搜档网
当前位置:搜档网 › 变容二极管调频电路课程设计

变容二极管调频电路课程设计

变容二极管调频电路课程设计
变容二极管调频电路课程设计

目录

摘要………………………………………………………………………………………

1题目分析…………………………………………………………………………

2系统方案论证………………………………………………………………………

2.1 电路设计原理………………………………………………………………………

2.2 电路的设计方案…………………………………………………

2.3 电路设计……………………………………………………………………………

2.4 主振电路设计原理分析……………………………………………………………

2.5 变容二极管直接调频电路…………………………………………………………

2.6调频信号分析………………………………………………………………………

2.7 变容二极管频率调制的原理………………………………………………………3电路工作分析………………………………………………………………………

3.1 谐振回路总电容……………………………………………………………………

3.2 调制灵敏度………………………………………………………………

4.增加电路稳定度…………………………………………………………………

4.1 震荡回路参数LC…………………………………………………………

4.2温度补偿法……………………………………………………………………

4.3回路电阻………………………………………………………………………

4.4增加缓冲级………………………………………………………………

4.5有源器件参数………………………………………………………………

4.6高稳定度LC振荡电路………………………………………………………………

5. 电路元器件参数设置………………………………………………………………………

5.1 LC震荡电路直流参数设置…………………………………………………………

5.2 变容管调频电路参数设置…………………………………………………………

5.3 放大电路参数设置………………………………………………………………

5.4 调制信号的幅度计算………………………………………………

6. 元器件清单…………………………………………………………………

7. 电路调试…………………………………………………………………

8.课程答辩…………………………………………………………………

9.实验心得体会…………………………………………………………………

10.致谢…………………………………………………………………

11.参考文献…………………………………………………………………

摘要

With the increasing use of electronic and communications technology has progressed, various kinds of new electronic product development at an increasing rate.The modern computer technology and the microelectronic technology further union and the development caused the electronic circuit and the communication link appeared two branches. One is the movement toward a more highly integrated IC development: while the other is the use of discrete components and hardware description language for the new devices are specially designed.

The FM broadcast has the resistance to interference strongly, the sound clear and so on the merits, has obtained the fast development. The frequency modulation broadcasting station's frequency band probably is usually 200~250kHz, Its bandwidth is amplitude modulation broadcasting station's dozens of times, is advantageous for transmits the high fidelity stereo sound signal. Because the modulated wave receives the bandwidth the limit, has the pass band width and the disturbance contradiction in the receiver, therefore the tonic train signaling frequency limits in the 30~8000Hz scope. When frequency modulation, may expand the tonic train signaling frequency range to 30~15000Hz, causes the tonic train signaling the frequency spectrum component to be richer, the sound quality is greatly the enhancement.

随着电子与通信技术的不断进步,各种新兴电子产品的开发速度越来越快。现代计算机技术和微电子技术的进一步结合和发展使得电子电路和通信线路出现了二个分支。一个是朝着更高集成度的集成电路发展:而另一个是利用分立元件和硬件描述语言对新型器件进行专门设计。

调频广播具有抗干扰性能强、声音清晰等优点,获得了快速的发展。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。

目前,应用最广泛的是采用变容二极管直接调频技术,即利用二极管反偏工作的PN 结呈现的势垒电容,它与回路中的电感共同构成振荡器的振荡回路,从而作为振荡频率直接调频电路。它具有工作频率高、固有损耗小和使用方便等优点。

变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN (正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用

上均供给反向偏压。

在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。因此,党变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。

关键词:LC振荡电路、变容二极管、调频

1. 题目分析

2.系统方案论证

2.1 电路设计原理

变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN (正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。

在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。因此,党变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。

2.2 电路的设计方案

变容二极管直接调频电路由于变容二极管的电容变化范围大,因而工作频率变化就大,可以得到较大的频偏,且调制灵敏度高、固有损耗小、使用方便、构成的调频器电路简单。因而变容二极管直接调管频器是一种应用非常广泛的调频电路。

2.3 电路设计

变容二极管调频电路主要是由主振电路和变容二极管直接调频电路构成,电路如图所示。

不加调制信号

加入调制信号

变容二极管调频电路

2.4 主振电路设计原理分析

端口通过滤直电容C82输入频率为1KHz 大小为200mv 的调制信号,并且频率由零

慢慢增大,端口12输出调频信号。T1,T2为3DG12C 三极管,C9、C10、C7、L4、CC1、C8为主振回路,D1为Bb910变容二极管。为了减小三极管的极间电容C ce 、C be 、C cb 这些不稳定电容对振荡频率的影响,要求C9>C7,C10>C7,且C7越小,这种影响就越小,回路的标准性也就越高。则回路的谐振频率是

C

f o L 21π

本电路采用常见的电容三点式振荡电路实现LC 振荡,简便易行。式中,L 为LC 振荡电路的总电感量,C 为振荡电路中的总电容,主要取决于C3、C7、C8、Cc1及变容二极管反偏时的结电容Cj 。,变容二极管电容Cj 作为组成LC 振荡电路的一部分,电容值会随加在其而端的电压的变化而变化,从而达到变频的目的。R4、R5、R6、R7和W2调节并设置电容三点式振荡器中T1管的静态工作点,R8、R9、R10调节并设置T2管的静态工作点,C7、C9、C10以及L4、CC1、C8构成LC 振荡电路。电容三点式振荡器电路等效电路如下图所示。

电容三点式振荡器等效电路

2.5 变容二极管直接调频电路设计原理分析

图1.1中,直接调频电路由变容二极管(Bb910)D1,耦合电容C1、C3、C82,偏置电阻R1、R2,隔离电阻R3和电位器W1构成。接入系数Cj

C C p +=33

,(C3由不同电容值的

电容代替,保证接入系数不同)

其中等效电路图如下图所示。

CJ

变容二极管部分接入等效图

无调制时,谐振回路的总电容为:

式中()718C CC C Ca +=,(由于C9和C10电容值远大于C7,C9和C10可串联忽略) CQ 为静态工作点是所对应的变容二极管结电容。

调频电路中,R1、R2、R3和W1调节并设置变容二极管的反偏工作点电压V Q ,,调制信号v Ω经C82和高频扼流圈L1加到二极管上。为了使V Q 和v Ω能有效的加到变容管上,而不至于被振荡回路中L4所短路,须在变容管和L4之间接入隔直流电容C3,要求它对高频接近短路,而对调制频率接近开路。C1为高频滤波电容,要求它对高频的容抗很小,近似短路,而对调制频率的容抗很大,近似开路。信号V Ω从端口通过C82输入,C82为隔直电容,滤除输入信号中掺杂的直流成分。电感L1为高频扼流圈,要求它对高频的感抗很大,近似开路,而对直流和调制频率近似短路。对高频而言,L1相当于断路,C3相当于短路,因而C3和二极管D1接入LC 振荡电路,并组成振荡器中的电抗分量,等效电路如下左图所示。对直流和调制频率而言,由于C3的阻断,因而V Q 和v Ω可以有效的加到变容管上,不受振荡回路的影响,等效电路如下右图所示。

