搜档网
当前位置:搜档网 › 解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法讲解
解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法

求轨迹方程的一般方法:

1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

一:用定义法求轨迹方程

例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4

5

sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、

C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.

【变式】:已知圆的圆心为M 1,圆

的圆心为M 2,一动圆与这两个圆外切,求动圆

圆心P 的轨迹方程。

【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程.

二:用直译法求轨迹方程

例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2|

||

|=PB PA ),求动点P 的轨迹方程?

三:用参数法求轨迹方程

此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的取值范围。

例4.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

例5: 过抛物线px y 22

=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.

【变式】过圆O :x 2 +y 2= 4 外一点A (4,0),作圆的割线,求割线被圆截得的弦BC 的中点M 的轨迹。

四:用代入法求轨迹方程

例6. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,

,A b

y a x B )02(122

22=+轨迹方程。

例7: 如图,从双曲线1:2

2=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.

【变式】如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程

五、用交轨法求轨迹方程

例8.已知椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2,求A 1P 1

与A 2P 2交点M 的轨迹方程.

例9: 如右图,垂直于x 轴的直线交双曲线122

22=-b

y a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M

A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.

六、用点差法求轨迹方程

例10. 已知椭圆12

22

=+y x , (1)求过点??

? ??2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;

(3)过()12,

A 引椭圆的割线,求截得的弦的中点的轨迹方程;

课后作业

1.在ABC ?中,B ,C 坐标分别为(-3,0),(3,0),且三角形周长为16,则点A 的轨迹方程是______________.

2.两条直线01=--my x 与01=-+y mx 的交点的轨迹方程是 __________ .

3.已知圆的方程为(x-1)2+y 2=1,过原点O 作圆的弦0A ,则弦的中点M 的轨迹方程是

_____

4.当参数m 随意变化时,则抛物线()

yx m x m =+++-2

2

211的顶点的轨迹方程为______。 5:点M 到点F (4,0)的距离比它到直线x +=50

的距离小1,则点M 的轨迹方程为________。 6:求与两定点()()

O O A 1

030,、,距离的比为1:2的点的轨迹方程为_____________ 7.抛物线x y 42

=的通径(过焦点且垂直于对称轴的弦)与抛物线交于A 、B 两点,动点C 在抛物线上,求△ABC 重心P 的轨迹方程。

8.已知动点P 到定点F (1,0)和直线x=3的距离之和等于4,求点P 的轨迹方程。

9.过原点作直线l 和抛物线642

+-=x x y 交于A 、B 两点,求线段AB 的中点M 的轨迹方程。

10、已知定点A ( 3, 0 ),P 是圆x 2 + y 2 = 1上的动点,∠AOP 的平分线交AP 于M ,求M 点的轨迹。

11、已知常数0a >,经过定点(0,)A a -以(,)m a λ=为方向向量的直线与经过定点(0,)B a ,且以(1,2)n a λ=为方向向量的直线相交于点P,其中R λ∈. ⑴ 求点P的轨迹C的方程,它是什么曲线;

⑵ 若直线:1l x y +=与曲线C相交于两个不同的点A、B,求曲线C的离心率的范围.

12、过点(2,0)M -,作直线l 交双曲线2

2

1x y -=于A 、B 不同两点,已知OP OA OB =+。 (1)、求点P 的轨迹方程,并说明轨迹是什么曲线。 (2)、是否存在这样的直线,使||||?OP AB =若存在,求出l 的方程;若不存在,说明理由。

补充例题:

1.过抛物线 y 2 = 4 p x ( p > 0 )的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。

2.已知椭圆22

22b

y a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l

的对称点为Q ,F 2Q 交l 于点R

(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;

(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,

求k 的值

3.如图11-5-1,已知圆O :2225,x y += 点(3,0),(3,0)A B -,C 为圆O 上任意一点,直线CD 与BC 垂直,并交圆O 于另一点D . (1)求证:AD BC λ=;

(2)若点P 在线段CD 上,且PAD PBC ∠=∠,求点P 的轨迹方程.

