搜档网
当前位置:搜档网 › 湍流模型

湍流模型

下临界雷诺数Re:管道截面为圆—2320、
管道截面为正方形—2070、
管道截面为正三角形—1930。

管道截面为长方形,长、宽之比为3∶1,下临界雷诺数Re—2000。




现在比较好的K-ε 中的RNG,关于K-ε 请查看lasvie发表的 [url=https://www.sodocs.net/doc/3b7540213.html,/showtopic-1039.aspx]https://www.sodocs.net/doc/3b7540213.html,/showtopic-1039.aspx[/url]


K是紊流脉动动能(J), ε 是紊流脉动动能的耗散率(%)

K 越大表明湍流脉动长度和时间尺度越大, ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大
至于k是怎么设定see fluent manual "turbulence modelling"
作一个简单的平板间充分发展的湍流流动,基于k-e模型。

确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!
k-epsiloin湍流模型参数设置:
k-动能能量;epsilon-耗散率;
在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?
epsilon=Cu*k*k/Vt

这些在软件里有详细介绍。陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!
应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较
密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法?
用粗网格的结果做初场.
网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差,
注意改进网格质量,应该就会好转.
在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦
合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负
值,请问是不是一种错误现象?如果是错误现象一般怎样避免。另外处理湍动能产生项采
用什么样的差分格式最好。而且因为源项的影响,使得程序总是不稳定,造成k,e值出现负
值,请问有什么办法克服这种现象。
你可以试试这里计算的时候加一个判断,出现负值的时候强制为一个很小的正值。
这可能是因为你采用的数值格式的问题,一般计算程序对k方程都要做一定处理,
以保证k的正定。比如,强制规定源项与0的关系,以使数值计算稳定。

就ke模型而言。
它是problem dependent.

对简单的无弯曲无旋转无...的湍流问题,它能算而且能给出好的结果,但对复杂的流动问题,它就不能使用了。
出现负的ke不仅仅是计算格式的问题,
更重要的是模型问题,
没有谁能证明ke模型在任何流动问题中都能保证ke是正的。

有这么一些办法避免ke出现负值
1。对K=ln(k)和E=ln(e)求解,问题:壁面ke=0难处理,
2。先用层流计算500步,然后再用ke算,
3。各种强制限制办法
4。源项局部线性化。
5。算到一定程度,如果k值趋势对了,就干脆不求ke方程了。

可以参考:《湍流的计算模型》 陈义良 1991 中国科技大学出版社


本人也是刚刚接触Fluent系列软件不久,在应用它来求解CFD问题时遇到了不少问题,也得到了很多宝贵经验,其中湍流边界条件的设置就是一个很棘手的问题。

最近对该问题总结经验如下:

在入口、出口或远场边界流入流域的流动,FLUENT需要指定输运标量的值。本节描述了对于特定模型需要哪些量,并且该如何指定它们。也为确定流入边界值最为合适的方法提供了指导方针。

使用轮廓指定湍流参量

在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。一旦你创建了轮廓函数,你就可以使用如下的方法:
? Spalart-Allmaras模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性比之后的下拉菜单中选择适当的轮廓名。通过将m_t/m和密度与分子粘性的适当结合, FLUENT为修改后的湍流粘性计算边界值。
? k-e模型:在湍流指定方法下拉菜单中选择K和Epsilon并在湍动能(Turb. Kinetic Energy)和湍流扩散速度(Turb. Dissipation Rate)之后的下拉菜单中选择适当的轮廓名。
? 雷诺应力模型:在湍流指定方法下拉菜单中选择K和Epsilon并在湍动能(Turb. Kinetic Energy)和湍流扩散速度(Turb. Dissipation Rate)之后的下拉菜单中选择适当的轮廓名。在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。

湍流量的统一说明

在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。
在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。然而