Q

3Q 3Q C C C C C C a ++

=∑

CJ

高频通路 直流和调制频率通路

2.6 调频信号分析

FM 调制是靠调频使信号频率发生变化,振幅可保持不变,所以噪声易消除。 设载波t

w Vcm Vc c cos =,调制波

t

w Vsm Vs s cos =。

t w w w w s c m cos ?+=或t

f f f f s c m π2cos ?+=,此时的频率偏移量

△f 为最大频率偏移。

最后得到的被调制波

m

cm m V V θsin = , V m 随Vs 的变化而变化。

??+==t s s c m m t w w w t w dt w 0

sin )/(θ

)

sin sin(]sin )/(sin[sin t w m t w V t w w w t w V V V s c cm s s c cm m

cm m +=?+==θ

s

s f f

w w m ?=?=

为调制系数

2.7 变容二极管直接调频电路

变容二极管具有PN 结,利用PN 结反向偏置时势垒电容随外加反向偏压变化的机理,

在制作半导体二极管的工艺上进行特殊处理,以控制半导体的掺杂浓度和掺杂分布,可以使二极管的势垒电容灵敏地随反偏电压变化且呈现较大的变化,这样就制作成了变容二极管。

变容二极管的结电容Cj ,与在其而端所加反向电压u 之间存在着如下关系:

n

B V

u Cj Cj ???

? ?

?+=

10 (Ⅰ)

式中,V B 为PN 结的势垒位差(硅管约为0.7V,锗管约为0.3V),C j0为变容二极管在零偏置时的结电容值,n 为变容二极管的结电容变化指数,它取决于PN 结的杂质分布规律:n=1/3对于缓变结,扩散型管多属此种; n=1/2为突变结,合金型管属于此类。采用特殊工艺制程的超突变结的n 在1~5之间。 变容二极管的结电容变化曲线如所示。

变容二极管的Cj-u 特性曲线

加到变容二极管上的反向电压包括直流偏压V 0和调制信号电压V Ω(t)= V Ωcos Ωt ,即

t cos V V m Q ΩΩΩ+=+=V V u Q (Ⅱ)

将式(Ⅱ)带入(Ⅰ),得

()

n

Q m V Cj Cj -+=?

??

? ??++???

?

?

?+=

???? ??++=

t cos 1Cj t cos V V V 11

V

V 1Cj V t cos 1Q n

B Q m

n

B Q 0n

B 0

ΩΩΩΩ

式中,n

B Q Q V V Cj Cj ?

??

?

?+=

10

为静态工作点的结电容,()

Q

m

B Q

m

V V V Ω≈+=V

V m Ω为反

映结电容调深度的调制指数。

结电容在u(t)的控制下随时间的变化而变化。把受到调制信号控制的变容二级管接入载波振荡器的振荡回路,则振荡回路的频率已收到调制信号的控制。适当选择调频二极管的特性和工作状态,这样就实现了调频。设电路工作在线性调制状态,在静态工作点Q 处,曲线的斜率为

V

C k ΔΔC =。

3电路工作分析

3.1谐振回路总电容

Cj

C Cj

C Ca C ++

=∑33 回路总电容变化量

j

2C p C ?=?∑

3.2调制灵敏度

单位调制电压所引起的最大频偏称为调制灵敏度,以Sf 表示,单位为 kHz/V ,即

Sf = △f m / V Ωm

V Ωm 为调制信号的幅度;△fm 为变容管的结电容变化△Cj 时引起的最大频偏。

在频偏较小时,△fm 与△C ∑的关系可采用下面近似公式,即

∑??-≈?Q o m 21C C

f f

调制灵敏度

调制灵敏度Sf 可以由变容二极管Cj-v 特性曲线上VQ 处的斜率kc 计算。Sf 越大,说明调制信号的控制作用越强,产生的频偏越大。 改变CC1的值可以使变容二极管的工作点调节到最佳状态。

4 电路元器件参数

4.1震荡回路参数LC

显然LC 如有变化,必然引起震荡频率的变化,影响LC 变化的因素有:元件的机械变形,周围温度变化的影响,适度,气压的变化,因此为了维持LC 的数值不变,首先就应选取标准性高的,不易发生机械变形的元件;其次,应尽量维持振荡器的环境温度的恒定,因为当温度变化时,不仅会使LC 的数值发生变化,而且会引起电子器件的参数变化,因此高稳定度的振荡器可以封闭在恒温箱(杜瓦瓶)内,LC 采用温度系数低的材料制成。

4.2 温度补偿法

使L 与C 的变化量与△L 与△C 的变化量相互抵消以维持恒定的震荡频率,:若回路的损耗电阻r 很小,即Q 值很高,则振荡频率可以近似的用回路的固有频率f0来表示。由于外界因素的影响,使LC 产生微小的变量△L、△C,因而引起振荡频率的变化,若选用合适的负温度系数的电容器 (电感线圈的温度系数恒为正值),使得△C/C 与△L/L 互相抵消,则△f 可减为零。这就是温度补偿法。

4.3 回路电阻

r 的大小是由振荡器的负载决定的,负载重时,r 大,负载轻时r 小,当负载变化时,振荡频率也随之变化。为了减小r 的影响尽量使负载小且稳定,r 越小,回路的Q 值越高,频率的稳定度也越高,

4.4 加缓冲级

m

ΩQ o 2V C C f S f ∑

∑??=

为了减弱后级电路对主振器的影响,可在主振器后面加入缓冲级。所谓缓冲级,就是实际上是一级不需要推动功率的放大器(工作于甲类)。

4.5 有源器件的参数

晶体管为有源器件时,若他的工作状态(电源电压或周围温度等)有所改变,则晶体管的h 参数会发生变化,即引起振荡频率的改变。为了维持晶体管的参数不变,应该采用稳压电源,和恒温措施。

4.6 采用高稳定度LC 振荡电路

5.电路元器件参数设置

5.1 LC 震荡电路直流参数设置

ICQ 一般为1~4mA 。若ICQ 偏大,振荡幅度增加,但波形失真加重,频率稳定性变差。

取I CQ1=2mA 。取V CEQ1=(1/2)V CC =6V 。可以求出R4+R5=3K Ω,取R4=2K Ω,R5=1K Ω;β=60,I BQ =β×I BQ ,为使减小IBQ 对偏执电阻的电位偏执效果的影响,取R6和R7上流过的电流IB>>IBQ ,取R6=15K Ω,R7=8.2K Ω,W2的可调最大阻值为20K 。实验实际测得T1管Vc1=7.8V ,Vce1=5.6V ,Vbe=0.64V ,基本接近理论值。

5.2 变容管调频电路参数设置

由LC 震荡频率的计算公式可求出LC

f π210=

,若取C=()718C CC C Ca +=,本次

实验中可调电容CC1规格为5~120pF ,计算时取5pF ,C7=24pF 。L4≈1.2μH 。实验中可适当调整CC1的值。电容C9、C10由反馈系数 F 及电路条件C7<