P O

x

y

A

B

C

D

图11-5-1

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

高三解析几何:动点轨迹方程

精锐教育学科教师辅导讲义 学员编号: 年 级:高二 课 时 数:3 学员姓名: 辅导科目:数学 学科教师: 授课类型 T (动点轨迹方程) C (求解轨迹方法) T (轨迹求解提高) 授课日期及时段 教学内容 一、同步知识梳理 知识点1: 曲线的方程和方程的曲线: 一般地,如果某曲线C 与方程(,)0F x y =之间有以下两个关系: ① 曲线C 上的点的坐标都方程(,)0F x y =的解; ② 以(,)0F x y =方程的解为坐标的点都是曲线C 上的点,此时,把方程(,)0F x y =; 叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 知识点2:求轨迹方程的一般步骤:(以提问为主,让学生回答) ① 建立适当的直角坐标系(如果已给出,本步骤省略); ② 设曲线上任意一点的坐标为(),x y ; ③ 根据曲线上点所适合的条件,写出等式; ④ 用坐标,x y 表示这个等式(方程),并化简; ⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点(在沪教版中,这一步不作要求). 【上述五个步骤可简记为:建系;设点;写出集合;列方程、化简;证明。】 知识点3:求曲线的方程的常用方法:(老师引导,让学生回答) ① 直接法:直接根据动点满足的几何条件或等量关系列出等式,整理化简后即得动点的轨迹方程,

是轨迹上任意一点,则有 (通过典型例题的讲解,让学生总结和掌握利用直接法求解曲线的轨迹方程的5个步骤,同时强调那一步最重要, 强调求解曲线的轨迹方程时,一定要结合实际意义和题目的已知条件写出自变量的取值范围.) 题型3:代入法求曲线方程

通过练习让学生理解和掌握什么条件下用代入法求轨迹方程,及用代入法求曲线的轨迹方程的方法和步骤 ()( +- 22 x y y

最新圆的解析几何方程

〖圆的解析几何方程〗 圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。 圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。 圆的离心率e=0,在圆上任意一点的曲率半径都是r。 〖圆与直线的位置关系判断〗 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。 2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1x2时,直线与圆相离; 当x1 (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圆心坐标为(-D/2,-E/2) 1.点与圆的位置关系 设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有: (1)d>r 点M在圆外;(2)d=r 点M在圆上;(3)d<r 点M在圆内. 2.直线与圆的位置关系 设圆C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,b) 判别式为△,则有:(1)d<r 直线与圆相交;(2)d=r 直线与圆相切;(3)d<r 直线与圆相离,即几何特征; 或(1)△>0 直线与圆相交;(2)△=0 直线与圆相切;(3)△<0 直线与圆相离,即代数特征, 3.圆与圆的位置关系 设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有: (1)d=k+r 两圆外切;(2)d=k-r 两圆内切;(3)d>k+r 两圆外离;(4)d<k+r 两圆内含; (5)k-r<d<k+r 两圆相交.

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中

蒙日圆定理(解析几何证法)

蒙日圆定理(解析几何 证法) -CAL-FENGHAI.-(YICAI)-Company One1

2 蒙日圆定理 (纯解析几何证法) 蒙日圆定理的内容: 椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,该圆的半径等于椭圆长半轴和短半轴平方和的算术平方根。 如图,设椭圆的方程是22 221x y a b +=。两切线PM 和PN 互相垂直,交于点P 。 求证:点P 在圆2222x y a b +=+上。 证明: 若两条切线中有一条平行于x 轴时,则另一条必定平行于y 轴,显然前者通过短轴端点,而后者通过长轴端点,其交点P 的坐标只能是: (),special P a b ±± (1) 它必定在圆2222x y a b +=+上。 现考察一般情况,两条切线均不和坐标轴平行。可设两条切线方程如下: :PM y kx m =+ (2) 1 :PN y x n k =-+ (3) 联立两切线方程(2)和(3)可求出交点P 的坐标为: ()222,1 1n m k nk m P k k -??+ ?++?? (4) 从而P 点距离椭圆中心O 的距离的平方为: ()22 22 222222111 n m k nk m OP k k n k m k -????+=+????++????+= + (5)

