(Turb. Dissipation Rate)之后的下拉菜单中选择适当的轮廓名。 在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。 湍流量的统一说明 在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。 在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。然而必须注意的是要保证边界值不是非物理边界。非物理边界会导致你的解不准确或者不收敛。对于外部流来说这一特点尤其突出,如果自由流的有效粘性系数具有非物理性的大值,边界层就会找不到了。 你可以在使用轮廓指定湍流量一节中描述的湍流指定方法,来输入同一数值取代轮廓。你也可以选择用更为方便的量来指定湍流量,如湍流强度,湍流粘性比,水力直径以及湍流特征尺度,下面将会对这些内容作一详细叙述。 湍流强度I定义为相对于平均速度u_avg的脉动速度u^'的均方根。 小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。从外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到0.05%。. 对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。如果流动完全发展,湍流强度可能就达到了百分之几。完全发展的管流的核心的湍流强度可以用下面的经验公式计算:

湍流边界条件参数的设置

2011-8-30蓝色流体|流体专业论坛专注流体 - Pow… 标题: [fluent相关]湍流边界条件参数的设置 作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型 有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具 体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边 界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的 叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简 化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物 理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。在 Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍 流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上 的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg 上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强 度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟 风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中, 自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如 果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公 式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 其中Re_DH是Hy draulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特 征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L 式中的比例因子0.07是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形 时,L可以取为管道的水力直径。

windfarmer中湍流定义

WindFarmer中湍流定义 1. 关于风速的估计设计等效湍流(通道10):使用Frandsen方法估计设计等效湍流,并使用Wohler系数进行加权调整。(Wohler系数是和组件的材料和尺寸相关的,可以从S-N的对数-对数曲线的斜率-循环应力S对疲劳循环次数N的幅度中得到,4一般是简单的钢组件,10-15之间是简单的复合材料组件)。为了描述疲劳寿命的变化,而不只是描述湍流带来的载荷影响,所以输出量使用Wohler 系数进行加权调整。该通道10计算的特征或代表湍流强度值可以用于比较允许设计水平。 (摘自《风场湍流强度的计算及其对风电机组选型的影响》作者王承凯) 2. 关于风速和风向的未计算且未加权的平均湍流(通道11):使用Frandsen方法估计的设计等效湍流。考虑平均湍流强度,排除任何Wohler权值或者因数值。 3. 风机入射湍流(通道7):入射湍流强度,包含其他风机的尾流影响。 4. 风机环境湍流(通道8):不计尾流的湍流强度。 5. 实际工程计算得到的风机入射湍流与环境湍流值一样。 5. 对风机载荷更具体的分析,需要使用粘性涡流模型来获得在风电场中实际的

湍流强度,以及特定的风机设计参数,需要使用Bladed软件来建模风机载荷。 6. WindFarmer中附加湍流的计算公式(摘自windfarmer理论手册) Iadd = 5.7Ct0.7Iamb0.68(x/x n)-0.96 Ct:thrust coefficient x: the distance downstream x n:the calculated length of the near wake(using the method proposed in [3.9, 3.10])风速标准偏差的标准偏差值可以有MCP+模块计算,并在WTI文件当中输出

定义湍流参数

FLUENT6.1全攻略 6 定压强跳跃、流动方向、环境总压和总温。 (9)出口通风条件:在出口处给定损失系数、流动方向、环境总压和总温。 (10)排气风扇条件:在假设出口处存在排气风扇的情况下,给定出口处的压强跳跃和静压。 8.2.2 定义湍流参数 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF (用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity ) 湍流强度I 的定义如下: avg u w v u I 2 22'''++= (8-1) 上式中'u 、'v 和'w 是速度脉动量,avg u 是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的:

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

Fluent 湍流模型小结

Fluent 湍流模型小结湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: 直接模拟(direct numerical&Oσλαση; simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 大涡模拟(large&Oσλαση; eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 应用Reynolds时均方程(Reynolds-averaging&Oσλαση; equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。 到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表

FLUENT中湍流参数的定义

FLUENT 中湍流参数的定义 2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅 流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity)

湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L 关系可以表示为: l = 0.07L (8-3)

fluent湍流模型

第十章湍流模型 本章主要介绍Fluent所使用的各种湍流模型及使用方法。 各小节的具体内容是: 10.1 简介 10.2 选择湍流模型 10.3 Spalart-Allmaras 模型 10.4 标准、RNG和k-e相关模型 10.5 标准和SST k-ω模型 10.6 雷诺兹压力模型 10.7 大型艾迪仿真模型 10.8 边界层湍流的近壁处理 10.9 湍流仿真模型的网格划分 10.10 湍流模型的问题提出 10.11 湍流模型问题的解决方法 10.12 湍流模型的后处理 10.1 简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 -雷诺兹压力模型 -大漩涡模拟模型 10.2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 10.2.1 雷诺平均逼近vs LES 在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。两种可选择的方法用于把N-S方程不直接用于小尺度的模拟:雷诺平均和过滤。