2

/1~8/1/32==C C F ,则取 C10=330 pF ,取耦合电容 C1=4.7μF ,

C14=0.1uF 。图1.3为变容二极管部分接入振荡回路的等效电路,接入系数p 及回路总电容C ∑分别为

Cj

C C p +=

33

Cj

C Cj

C Ca C ++

=∑33

为减小振荡回路高频电压对变容管的影响, p 应取小,但p 过小又会使频偏达不到指标要求。可以先取p=0.2,然后在实验中调试。取C3=30pF ,C82=330pF ,电位器W1规格为5K 。R1与R2为变容二极管提供静态时的反向直流偏置电压V Q ,电阻R3称为隔离电阻,常取R3>>R2,R3>>R1,以减小调制信号V Ω对V Q 的影响。取 R2=3.9k Ω ,隔离电阻R3=180k Ω,R1=20K Ω。实际调试时,L1用1.2uH 代替,测得C3与L1之间节点对地电压为0.5V,较理论值偏小。R1与R2之间节点对地电压为2.7V 。

5.3 T2管参数设置

对输出电路,为保证T2管正常工作,可取R8=8.2K ,R9=10K ,R10=1.5K ,实验实测得R8与R9间节点对地电压为6.4V,Ve2=5.69V,则Vbe2≈0.7V ,基本符合理论值。取耦合电容C12=33pF ,C13=0.01uF

5.4 调制信号的幅度计算

为达到最大频偏△fm 的要求,调频信号的主振频率和最大频偏△fm ,可由下列关系式求出。

LC

f π210=

?-=?Q o m 21C C f f

计算以上各式可得MHz f 945.200≈,△fm ≈±20KHz ,满足实验要求。

6.元器件清单

7.电路调试

在焊接好变容二极管调频实验电路板后,就是进行调试工作,调试过程进行的很顺利,但是让我和队友等了将近一天,中午调试的同学都等了好久,最后都没调试上,可能这就是过程的研究,但在别人调试的时候,我和队友把我们焊接的电路板用万用表从头到尾把实验电路测量了一遍,保证了焊接无失误所在,有些元器件虽然实验室里没有库存,但是我们都用了其他能代替并且不会对电路产生音箱的元器件进行了代替,在下午进行了变容二极管的调试,焊接是我焊的,幸好实验很成功,否则就丢大人了,在调试过程中,首先输入端不接信号,只需接直流电源即可,在输出端口接示波器,在示波器上能观察到载波出现,这就保证了震荡电路是满足条件的,其次在输入端接上从函数信号发生器上输入的调制信号,在打开电源,在示波器上观察到双峰调频波,而且疏密程度不同,当调制信号大于零时,调频信号的频率高于载波频率,单位时间能的波形数比载波多:当调制信号小于零时,调频信号的频率低于载波频率,单位时间能的波形数比载波少,由此可见,调制信号的信息寄托在高频载波频率变化中,调频信号是一恒定振幅的信号,其振幅保持不变。

8.课程设计答辩 1.输出的调频波的特性?

答:打开电源,在示波器上观察到调频波,而且疏密程度不同,当调制信号大于零时,调频信号的频率高于载波频率,单位时间能的波形数比载波多:当调制信号小于零时,调频信号的频率低于载波频率,单位时间能的波形数比载波少,由此可见,调制信号的信息寄托在高频载波频率变化中,调频信号是一恒定振幅的信号,其振幅保持不变。

2.求不同接入介入系数?

解答: 接入系数 Cj

C C p +=

33

如果需要求接入系数 只需要求

n

B V

u Cj Cj ???

? ?

?+=

10

(1)不加调制信号时

n

B Q Q V V Cj Cj ?

?? ??+=

10

经过LC 振荡电路后载波频率为C

f o L 21π=

=20.945MHz

可求得C=48pf

Cj C Cj

C Ca C ++

=∑33

(

()7

18C CC C Ca +=)(CC1按100pf 计算时)

Ca=23.3pf

可求得CQ=Cj=139pf 那么接入系数在不加调制信号时为

Cj

C C p +=

33

= 0.177

(2)加调制信号时

t

cos V V m Q ΩΩΩ+=+=V V u Q

()

n

Q m V Cj Cj -+=?

??

? ??++???

?

?

?+=

???? ??++=

t cos 1Cj t cos V V V 11

V

V 1Cj V t cos 1Q n

B Q m

n

B Q 0n

B 0

ΩΩΩΩ

CJ

其中

n

B Q Q V V Cj Cj ??? ??+=

10

()Q m

B Q m V V V Ω≈+=V V m Ω

f=

C

f o L 21π=这是调制信号的频率,已知最大频偏△fm=20KHz

在仿真图中,用万用表可测的变容二极管两端的电压为-2.909V 当输入调制信号为频率为1KHZ ,振幅为200mv 时 可得上式中的m=0.2/2.909=0.0687

可求得不同接入系数表达式为

Cj

C C p +=

33

=C 3/C3+CQ(1+mcoswt)^n

=30/30+139(1+0.068cos2*3.14*1000t)^2 (3)已知最大频偏△fm=20KHz

调频波的最大频率为f=20.965MHz,代入以上各式可同样求得 总电容C=47.6PF 结电容Cj=131PF

那么接入系数在最大频偏时求得

Cj

C C p +=

33 =0.186

9.课程设计心得与体会

通过对变容二极管调频电路的设计与研究,我们不仅对变容二极管的调频原理有了更深刻的了解,还对调频电路的应用进行了一定的了解,调频电路在无线电通信中是非常重要的调制方式,应用非常广泛,特别是在数字调制中应用更广,频率调制简称调频,是指用调制信号去控制高频载波的频率,,使之随调制信号的规律变化,确切的讲,是使载波信号的频率随调制信号线性变化,而振幅保持不变。这在示波器上能明显观察到双峰调频波。变容二极管调频电路是直接调频电路的一种,主要是因为变容二极管直接调频电路简单、性能良好。同时变容二极管的电容变化范围大,因而工作频率就达,可以得到较大的频偏,而且调制灵敏度高、固有损耗小,因而变容二极管直接调频电路时一种应用非常广泛的调频电路。

在课程设计的整个过程中,当我们明确了目的和要求后,电路就变得简单了,而且在图书馆和网上,我们查阅了大量的资料,最终确定了电路连接图,在仿真软件中我们对电路图进行了准确的仿真,保证了电路图的准确性,焊接过程是调试前的最主要的准备工作。不过事实证明我们是成功的。

通过两周的课程设计,我认识到了知识与实践的重要性,只有牢记所学的专业知识,才会有清晰的设计思路,如果没有熟练地专业知识和技能,不单单在设计过程中会一筹莫展,将来步入社会了什么都不懂,这是大学生最忌讳的事情,当然细节决定成败,在课程设计过程中哪怕一个细节都会决定你的实验成功与否。无论出现什么问题,只要你耐心的去面对和改进,你就会慢慢成功。

所以这次课程设计不仅仅让我明白了专业知识的重要性,更让我明白了理论与实际结合的重要性。

变容二极管调频课程设计..