3 现将PM 的方程代入椭圆方程,消去y ,化简整理得: 22222221210k km m x x a b b b ???? +++-= ? ????? (6) 由于PM 是椭圆的切线,故以上关于x 的一元二次方程,其判别式应等于0,化 简后可得: ()22 22 2211b m m b a k ??=+- ??? (7) 对于切线PN ,代入椭圆方程后,消去y ,令判别式等于0,同理可得: ()22 222 21b n k n b a ??=+- ??? (8) 为方便起见,令: 22222,,,,a A b B m M n N k K ===== (9) 这样(7)和(8)就分别化为了关于M 和N 的一元一次方程,不难解出: M B AK =+ (10) A N B K =+ (11) 将(10)和(11)代入(5),就得到: 2 221 NK M OG A B a b K +==+=++ (12) 证毕。

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

20 解析几何专题3: 轨迹方程

第二十讲 轨迹方程 1.一动圆与两圆221x y +=和228120x y x +++=都外切,则动圆圆心的轨迹为( ) A,圆 B,椭圆 C,双曲线的一支 D,抛物线 变式:已知定圆1622=+y x ,定点A ()0,2,动圆过点A 且与定圆相切,那么动圆圆心P 的轨迹方程是 ( ) A.()134122=--y x B. ()134122 =+-y x C.()4122=+-y x D. 422=+y x 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 3. F 1、F 2为椭圆两个焦点,Q 为椭圆上任一点,以任一焦点作∠( ) A 、圆 B 、椭圆 C 、双曲线 D 、抛物线 4.已知点F 1 (,0)4,直线l :14 x =-,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M,则点M 的轨迹是( ) A,双曲线 B,椭圆 C,圆 D,抛物线 5.在正方体ABCD A B C D -1111中,P 是侧面BB C C 11内一动点,若P 到直线BC 的距离是P 到直线C D 11的距离的一半,则动点P 的轨迹所在的曲线是( ) A. 直线 B. 圆 C. 双曲线 D. 抛物线 6.设A 1、A 2是椭圆4 92 2y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为 ( ) A.14922=+y x B.14922=+x y C.14922=-y x D.14 92 2=-x y 7.设椭圆与双曲线有共同的焦点12(1 ,0),(1,0)F F -,且椭圆长轴是双曲线实轴的2倍,则椭圆与双曲线的交点轨迹是 . 8.★★★以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,||||PA PB k -= ,则动点P 的轨迹为双曲线; ②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2 OP OA OB =+ 则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ④双曲线135********=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号)

解析几何 圆的方程

07-05 圆的方程 点一点——明确目标 掌握圆的标准方程、一般方程、参数方程,能根据需要选择园方程的恰当形式解决问题. 做一做——热身适应 1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是 . 解析:由D 2+E 2-4F >0,得7t 2-6t -1<0, 即- 7 1

第11讲 解析几何之直线与圆的方程(教师版)