必须注意的是要保证边界值不是非物理边界。非物理边界会导致你的解不准确或者不收敛。对于外部流来说这一特点尤其突出,如果自由流的有效粘性系数具有非物理性的大值,边界层就会找不到了。
你可以在使用轮廓指定湍流量一节中描述的湍流指定方法,来输入同一数值取代轮廓。你也可以选择用更为方便的量来指定湍流量,如湍流强度,湍流粘性比,水力直径以及湍流特征尺度,下面将会对这些内容作一详细叙述。

湍流强度I定义为相对于平均速度u_avg的脉动速度u^'的均方根。

小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。从外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到0.05%。.
对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。如果流动完全发展,湍流强度可能就达到了百分之几。完全发展的管流的核心的湍流强度可以用下面的经验公式计算:

例如,在雷诺数为50000是湍流强度为4%
湍流尺度l是和携带湍流能量的大涡的尺度有关的物理量。在完全发展的管流中,l被管道的尺寸所限制,因为大涡不能大于管道的尺寸。L和管的物理尺寸之间的计算关系如下:

其中L为管道的相关尺寸。因子0.07是基于完全发展湍流流动混合长度的最大值的,对于非圆形截面的管道,你可以用水力学直径取代L。
如果湍流的产生是由于管道中的障碍物等特征,你最好用该特征长度作为湍流长度L而不是用管道尺寸。
注意:公式 并不是适用于所有的情况。它只是在大多数情况下得很好的近似。对于特定流动,选择L和l的原则如下:
? 对于完全发展的内部流动,选择强度和水力学直径指定方法,并在水力学直径流场中指定L=D_H。
? 对于旋转叶片的下游流动,穿孔圆盘等,选择强度和水力学直径指定方法,并在水力学直径流场中指定流动的特征长度为L
? 对于壁面限制的流动,入口流动包含了湍流边界层。选择湍流强度和长度尺度方法并使用边界层厚度d_99来计算湍流长度尺度l,在湍流长度尺度流场中输入l=0.4 d_99这个值
湍流粘性比m_t/m直接与湍流雷诺数成比例(Re_t ?k^2/(e n))。Re_t在高湍流数的边界层,剪切层和完全发展的管流中是较大的(100到1000)。然而,在大多数外流的自由流边界层中m_t/m相当的小。湍流参数的典型设定为1 < m_t/m <10。
要根据湍流粘性比来指定量,你可以选择湍流粘性比(对

于Spalart-Allmaras模型)或者强度和粘性比(对于k-e模型或者RSM)。

推导湍流量的关系式

要获得更方便的湍流量的输运值,如:I, L,或者m_t/m,你必须求助于经验公式,下面是FLUENT中常用的几个有用的关系式。要获得修改的湍流粘性,它和湍流强度I长度尺度l有如下关系:

在Spalart-Allmaras模型中,如果你要选择湍流强度和水力学直径来计算l可以从前面的公式中获得。
湍动能k和湍流强度I之间的关系为:

其中u_avg为平均流动速度
除了为k和e指定具体的值之外,无论你是使用湍流强度和水力学直径,强度和长度尺度或者强度粘性比方法,你都要使用上述公式。
如果你知道湍流长度尺度l你可以使用下面的关系式:

其中 是湍流模型中指定的经验常数(近似为0.09),l的公式在前面已经讨论了。
除了为k和e制定具体的值之外,无论你是使用湍流强度和水力学直径还是强度和长度尺度,你都要使用上述公式。
E的值也可以用下式计算,它与湍流粘性比m_t/m以及k有关:

其中 是湍流模型中指定的经验常数(近似为0.09)。
除了为k和e制定具体的值之外,无论你是使用湍流强度和水力学直径还是强度和长度尺度,你都要使用上述公式。
如果你是在模拟风洞条件,在风洞中模型被安装在网格和/或金属网格屏下游的测试段,你可以用下面的公式:

其中, 是你希望的在穿过流场之后k的衰减(比方说k入口值的10%), 自由流的速度 是流域内自由流的流向长度Equation 9是在高雷诺数各向同性湍流中观察到的幂率衰减的线性近似。它是基于衰减湍流中k的精确方程U ?k/?x = - e.
如果你用这种方法估计e,你也要用方程7检查结果的湍流粘性比m_t/m,以保证它不是太大。
虽然这不是FLUENT内部使用的方法,但是你可以用它来推导e的常数自由流值,然后你可以用湍流指定方法下拉菜单中选择K和Epsilon直接指定。在这种情况下,你需要使用方程3从I来计算k。
当使用RSM时,如果你不在雷诺应力指定方法的下拉列表中使用雷诺应力选项,明显的制定入口处的雷诺应力值,它们就会近似的由k的指定值来决定。湍流假定为各向同性,保证

以及

(下标a不求和).
如果你在雷诺应力指定方法下拉列表中选择K或者湍流强度,FLUENT就会使用这种方法。

对大涡模拟(LES)指定入口湍流

大涡模拟模型一节中所描述的LES速度入口中指定的的湍流强度值,被用于随机扰动入口处速度场的瞬时速度。它并不指定被模拟的湍流量。正如大涡模拟模型中介绍的边界条件中所描述的,通过叠加每个速度分量的随机扰动来计算流动入口边界处的随机成分.

压力入口边界条件
压力

入口边界条件用于定义流动入口的压力以及其它标量属性。它即可以适用于可压流,也可以用于不可压流。压力入口边界条件可用于压力已知但是流动速度和/或速率未知的情况。这一情况可用于很多实际问题,比如浮力驱动的流动。压力入口边界条件也可用来定义外部或无约束流的自由边界。对于流动边界条件的概述,请参阅流动入口和出口一节。

压力入口边界条件的输入

综述

对于压力入口边界条件你需要输入如下信息
? 驻点总压
? 驻点总温
? 流动方向
? 静压
? 湍流参数(对于湍流计算)
? 辐射参数(对于使用P-1模型、DTRM模型或者DO模型的计算)
? 化学组分质量百分比(对于组分计算)
? 混合分数和变化(对于PDF燃烧计算)
? 程序变量(对于预混和燃烧计算)
? 离散相边界条件(对于离散相的计算)
? 次要相的体积分数(对于多相计算)
所有的值都在压力入口面板中输入(Figure 1),该面板是从边界条件打开的。

Figure 1: 压力入口面板
压力输入和静压头
压力场(p_s^')和压力输入(p_s^' or p_0^')包括静压头r_0 g x。也就是FLUENT 以下式定义的压力:

或者

这一定义允许静压头放进体积力项(r - r_0)g中考虑,而且当密度一致时,从压力计算中排除了。因此你的压力输入不因该考虑静压的微分,压力(p^'_s)的报告也不会显示静压的任何影响。有关浮力驱动流动的内容请参阅浮力驱动流动和自然对流的信息

定义总压和总温

在压力入口面板中的Gauge Total Pressure field输入总压值。总温会在Total Temperature field中设定。记住,总压值是在操作条件面板中定义的与操作压力有关的的总压值。不可压流体的总压定义为:

对于可压流体为:

其中:p_0 =总压
p_s = 静压
M = 马赫数
c = 比热比(c_p/c_v)
如果模拟轴对称涡流,方程1中的v包括了旋转分量。如果相邻区域是移动的(即:如果使用旋转参考坐标系,多重参考坐标系,混合平面或者滑移网格),而且你是使用分离解算器。那么方程1中的速度(或者方程3中的马赫数)将是绝对的,或者相对与网格速度。这依赖于解算器面板中绝对速度公式是否激活。对于耦合解算器,方程1中的速度(或者方程3中的马赫数)通常是在绝对坐标系下的速度。


希望到大家一起讨论!
[ 此贴被dragoneileen在2008-

相关主题