成绩评定表

课程设计任务书

目录 摘要 (4) 1.引言 (5) 2. Protel 99 SE 简介 (6) 3.实验步骤 (7) 3.1 Protel 99 SE 绘图环境设置 (7) 3.1.1新建一个设计库 (7) 3.1.2添加元件库 (10) 3.2绘制原理图 (12) 3.2.1选取元件 (12) 3.2.2摆放元件 (13) 3.2.3元件连接 (13) 3.2.4放置输入/输出点 (14) 3.2.5更改元件属性 (15) 3.2.6 ERC(电气规则检查) (16) 3.3 PCB制图 (16) 3.3.1自动生成PCB文件 (16) 3.3.2自动布线 (18) 3.4仿真应用 (20) 4.课设总结 (22) 5.参考文献 (22)

摘要 本次课设的要求和目的是掌握Protel的应用。本文以Protel99SE为例,详细具体地介绍这个软件的用法与应用。文章首先介绍了Protel99SE基本知识,然后提出需用该软件解决的实际问题,结合实际问题一步步介绍Protel99SE的用法,如:基础原理图设计,印制电路板基础,PCB元件的制作,电路仿真分析,综合案例演练等。接着分析应用Protel99SE软件的过程中可能遇到的问题及一些应对方法。课设最后进行总结,检查课设的完整性和彻底性,检验自己对Protel99SE软件的掌握程度及应用情况。

Protel 99 SE应用课程设计 ——变容二极管的调频电路 1·引言 人类社会已进入到高度发达的信息化社会,信息社会的发展离不开电子产品的进步。现代电子产品在性能提高、复杂度增大的同时,价格却一直呈下降趋势,而且产品更新换代的步伐也越来越快,实现这种进步的主要原因就是生产制造技术和电子设计技术的发展。前者以微细加工技术为代表,目前已进展到深亚微米阶段,可以在几平方厘米的芯片上集成数千万个晶体管;后者的核心就是EDA技术。EDA是指以计算机为工作平台,融合了应用电子技术、计算机技术、智能化技术最新成果而研制成的电子CAD通用软件包,主要能辅助进行三方面的设计工作:IC设计,电子电路设计以及PCB设计。其中最基本也是最常用的是以PCB设计为目的的电路设计、仿真和验证技术。 PCB设计业界称为电子装联设计。从最近两年的统计数据来看,中国大陆的电子装联产品占世界市场份额第一。Protel软件最成功的地方就是其PCB设计功能。其中Protel 99 SE 版本在PCB设计方面已经比较成熟,价廉物美、容易上手、功能满足基本需求,这是用户选择它的真正原因。

测控电路电子秤课设报告

《测控电路课程设计》报告题目人体电子秤设计 院系仪器科学与光电工程 专业测控技术与仪器 班级测控1102 学号 2011010652 学生姓名丁向友 指导老师刘国忠 实验时间 2014.06-2014.07 实验成绩

目录 一、课程设计目的及意义 (3) 二、系统设计的主要任务 (3) 三、总体方案设计 (3) 四、电路设计及调试 (4) 4.1称重传感器电路 (4) 4.2信号调理电路 (5) 4.2.1放大电路 (5) 4.2.2调零电路 (7) 4.3比较电路 (7) 4.4或非电路 (9) 4.5显示模块 (10) 4.6报警系统 (10) 五、电路调节 (10) 六、实验数据分析与处理 (11) 6.1准确性 (11) 6.2稳定性 (12) 6.3关键点电压 (13) 七、总结 (14) 八、参考文献 (14)

一、课程设计目的及意义 测控电路课程设计是测控电路课程体系的一个重要组成环节,独立实践教学环节是对《测控电路》理论部分的必要补充。 课程设计内容为典型测控系统电路设计,通过课程设计,使学生完成测控系统任务分析、电路总体设计、单元电路设计以及电路调试等各个环节。掌握有关传感器接口电路、信号处理电路、放大电路、滤波电路、运算电路、显示电路以及执行部件驱动电路等内容在测控系统中的使用方法。了解有关电子器件和集成电路的工作原理。 在课程设计中,做到理论联系实际,加深对理论知识的进一步理解,提高分析问题和解决问题的能力。本课程设计以AD620、LM741、LM339为核心,进行智能人体电子秤的设计,并详述该系统硬件的设计方法。该系统集称重、显示、报警于一体,功能齐全,实用性强,充分利用了电路分析、模拟电路、测控电路、信号分析与处理、传感器等课堂上学到的知识,有机的将所学到的知识融合在一起,投入到实际运用中,便于对知识的综合掌握及运用。 二、系统设计的主要任务 任务:设计一个人体电子秤测量系统。 要求: 1)基本要求 最大称重:150KG 用3位半数字显示表头显示体重,输入电压范围0-2V, 当体重大于W1时,点亮LED1,发出声音提示; 当体重小于W2时,点亮LED2,发出声音提示。 2)提高部分 提高线性度 可以设置W1和W2; 语音提示; 自由发挥 三、总体方案设计 本系统主要由称重传感器模块、滤波放大电路模块、调零模块、报警电路模块、LCD显示模块等部分组成。人体的体重信息由称重传感器转换成电信号,并通过测量电路进行滤波放大,通过显示电路进行显示,如体重超出设定范围系统还会报警。

常用变容二极管

常用变容二极管 变容二极管(Varactors ),又称为电压调谐电容(Voltage variable Capactors ,VVC )或调谐二极管(Tuning Diodes ),当在二极管两端加上反向偏压时,会产生电容效应,通常变容二极管的电容量,随反向偏压增大而减小。变容二极管优点主要表现在:(1)体型小巧易于安装;(2)易于实现自动电子调谐(Auto Electronic Tuning ),方便遥控的电子调谐器的设计。如今的电视系统或通信系统中的频道选择及呼叫等电路,基本上都由变容二极管完成。 1、 变容二极管工作原理 变容二极管的等效电路如图1(a )所示。 图1 (a )变容二极管的等效电路 (b )变容二极管的简化等效电路 其中,R p ——反向偏压的结电阻(Junction Resistance ); 's L ——外部引线电感; s L ——内部引线电感; c C ——封装电容; s R ——二极管体电阻; j C ——结电容。 通常,等效电路中的电感与封装电容等都可略去不计,简化后的等效电路如图1(b )所示。一般地,变容二极管与外加电压的关系可表示为 (1) j j D C C v V γ = - (1) j C 为变容二极管的结电容,0j C 为变容管加零偏压时的结电容;V D 为变容管PN 结内建 电位差(硅管V D =0.7V ,锗管V D =0.3V );γ为变容二极管的电容变化指数,与频偏的大小有关;v 为变容管两端所加的反向电压。在小频偏情况下,选γ=1的变容二极管可近似实现线性调频;在大频偏情况下,必须选γ=2的超突变结变容二极管,才能实现较好的线性调频。 变容二极管的j C v - 特性曲线如图2所示。当加入的反向电压为 cos Q Q m v V v V V t ΩΩ=+=+Ω时,设电路工作在线性调制状态,在静态工作点Q 处,可得曲线的斜率为/c k C V =??。

高频课程设计---调频(FM)发射机的设计

高频课程设计论文题目:高频(FM)发射机的设计 系别:电子信息与电气工程系 专业:通信工程

摘要:作为通信系统的重要组成部分,无线电技术越来越重要。本文研制一种调频发射机,介绍了调频发射机的制作方法及其工作原理,同时给出了系统的组成框图及系统各部分功能,设计了PCB电路板,并且对所设计的发射机的功能进行了安装与调试。本文中的发射机发射的频率可在66-109MHz频段内进行调制,并可用普通的调频收音机接收。 关键词:小功率调频发射机音频信号调制波载波

目录 1设计课题 2实践目的 3设计要求 4基本原理 4.1 系统方案选择 4.2 整体系统描述 4.3 单元电路设计 4.3.1 音频放大电路 4.3.2 高频振荡电路 4.3.3 高频功率放大电路 5系统调试 5.1 PCB板的设计 5.2 系统调式 6结论 7参考文献 8附录