第11讲 解析几何之直线与圆的方程 一.基础知识回顾 (一)直线与直线的方程 1.直线的倾斜角与斜率:(1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴________与直线l________方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为________.②倾斜角的范围为__________.(2)直线的斜率①定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k 表示,即k =________,倾斜角是90°的直线斜率不存在.②过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =____________. 2.直线的方向向量:经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的一个方向向量为P 1P 2→,其坐标 为________________,当斜率k 存在时,方向向量的坐标可记为(1,k). 3 4.12112212M 的坐标为(x ,y),则????? x = ,y = ,此公式为线段P 1P 2的中点坐标公式. 二.直线与直线的位置关系 1.两直线的位置关系:平面上两条直线的位置关系包括平行、相交、重合三种情况. (1)两直线平行:对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1∥l 2?_________________.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 2B 2C 2≠0),l 1∥l 2?________________________. (2)两直线垂直:对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1⊥l 2?k 12k 2=____.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2?A 1A 2+B 1B 2=____. 2.两条直线的交点:两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,如果两直线相交,则交点的坐标一定是这两个方程组成的方程组的____;反之,如果这个方程组只有一个公共解,那么以这个解为坐标的点必是l 1和l 2的________,因此,l 1、l 2是否有交点,就看l 1、l 2构成的方程组是否有________. 3.常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是:Ax +By +m =0 (m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0 (m ∈R); (3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0 (λ∈R),但不包括l 4.平面中的相关距离:(1)两点间的距离平面上两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离|P 1P 2|=____________________.(2)点到直线的距离:平面上一点P (x 0,y 0)到一条直线l :Ax +By +C =0的距离d =_______________.(3)两平行线间的距离已知l 1、l 2是平行线,求l 1、l 2间距离的方法:①求一条直线上一点到另一条直线的距离;②设l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,则l 1与l 2之间的距离d =________________. 三.圆与圆的方程 1.圆的定义:在平面内,到________的距离等于________的点的________叫圆. 2.确定一个圆最基本的要素是________和________. 3.圆的标准方程;(x -a )2+(y -b )2=r 2 (r >0),其中________为圆心,____为半径. 4.圆的一般方程:x 2+y 2+Dx +Ey +F =0表示圆的充要条件是__________________,其中 圆心为___________________,半径r =____________________________. 四.点线圆之间的位置关系 1.点与圆的位置关系:点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点

解析几何求圆的轨迹方程专题一师用

专题一求圆的轨迹方程 教学目标: 1、掌握直线与圆的标准方程与一般方程,能根据问题的条件选择适当的 形式求圆的方程; 2、掌握直线与圆的位置关系,可以应用直线与圆的位置关系求圆的方程 3、理解圆的标准方程与一般方程之间的关系,会进行互化。 教学重难点: 1、掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆 的方程; 2、会求曲线的轨迹方程(圆) 教学过程: 第一部分知识点回顾 一、圆的方程 : 1 .圆的标准方程:x a? y b 2 r2o 2 ?圆的一般方程:x2 y2 Dx Ey F 0(D2+ E2—4F 0) 特别提醒:只有当D2+ E2—4F 0时,方程x2 y2 Dx Ey F 0才表示圆心为(D, E),半径为1~E2~4F的圆 2 2 2 思考:二元二次方程Ax2 Bxy Cy2 Dx Ey F 0表示圆的充要条件是什么? 答案:(A C 0,且 B 0 且D2 E2 4AF 0 ));

3 .圆的参数方程:y a r s°s (为参数),其中圆心为(a,b),半径为 r 。圆的参数方程的主要应用是三角换元: (3) 已知P( 1, -3)是圆y ;;煮(为参数,0 2 )上的点,则圆的 普通方程为,P 点对应的 值为,过P 点的圆的切线方程是 (答:x 2 y 2=4 ; — ; x ,3y 4 0); 3 (4) 如果直线l 将圆:x 22-240平分,且不过第四象限,那么I 的斜率 的取值范围是_ (答: [0 , 2]); (5) 方程x 22 - 0表示一个圆,则实数k 的取值范围为(答:k 丄); (6) 若 M {(x, y) | y 3sos (为参数,0 )}, N (x, y) | y x b , 若MN ,则b 的取值范围是(答:-33& ) 二、点与圆的位置关系:已知点M x 0 ,y 0 及圆C: x-a $ y b ? r 2 r 0 , (1) 点 M 在圆 C 外 |CM | r x 0 a 2 y 。b 2 r 2; (2) 点 M 在圆 C 内 CM| r x 0 a 2 y 。b 2 r 2; (3) 点 M 在圆 C 上 CM r x 0 a $ y 0 r 2。女口 点P(5a+1,12a)在圆(x -1 )2 + y 2=1的内部,则a 的取值范围是(答: 2 ^22, r x r cos , y r sin ; x y t x r cos ,y r sin (0 r .,t)。 X i ,y i ,B X 2,y 2为直径端点的圆方程 x x 1 x X 2 y y 1 y y 2 0 如 (1) 圆C 与圆(X 1)2 y 2 1关于直线y x 对称, 则圆 C 的方程为 (答: x 2 (y 1)2 1); (2) 圆心在直线2x y 3上,且与两坐标轴均相切的圆的标准方程是 (答: (x 3)2 (y 3)2 9或(x 1)2 (y 1)2 1 );