CFD讲义-湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

第二节,平均量输运方程 雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du ''-?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u ''-ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍

fluent模拟设置

一、模型 1、能量方程:开启能量方程 2、湍流模型:选用Realizable k-ε湍流模型和标准壁面函数Standard Wall Fn 3、辐射模型,采用离散坐标辐射(DO)模型模拟炉内辐射传热,并设置每进行两次迭代计算后更新一次辐射场,以加快计算收敛速度 4、组分输运+涡耗散化学反应模型(ED),对于碳氢化合物燃烧系统,燃烧反应可能包含有上百个中间反应,其计算工作量大,不便于工程应用。为满足工程问题的需要,目前常采用两步反应系统和四步反应系统。本文中研究的是甲烷燃烧,选用EDM模拟由燃烧引起的传热传质,考虑两步反应,即: 2CH+3O=2CO+4H O 422 2CO+O=2CO 22 按不可压缩理想气体性质确定气体密度,不考虑分子扩散和气体内部的导热影响,选用分段线性比定压热容。 二、混合物及其构成组分属性 在化学反应模拟过程中,需要定义混合物的属性,也需要对其构成成分的属性进行定义。重要的是在构成成分的属性设置前对混合物的属性进行定义,因为组分特性的输入可能取决于用户所使用的混合物数学定义方式。对于属性输入,一般的顺序是先定义混合物组分、化学反应,并定义混合物的物理属性,然后定义混合物中组分的物理属性。 1、定义混合物中的组分 2、定义化学反应 3、定义混合物的物理属性 4、定义混合物中组分的物理属性 三、边界条件 在仿真中需要设置每个组分的入口质量分数,另外在出口出现回流情况下,对于压力出口用户应该设置组分质量分数。 1、内/外环火孔出口为燃气与一次空气混合气入口,采用速度进口边界条件,重庆燃气的低热值为36.75MJ/m3,理论空气需要量为9.537m3/m3,实测燃气流量为0.42m3/h,实测一次空气系数为0.674,圆形火孔的总面积面积为453mm2,得到火孔出口流速大小为1.913m/s,速度方向垂直于边界。混合气温度为288K,混合气体发射率,各组分体积分数:甲烷13.06%,氧气18.18%,其余为氮气。

FLUENT多孔介质数值模拟设置

FLUENT多孔介质数值模拟设置 多孔介质条件 多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质中能量方程的处理一节。 多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。 多孔介质模型的限制 如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。 流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于过渡流是有很大的影响的,因为它意味着FLUENT不会正确的描述通过介质的过渡时间。 多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。 多孔介质的动量方程 多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项 (Darcy),另一个是内部损失项: 其中S_i是i向(x, y, or z)动量源项,D和C是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质: 其中a是渗透性,C_2时内部阻力因子,简单的指定D和C分别为对角阵1/a 和C_2其它项为零。 FLUENT还允许模拟的源项为速度的幂率: 其中C_0和C_1为自定义经验系数。 注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。 多孔介质的Darcy定律 通过多孔介质的层流流动中,压降和速度成比例,常数C_2可以考虑为零。忽略对流加速以及扩散,多孔介质模型简化为Darcy定律: 在多孔介质区域三个坐标方向的压降为:

最新fluent湍流设置

1 湍流边界条件设置 2 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在 3 FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需4 要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用5 户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界6 上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方7 法请参见相关章节的叙述。 8 在 9 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界10 上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布11 规律时,在边 12 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应13 该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规14 律的参数设置 15 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 16 在Turbulence Specification Method (湍流定义方法)下拉列表中,可17 以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水18 力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这19 些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:20 (1)湍流强度(Turbulence Intensity) 21 湍流强度I的定义为:22 I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg

24 (8-1) 25 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 26 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于27 10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用28 绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流29 的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由30 流的湍流强度通常低于0.05%。 31 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发32 展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,33 则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,34 则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的:35 I=u’/u_avg=0.16*Re_DH^-0.125 36 (8-2) 37 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷38 诺数是以水力直径为特征长度求出的。 39 (2)湍流的长度尺度与水力直径 40 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关41 的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是42 受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示43 为: 44 45 l =

相关主题