1设计课题 调频发射机设计 2实践目的 无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等必不可少的设备。本次设计要求达到以下目的: 1.进一步认识射频发射与接收系统; 2.掌握调频无线电发射机的设计; 3.学习无线电通信系统的设计与调试。 3设计要求 1.发射机采用FM的调制方式; 2.发射频率覆盖范围为88-108MHz,传输距离大于10m; 3.为了加深对调制系统的认识,发射机采用分立元件设计; 4.已调信号采用通用的AM/FM多波段收音机进行接收测试。 4 基本原理 4.1 系统方案选择 方案一:以晶体振荡器做成高精度高稳定度的调频发射机 以晶体振荡器做成高精度高稳定度的调频电路,这完全可以达到我们的要求,但是这种方案比较复杂,能过搜索我们有另外一种方案,见方案二。 方案二:以调频方式做成三级发射机 这种方案的性能是比较好的,这种发射机主要由三个模块组成,第一级是音频放大电路;第二级是高频振荡电路;第三级是高频功率放大电路。 4.2 整体系统描述 本调频发射机的总体电路如下:声--电转换、音频放大、高频振荡调制和高频功率放大等。声--电转换由驻极体话筒担任,它拾取周围环境声波信号后即输出相就应电信号,经电容C2输入到晶体管Q1,Q1担任音频放大功能,对音频信号进行

测控电路课程设计

测控电路课程设计 目录 目录 (1) 设计任务与要求 (3) 1 .设计内容: (3) 本小组选择的题目 (3) 红外报警系统的设计与实现 (3) 一、课设背景: (3) 二、系统设计方案 (4) 1、结构框图: (4) 2、系统原理与原理图: (4) 3、系统的功能 (4) 三、传感器选择: (5) 热释电红外传感器RE200B (5) 选择的原因: (5) 工作原理: (5) 参数 (6) 四、单元电路设计 (6) 红外线采集接收电路 (6) 红外线采集接收电路电路图 (6) 信号的放大处理电路 (7) 信号的放大处理电路电路图 (7) 信号的比较电路 (7) 信号的比较电路电路图 (7) 信号的取反电路 (8)

信号的取反电路电路图 (8) 蜂鸣器报警电路 (8) 五、元器件选择 (8) LM741 (8) LM339 (9) HD74LS00P与非门芯片 (10) 六、电路接线图 (11) 七、调试过程: (12) 八、结果(数据、图表等) (12) 光照度测量 (14) 一、课设背景 (14) 二、系统设计方案 (14) 1、结构框图 (14) 2、系统的功能 (15) 3、系统原理与原理图 (15) 三、单元电路设计 (15) 1.Led发光和光电转换电路 (15) 2.I/V转换放大输出电路以及数字表头显示电路 (16) 3.比较电路及其发光报警电路 (16) 电路接线图 (16) 调试过程: (17) 结果(数据、图表等) (17)

设计任务与要求 1.设计内容: 室内环境参数测量及安防报警电路设计 温度、湿度、照度测量与显示、报警电路设计; 破门入室、破窗入室、室内防盗、火灾,燃气泄露等报警电路设计。 2.基本要求: 用电路实现,不用软件; 用数字表头实现测量值的显示; 能够设置环境参数测量值报警上下限,并实现声、光报警; 从1和2中各选一项完成; 3.提高部分: 完成1和2中功能或其它自选功能。 本小组选择的题目 室内环境参数测量及安防报警电路设计: 我们选择的是分别是光照度测量和红外报警系统的设计与实现。 红外报警系统的设计与实现 一、课设背景: 由于改革开放的深入发展,电子电器的飞速发展.人民的生活水平有了很大提高。各种高档家电产品和贵重物品为许多家庭所拥有。然而一些不法分子也是越来越多。这点就是看到了大部分人防盗意识还不够强.造成偷盗现象屡见不鲜。因此,越来越多的居民家庭对财产安全问题十分担忧。 报警器这时正为人们解决了不少问题.但是市场上的报警器大部分都是用于一些大公司财政机构。价格高昂,一般人们难以接受。如果再设计和生产一种价廉、性能灵敏可靠的防盗报警器,必将在防盗和保证财产安全方面发挥更加有效的作用。由于红外线是不见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用,此外,在电子防盗、人体探测等领域中, 被动式热释电红外探测器也以其价格低廉、技术性能稳定等特点而受到广大用户和专业人士的欢迎。 红外报警器大多数采用国外的先进技术,其功能也非常先进。其中包括被动

(整理)常用变容二极管

常用变容二极管变容二极管(Varactors ),又称为电压调谐电容(Voltage variable Capactors ,VVC )或调谐二极管(Tuning Diodes ),当在二极管两端加上反向偏压时,会产生电容效应,通常变容二极管的电容量,随反向偏压增大而减小。变容二极管优点主要表现在:(1)体型小巧易于安装;(2)易于实现自动电子调谐(Auto Electronic Tuning ),方便遥控的电子调谐器的设计。如今的电视系统或通信系统中的频道选择及呼叫等电路,基本上都由变容二极管完成。 1、 变容二极管工作原理 变容二极管的等效电路如图1(a )所示。 图1 (a )变容二极管的等效电路 (b )变容二极管的简化等效电路 其中,R p ——反向偏压的结电阻(Junction Resistance ); 's L ——外部引线电感; s L ——内部引线电感; c C ——封装电容; s R ——二极管体电阻; j C ——结电容。 通常,等效电路中的电感与封装电容等都可略去不计,简化后的等效电路如图1(b )所示。一般地,变容二极管与外加电压的关系可表示为 (1) j j D C C v V γ = - (1) j C 为变容二极管的结电容,0j C 为变容管加零偏压时的结电容;V D 为变容管PN 结内建 电位差(硅管V D =0.7V ,锗管V D =0.3V );γ为变容二极管的电容变化指数,与频偏的大小有关;v 为变容管两端所加的反向电压。在小频偏情况下,选γ=1的变容二极管可近似实现线性调频;在大频偏情况下,必须选γ=2的超突变结变容二极管,才能实现较好的线性调频。 变容二极管的j C v - 特性曲线如图2所示。当加入的反向电压为 cos Q Q m v V v V V t ΩΩ=+=+Ω时,设电路工作在线性调制状态,在静态工作点Q 处,可得曲线的斜率为/c k C V =??。

高频变容二极管调频器

深圳大学实验报告课程名称:通信电子线路 实验项目名称:变容二极管调频器学院:信息工程学院 专业: 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务部制