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

求轨迹方程的常用方法例题及变式

求轨迹方程的常用方法: 题型一直接法 此法是求轨迹方程最基本的方法, 根据所满足的几何条件, 将几何条件{M | P(M )}直接翻 译成x, y 的形式f(x, y) 0 ,然后进行等价变换,化简 f (x,y) 0,要注意轨迹方程的纯 粹性和完备性,即曲线上没有坐标不满足方程的点, 也就是说曲线上所有的点适合这个条件 而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性) 。 例1过点A(2,3)任作互相垂直的两直线 AM 和AN ,分别交x,y 轴于点M , N ,求线段 MN 中点P 的轨迹方程。 解:设P 点坐标为P(x, y),由中点坐标公式及M,N 在轴上得M (0,2y), AM AN k AM k AN 所以中点P 的轨迹方程为4x 6y 13 0。 变式1 已知动点M (x, y)到直线l : x 4的距离是它到点 (1) 求动点M 的轨迹C 的方程; (2) 过点P(0,3)的直线m 与轨迹C 交于A, B 两点。若A 是PB 的中点,求直线 m 的斜 率。 题型二定义法 圆锥曲线定义所包含的几何意义十分重要, 应特别重视利用圆锥曲线的定义解题, 包括用定 义法求轨迹方程。 2 2 例2 动圆M 过定点P( 4,0),且与圆C :x y 8x 0相切,求动圆圆心 M 的轨迹 方程。 解:根据题意|| MC | |MP || 4,说明点M 到定点C 、P 的距离之差的绝对值为定值, N(2x,0)(x,y R) 0 3 2y 2x 2 0 2 3 1 (x 1),化简得 4x 6y 13 0 (x 1) 当x 1时,M(0,3),N(2,0),此时MN 的中点 P(1,|)它也满足方程4x 6y 13 0, N (1,0)的距离的2倍。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法 (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )() ()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ???=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 4.求轨迹方程还有整体法等其他方法。在此不一一缀述。 课前热身: 1. P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )【答案】:B A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x + 【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得15 4922=+y x ,选B 2. 圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是

高考数学一轮复习第七章解析几何第3讲圆的方程课时作业理

第3讲 圆的方程 1.(2016年新课标Ⅱ)圆x 2+y 2 -2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43 B .-34 C. 3 D .2 2.若实数x ,y 满足x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值是( ) A.5+3 B .6 5+14 C .-5+3 D .-6 5+14 3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b 的最小值为( ) A .1 B .5 C .4 2 D .3+2 2 4.若方程x 2+y 2-2x +2my +2m 2-6m +9=0表示圆,则m 的取值范围是____________; 当半径最大时,圆的方程为______________________. 5.(2015年新课标Ⅰ)一个圆经过椭圆x 216+y 2 4 =1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为__________________. 6.(2016年浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐 标是________,半径是________. 7.(2015年江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为______________. 8.已知圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为2 3,则圆C 的标准方程为____________________. 9.(2013年新课标Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为2 2,在y 轴上截得线段长为2 3. (1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22 ,求圆P 的方程. 10.(2014年新课标Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为点M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求直线l 的方程及△POM 的面积.

相关主题