实验目的与要求: 1.熟悉电子元器件和高频电子线路实验系统。 2.掌握用变容二极管调频振荡器实现FM的方法。 3.了解变容二极管串接电容的数值对FM波产生的影响。 4.理解静态调制特性、动态调制特性概念和测试方法。 方法、步骤: 1.实验准备 ⑴在箱体右下方插上实验板4。接通实验箱上电源开关,此时箱体上±12V、±5V电 源指示灯点亮。 ⑵把实验板4上变容二极管调频振荡器单元(简称调频器单元)的电源开关(K2) 拨到ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。 2.静态调制特性测量 输入IN端先不接音频信号,将频率计接到调频器单元OUT端的C点(在本单元最右 边中部)。调节W2使得BG2射极到地之间的电压为4V(即集电极电流I c0=1mA,因为 R7=1kΩ),此后应保持不变。 ⑴电容C3(=100pF)不接(开关K1置OFF)时的测量 调整W l使得振荡频率f0=6.5MHz(用频率计测量),用万用表测量此时A点(在调频 器单元最左边中部)电位值,填入表8.1中。然后重新调节电位器W l,使A点电位在0.5~ 8V范围内变化,并把相应的频率值填入表8.1。最后仍需将振荡频率调回到6.5MHz。 ⑵电容C3接入(开关K1置ON)时的测量:同上,将对应的频率填入表8.1。最后仍 需将振荡频率调回到6.5MHz。 ⑶调节W2以改变BG2级工作点电压,观测它对于调频器输出波形的影响。最后仍 需将BG2射极到地之间的电压调回到4V ⑷调节W3以改变输出(OUT)电压幅度,观测它对于调频器输出波形的影响。 表8.1 V A(V) 0.5 1 2 3 4 5 6 7 8 f0(MHz)不接C3 6.5 空格接入C3空格 6.5 3.动态调制特性测量 ⑴实验准备 ①先把相位鉴频器单元(简称鉴频器单元)中的+12V电源接通(开关K7置ON,相应指示灯亮),再把鉴频器单元电路中的K2、K3、K5置ON位置,K1、K4、K6置OFF 位置(此时三个固定电容C5、C9、C10接通,三个可变电容C4、C11、C12断开,从而鉴

调频发射机课程设计

摘要 频率调制又称调频,它是使高频载波信号的频率按调制信号振幅的规律变化,即使瞬时频率变化的大小与调制信号成线性关系,而振幅保持基本恒定的一种调制方式。调频发射机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。目前它广泛的用于生产、保安、野外工程等领域的小范围移动通信工程中。本文主要讨论了调频发射机的原理实现方式并设计了电路图,将调频发射机的电路分为了振荡器、调制器、混频电路、倍频电路和功率放大器几部分,分别讨论它们的原理及其特性。 关键字:调频振荡器混频倍频功放

一、前言 调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。 调频发射机作为一种简单的通信工具,它首先将音频信号和高频载波调制为调频波,使高频载波的频率随音频信号发生变化,再对所产生的高频信号进行混频,倍频,功放和一系列的阻抗匹配,使信号输出到天线,发送出去的装置。本文主要讨论了调频发射机的原理实现方式并设计了电路图,将调频发射机的电路分为了载波振荡器、调制器、混频电路、倍频电路和功率放大器等部分组成,分别讨论它们的原理及其特性。 通过调频发射机电路的设计,使得建立无线电发射收机的整机概念,了解发射机整机各单元电路之间的关系及相互影响,从而能正确设计、计算发射的各个单元电路:包括晶体振荡电路、变容二极管调频电路、二极管单平衡混频电路、三极管倍频电路、丙类谐振功率放大电路设计、元器件选择。发射机是日常生活中常见的也是应用非常广泛的电子器件,研究本课题既可以了解调频发射机电路,又可以提高对于Multisim的应用能力和运用书本知识的能力。

变容二极管直接调频电路课程设计-精品

2014 ~2015学年第 1 学期 《高频电子线路》 课程设计 题目:变容二极管直接调频电路的设计 班级: 12电子信息工程(2)班 姓名: 指导教师: 电气工程系 2014年12月6日

1、任务书

摘要 调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的围。在调频时,可以将音频信号的频率围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。 变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。 本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。 关键字:变容二极管;直接调频;LC振荡电路。

目录 第一章设计思路 (1) 第二章调频电路工作原理 (2) 2.1 间接调频原理 (2) 2.2 直接调频原理 (2) 2.3 变容二极管直接调频原理 (2) 第三章电路设计 (5) 3.1 主振电路设计原理分析 (5) 3.2 变容二极管直接调频电路设计原理分析 (6) 第四章电路元器件参数设置 (8) 4.1 LC震荡电路直流参数设置 (8) 4.2 变容管调频电路参数设置 (8) 4.3 T2管参数设置 (8) 5.1 mulitisim11软件介绍 (9) 5.2 电路仿真 (9) 小结 (12) 附录一元器件清单 (13) 附录二参考文献 (14)

测控电路课程设计报告

课程设计 课程名称:测控电路 题目名称:PT100温度变送器设计学生学院:物信学院 专业班级:测控技术与仪器 班号:B13072021 学生组员:YU 指导老师:范志顺 2015-12-2

课程设计报告 一、实验要求:1.说明温度变送器的参数范围0~400度,经电压放大后为0.5-2.5V,经V/I转换成4~20mA输出的电流源。 二、实验原理: 1.同相放大及差分放大部分 2.电流源电路:

V/I 转换电路 对同相放大器有: 对差分放大器有: 三、实验准备: 参考文献:

PT100温度变送器:P t100温度变送器用于Pt100铂电阻信号需要 远距离传送、现场有较强干扰源存在或信号需要接入DCS系统时使用。SWP-TR-08铂电阻温度变送器采用独特的双层电路板结构,下层是信号调理电路,上层电路可定义传感器类 型和测量范围。 产品特点:1、线性化输出两线制4-20mA标准电流信号,模块化结构 2、热电阻温度变送器为引进英国温度计变送器散件组装,保持电路、制造工艺、结构和性能与原装温度变送器不变。 3、变送器有电源极性反接保护电路,当输出接线接反时对线路起保护作用(此时回路电流为零);传感器的不正确接线无论是高限或低限都将导致变送器输出饱和;产品具有 RFI/EMI保护,有利于提高了测量的稳定性。 4、SWP-TR全部采用进口电子元件,性能可靠,低温度漂移。 5、SWP-TR温度变送器量程用户不能自由修改,由生产商出厂时确认生产。 6、热电阻温度变送器电磁兼容性符合欧洲电工委员会(EC)的BS EN 50081-1和BS EN 50082-1标准。 7、热电阻变送器的接线通过壳体顶部的螺丝端子完成。为符合CE认证,信号输入接线长度不能超过3米,输出接线必须是屏蔽电缆,屏蔽线只能在一端接地。 8、变送器的中心孔用于热电阻信号接线,热电阻信号线通过螺丝直接拧在变送器的输入端子上。设计的螺丝端子接受内部或外部接线方式 技术指标:1、输入信号:Pt100铂电阻信号输入

变容二极管模型

Varactor SPICE Models for RF VCO Applications APN1004 Varactor Equivalent Circuit Model Definitions A simplified equivalent circuit of varactor is shown in Figure 1. This varactor model is useful for RF VCO applications although it neglects some parasitic components often needed for higher frequency microwave applications, such as the distributed line package model and some capacitance due to ground proximity.For most RF VCO applications, to about 2.5 GHz, these parasitic components would not be important unless higher harmonics generated by the varactor affects performance of the VCO.In this case, a more detailed equivalent circuit model is needed.The technique used should be based on the varactor model extraction procedure from S-parameter data. A SPICE model, defined for the Libra IV environment, is shown in Figure 2, with the description of the parameters employed.It neglects the package capacitance, C P , its typical 0.10 pF value is absorbed within the junction capacitance C V . Application Note Parallel Capacitance Figure 1.Simplified Equivalent Circuit of Varactor Figure 2.Libra IV SPICE Model

变容二极管调频实验报告(高频电子线路实验报告)

变容二极管调频实验 一、实验目的 1、掌握变容二极管调频电路的原理。 2、了解调频调制特性及测量方法。 3、观察寄生调幅现象,了解其产生及消除的方法。 二、实验内容 1、测试变容二极管的静态调制特性。 2、观察调频波波形。 3、观察调制信号振幅时对频偏的影响。 4、观察寄生调幅现象。 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、 3 号板1块 4、双踪示波器1台 5、万用表1块 6、频偏仪(选用)1台 四、实验原理及电路 1、变容二极管工作原理 调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。 变容二极管调频电路如图1所示。从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V的区间内,变容二极管的容值可由35P到8P左右的变化。电压和容值成反比,也就是TP6的电平越高,振荡频率越高。

图2表示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。 因为LC f π21= ,所以电容小时,振荡频率高,而电容大时,振荡频率低。从图(a ) 中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LC f π21= ,f 和C 的关系也是非线性。不难看出,C-u 和f-C 的 非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。

调频器课程设计报告

设计名称 2FSK调制与解调设计学院电气与光电工程学院 班级13信Y 学号13120226 姓名薛新旺 指导教师张刚兵 时间 2017.1.3

目录 一、摘要 (3) 二、2FSK信号的调制原理 (3) 三、2FSK信号的解调原理 (5) 四、 Quartus介绍 (6) 五、 Quartus实操介绍 (7) 六、程序仿真结果 (10) 七、总结 (14) 附录 (15) 1)2FSK信号的调制 (15) 2)2FSK信号的解调 (16)

一、摘要 数字调频又称移频键控,它是用不同的载波来传送数字信号的。 FSK信号的产生有两种方法:直接调频法和频率键控法。2FSK信号的产生可利用一个矩形脉冲序列对一个载波进行调频而获得。这正是频率键控通信方式早期采用的实现方法,也是利用模拟调频法实现数字调频的方法。 2FSK信号的另一产生方法便是采用键控法,即利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选择。2FSK是利用载频频率变化来传输数字信息。 数字载频信号又可分为相位离散和相位连续两种情形。若两个振荡频率分别由不同的独立振荡器提供,它们之间的相位互不相关,这就叫相位离散的数字调频信号;若两个振荡频率由同一振荡信号源提供,是对其中一个载频进行分频,这样产生的两个载波就是相位连续的数字调频信号。 在实际通信系统中,大部分信道不能直接传输基带信号,必须用基带信号对载波波形的参量进行控制,使载波的这些参量随基带信号的变化而变化,即以正弦波作为载波的数字调制系统。 与模拟调制一样,数字调制也有调幅、调频和调相三种基本形式。调频信号即2FSK信号是数字通信系统使用较早的一种通信方式,由于这种通信方式容易实现,抗噪声和抗衰减性能较强,因此在低速数据传输通信系统中得到了较为广泛的应用。键控法产生的FSK信号频率稳定度高,并且没有过渡频率,它的转换速度快、波形好。 所以本课设电路利用移频键控法,由函数信号发生器产生两个不同的载波,即为相位不一定连续的数字调频信号,由基带信号对不同频率的载波信号进行选择。 二、2FSK信号的调制原理 FSK信号的产生有两种方法:直接调频法和频移键控法。 (1)直接调频法。直接调频法是用数字基带信号直接控制载频振荡器的振荡频率。 直接调频法实现电路有许多。一般采用的控制方法是:当基带信号为正时(相当于‘1’码),改变振荡器谐振回路的参数·(电容或电感数值),使振荡器的振荡频率提高(设为f1);当基带信号为负时(相当于‘0’码),改变振荡器谐振回路的参数,使振荡器的频率降低(设

电容三点式振荡器与变容二极管直接调频电路设计

咼频实验报告(二) --- 电容三点式振荡器与 变容二极管直接调频电路设计 组员 座位号16 __________________ i

实验时间__________ 周一上午 ________ 目录 一、实验目的 (3) 二、实验原理 (3) 2.1 电容三点式振荡器基本原理 (3) 2.2 变容二极管调频原理 (5) 2.3 寄生调制现象 (8) 2.4 主要性能参数及其测试方法 (9) 三、实验内容 (10) 四、实验参数设计 (11) 五、实验参数测试 (14) 六、思考题 (15) ii

实验目的 1. 掌握电容三点式LC 振荡电路的基本原理。 2. 掌握电容三点式LC 振荡电路的工程设计方法。 3. 了解高频电路中分布参数的影响及高频电路的测量方法。 4. 熟悉静态工作点、反馈系数、等效 Q 值对振荡器振荡幅度和频谱纯度的影响。 5. 掌握变容二极管调频电路基本原理、调频基本参数及特性曲线的测量方法。 实验原理 2.1电容三点式振荡器基本原理 电容三点式振荡器基本结构如图所示: 在谐振频率上,必有 X i + X 2 + X 3 =0,由于晶体管的 V b 与V c 反相,而根据振荡器的 振荡条件|T| = 1,要求V be = — V ce ,即i X i = i X 2,所以要求 X i 与X 2为同性质的电抗。 综合上述两个条件,可以得到晶体管 LC 振荡器的一般构成法则如下:在发射极上连 接的两个电抗为同性质电抗,另一个为异性质电抗。 原理电路如图3.2所示: 图3.2原理电路 共基极实际电路如图3.3所示: Xi ―I X 2 I — 图3.1电容三点式振荡器基本结构 C1 C2 图3.3共基极实际电路

测控电路课程设计

测控电路课程设计说明书 设计题目: 开关型振幅调制与解调电路的设计与调试 学院:电信学院 班级:测控122班 姓名:张小旭 学号:201206040235

目录 一:实验任务、要求及内容 (3) 二:实验过程及原理 (3) 三:分析误差原因 (11) 四:分析电路中产生的故障 (13) 五:实验总结 (13)

一:实验任务、要求及内容 1任务:利用场效应管的开关特性,实现低频信号的幅值调制与解调,以抑制噪声干扰,提高信噪比。 2要求:参考指定的资料,设计出相应的各部分电路,组装与调试该电路,试验其抗干扰性能。 3内容:(1).分析各部分电路工作原理,选择相应的参数。 (2).画出完整的电路图。 (3).分析电路实验中产生的故障。 (4).分析误差原因。 4电路参数:调制信号:正弦波频率<500HZ 幅值<0.1v 。 载波:方波频率:5——10KHZ 幅值:5——7v 占空比:50%。 调制后信号幅值>5v。 5时间安排建议:全部时间一周。其中:设计1-2天,调试2-3天,总结1天安排1天。 二:实验过程及原理 (一)元器件的可靠性检验: 1.运放的可靠性检验:先用运放搭成跟随器,输入正弦信号,用示波器检验器是否跟随;之后用运放搭成反向放大器,输入正弦信号看输出幅值与相位; 2.稳压管的匹配:将稳压二极管串联电阻构成稳压电路,接入电源,测其性能参数,选择稳压值相近的两个稳压管。

3导线的可靠性检验:把将要用到的导线全部用万用表检测其通断; (二)原理方框图: (三)方波发生电路: 原理图如下: 方波发生电路中,积分电路的电压电流关系: 001u [()]t o c Q i t dt Q C C ==+? 其中0Q 是t=0时电容器已存储的电荷,由ic=-Ii=-ui/R,得到: 001()t o i o u u t dt U RC =-+? 常量0o U 根据初始条件确定,即t=0时,o u (0)=0o U =Q0/C. 当输入为常量时,输出为: 0()i o o u u t t U RC =-+

实验四 变容二极管调频

实验四变容二极管调频 一.实验目的 1、掌握变容二极管调频的工作原理。 2、学会测量静态特性曲线,理解动态特性的含义。 3、学会测量调频信号的频偏及调制灵敏度。 4、观察寄生调幅现象。 二.实验原理 1、变容二极管调频原理 所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡)的瞬时频率,使其按调制信息的规律变化。 设调制信号:υΩ(t)= VΩcosΩt,载波振荡电压为:a ( t ) = A o cosωo t 根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即 ω(t)= ωo + K f VΩcosΩt =ωo + ΔωcosΩt (4-1) 则调频波的数字表达式如下: a f (t) = A o cos(ωo t+ ΩΩ V K f sinΩt) 或a f (t) = A o cos(ωo t+ m f sinΩt) (4-2) 式中:Δω= K f VΩ是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。比例常数K f亦称调制灵敏度,代表单位调制电压所产生的频偏。 式中:m f = K f VΩ/Ω= Δω/Ω =Δf / F 称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图4-1所示。 图4-1 变容二极管调频原理电路 变容二极管C j通过耦合电容C1并接在LC N回路的两端,形成振荡回路总电容的一部分。因而,振荡回路的总电容C为: C = C N + C j(4-3) 加在变容二极管上的反向偏压为: V R = V Q(直流反偏)+υΩ(调制电压)+υo(高频振荡,可忽略)

变容二极管调频电路

摘要 调频广播具有抗干扰性能强、声音清晰等优点,获得了快速的发展。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。 目前,变容二极管直接调频电路是目前应用最广泛的直接调频电路,它是利用变容二极管反向所呈现的可变电容特性实现调频的,具有工作频率高固有损耗小等特点。现有的对于调频电路的研究与仿真主要集中在锁相环电路,变容二极管直接调频电路研究较少,对于变容二极管静态调制特性的研究更是几乎无人涉及。 变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。 在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。因此,当变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。 关键词:LC振荡电路、变容二极管、调频

1.设计要求 (1)主振频率=8MHZ (2)频率稳定度/≤0.0005/h (3)主振级的输出电压 (4)最大频偏 (5)电源电压= 5V 2.电路原理分析 变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。变容二极管直接调频电路由于变容二极管的电容变化范围大,因而工作频率变化就大,可以得到较大的频偏,且调制灵敏度高、固有损耗小、使用方便、构成的调频器电路简单。 在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。因此,党变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。 3.电路设计 3.1 主振电路设计 本文中所用电路采用常见的电容三点式振荡电路实现LC振荡,简便易行。式中,L为LC振荡电路的总电感量,C为振荡电路中的总电容,主要取决于C3、C7、C8、Cc1及变容二极管反偏时的结电容Cj。,变容二极管电容Cj作为组成LC振荡电路的一部分,电容值会随加在其而端的电压的变化而变化,从而达到变频的目的。R4、R5、R6、R7和W2调节并设置电容三点式振荡器中T1管的静态工作点,R8、R9、R10调节并设置T2管的静态工作点,C7、C9、C10以及L4、

测控电路课程设计 光照强度测量显示电路

测控电路 课程设计 课程设计名称:光照强度测量显示电路 专业班级: 学生姓名: 学号: 指导教师:刘建娟 同组人姓名: 课程设计时间:2013.12.25—2014.01.03

测控电路课程设计任务书 学生姓名专业班级学号 题目光照强度测量显示电路 课题性质工程设计课题来源参考书指导教师刘建娟 主要内容(参数) 参考期刊、文献等资料设计光照强度测量显示电路,包括以下内容:(1)选择合适的传感器和放大电路;(2)设计A/D转换电路;(3)设计单片机程序;(4)设计数码管显示电路; 根据以上内容要求来设计电路图并具体分析电路图的特性。 任务要求(进度)第1-2天:确定课程设计题目,查阅相关技术资料; 第3-6天:确定设计内容及方案,并按照确定的方案设计单元电路,对各单元电路进行功能分析; 第7-8天:进一步修正方案并画出电路图; 第9-10天:撰写课程设计报告,将各部分内容完整地呈现在报告中,并对本次课程设计进行总结。 主要参考资料[1] 张国雄. 《测控电路》. 机械工业出版社. 2011 [2] 陈磊.单片机控制数字光强检测计的设计[J].大学物理实验.2009.4. [4] 孙圣和,王廷云,徐影..光纤测量与传感技术[M].哈尔滨工业大学出版社.2007 审查意见 系(教研室)主任签字:年月日

引言 照度与人们的生活有着密切的关系。充足的光照,可防止人们免遭意外事故的发生。反之,过暗的光线可引起人体疲劳的程度远远超过眼睛的本身。因此,不适或较差的照明条件是造成事故和疲劳的主要原因之一。现有统计资料表明,在所有职业劳动的事故中约有30%是直接或间接因光线不足所造成的。对体育场(馆)的光照要求是非常严格的,光照过强或过暗都会影响比赛的效果。 那么,人们居住的室内对照度的卫生学要求是如何呢?照度是在卫生学中一项十分重要的指标。光是指能引起人眼睛光亮感觉的电磁辐射,当光线进入眼睛后可产生的知觉称为视觉。人们所见的光是指可见光,其波长范围在380~760nm (纳米)之间。 采光可分为自然采光和人工光源两大类。自然采光是指室内和地区的天然照度,有直接的日光照散射光和周围物体的反射光,常用采光系数和自然照度表示。而采光系数是指采光口的有效面积与室内地面面积之比。一般住宅的采光系数在1/5~1/15之间,居住面积比在1/8~1/10之间(窗面积/室内地面面积)。自然照度系数是用于评价自然光的照度水平。它是反映室内的和同时从室外来的光照射关系。也反映出当地光气候(自然光能源和气候的阳光照度指标的总和)。 本设计采用AT89C51单片机组成光照强度测量显示系统,可以实现对光强的测量和显示。光强传感器采用光敏三极管,对光照强度进行实时采样。设计传感器放大电路,将太阳的强弱转变为电信号,并将强度值显示出来。将光敏三极管接入电路,受光照度不同时光敏三极管的集电极电流发生相应的变化,将采集的信号接入运算放大电路,再输入到ADC转换器,将模拟信号转换成数字信号输入单片机中,通过数码显示器显示出在不同光照强度下电路电压的变化值。光敏三极管和普通三极管的结构相类似。不同之处是光敏三极管必须有一个对光敏感的PN结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。 设计开始先查阅资料,如元器件资料,方案选择等,可以使用单片机方案,也可以使用模拟电路方案,设计显示电路时注意按照国标显示,并有相应的手动校正电路。其中运用到了许多基本知识,如:电路理论中电阻电路的分析、模拟电子线路中运算放大器、比较器、功率放大器等知识,数字电子线路中开关特性及数字信号等知识,传感器技术中的光电传感器原理及应用、测量电路等部分知识。

相关主题